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Abstract
Objective. Brain–computer interfaces (BCIs) based on sensorimotor rhythms use a variety of
motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding
the tasks that yield best performance, specifically to each user, is a time-consuming
preliminary phase to a BCI experiment. This study presents a new adaptive procedure to
automatically select (online) the most promising motor task for an asynchronous
brain-controlled button. Approach. We develop for this purpose an adaptive algorithm
UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our
method. We compare (offline) the adaptive algorithm to a naı̈ve selection strategy which uses
uniformly distributed samples from each task. We also run the adaptive algorithm online to
fully validate the approach. Main results. By not wasting time on inefficient tasks, and
focusing on the most promising ones, this algorithm results in a faster task selection and a
more efficient use of the BCI training session. More precisely, the offline analysis reveals that
the use of this algorithm can reduce the time needed to select the most appropriate task by
almost half without loss in precision, or alternatively, allow us to investigate twice the number
of tasks within a similar time span. Online tests confirm that the method leads to an optimal
task selection. Significance. This study is the first one to optimize the task selection phase by
an adaptive procedure. By increasing the number of tasks that can be tested in a given time
span, the proposed method could contribute to reducing ‘BCI illiteracy’.

(Some figures may appear in colour only in the online journal)

1. Introduction

Scalp recorded electroencephalography (EEG) can be used for
non-muscular control and communication systems, commonly
called brain–computer interfaces (BCI). BCI systems based
on sensorimotor rhythms (SMR) rely on the users’ ability to
control their SMR in the μ-frequency (8–13 Hz) and/or β-
frequency (16–24 Hz) bands [1–3]. Indeed, these rhythms are
naturally modulated during real and imagined motor action.

More precisely, real and imagined movements similarly
activate neural structures located in the sensorimotor
cortex, which can be detected in EEG recordings as
synchronization (event-related synchronization (ERS)) and/or

desynchronization (event-related desynchronization (ERD))
in the μ- and β-frequency bands [4, 5]. Because of the
homuncular organization of the sensorimotor cortex [6], it is
possible to distinguish different limb movements according
to the position of the neural structures involved. For
example, a right hand movement involves a modification of
cortical activity on the upper left precentral gyrus, while
the modification of activity due to feet movement is less
lateralized.

A vast variety of motor tasks can be used in this context,
like imagining rapidly or slowly moving the hand, grasping
an object or kicking an imaginary ball. These different tasks
permit different levels of control. Unfortunately, the tasks
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which enable optimal control of a BCI are specific to each
user [7].

It is prevalent to use a preliminary training session to
determine which motor task, among a small set of tasks, is the
most appropriate for each user [8–10]. Although task selection
is often mentioned as a preliminary step in the BCI literature,
this paper is the first, to our knowledge, to propose a principled
method for this purpose.

We now focus on a single brain-button controlled by
imagining a specific motor task. The goal of the task selection
is to find the motor task that will the most efficiently be detected
with respect to the idle state.

The standard task selection method consists in requesting
the subject to perform each motor task a fixed number of times
(identical between tasks), and then to evaluate the performance
of each task (its detection rate) in order to select the most
appropriate. This naı̈ve method is referred to in the rest of this
paper as the uniform strategy.

We developed an adaptive algorithm that evaluates the
performance of each task in real time during the experiment. It
is therefore capable of rapidly eliminating non-efficient tasks
in order to focus on the most promising ones. The benefit is
twofold: reducing the length of the training stage and exploring
a larger variety of motor tasks.

The task selection procedure is based on a bandit model
(initially presented in [11]), which is assigned the goal to
rapidly select an action that maximizes the expected detection
rate given a limited budget of trials.

The rest of this paper is organized as follows. In section 2,
we describe the EEG experiment and model the task selection
as an optimization problem, which is solved using an Upper
Confidence Bound (UCB) algorithm. Section 3 presents results
on simulated and real online experiments, while section 4
discusses these results and presents perspectives. A proof of
the theoretical performances of our algorithm is given in the
appendix.

2. Material and methods

2.1. The EEG experiments

Two experiments were designed in order to evaluate the
performance of our automatic method for task selection. The
goal of the first experiment was to record a large amount of
data to realize an offline performance analysis, whereas the
second experiment was dedicated to testing the online use of
the algorithm.

Both experiments were very similar and were designed to
be as close as possible to the online use of a brain-controlled
button. To this aim, we presented, at random timing, cue
images during which the subjects had to perform 2 s long
motor imagination tasks (intended to activate the button).
During the online use of the adaptive algorithm, the order
of the image presentations is optimized thanks to the adaptive
strategy which is the subject of this paper, in view of selecting
most rapidly the best motor task.

Ten subjects (aged 32.9 ± 9.4, all right-handed but one)
participated in the offline experiment and four (all right-
handed but one) underwent the online experiment. They had

Figure 1. The 64 EEG cap with the three electrodes from which the
features are extracted (C3, CZ, and C4). The additional electrodes
used for the Laplacian are F3, FZ, F4, T7, T8, P3, PZ and P4.

no disability and were seated 1.5 m away from a 23′ LCD
screen. Scalp electrodes were recorded through an OpenViBE
platform [12] at a sampling rate of 512 Hz, from 11 out of
64 channels of a TMSI amplifier (see figure 1). The signal
was band-pass filtered, and a spatial Laplacian was applied
to increase the signal to noise ratio. EMG was recorded from
both forearms and from the left leg to verify that the subjects
did not activate their muscles during movement imagination.

The offline experiment was composed of 9–13 blocks of
approximately 4 min. During each block, three cue images
were presented ten times for 2 s in random order. The time
between two image presentations varied between 2.5 and 9.5 s.
The inter-trial interval was intentionally long, because it was
used to acquire data in the no-control (idle) state, against which
the tasks were to be classified. Each cue image was a prompt for
the subject to imagine the corresponding motor action during
2 s, namely moving the right or the left hand or both feet (see
figure 2).

During the online sessions, the UCB-classif algorithm
and/or the uniform strategy were run several times to select one
task among three (the right hand, both feet and the tongue). A
budget of N = 60 task executions was dedicated to each task
selection run. The rationale for using a limited number of tasks
and a limited budget was to allow the task selection procedure
to be run several times during one session. The goal was to
verify that the UCB-classif algorithm could be used online
and resulted in the selection of tasks that could be efficiently
detected with respect to the idle state.

2.2. Feature extraction

In the case of short motor tasks, the movement imagination
produces an ERD in the μ and β bands during the task,
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Figure 2. Time-line of the online and offline experiments. Cues are presented to the subjects for 2 s, with inter-cue intervals randomly
varying from 2.5 to 9.5 s.
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Figure 3. Time–frequency maps of the signal recorded on electrodes C3, Cz and C4, after spatial Laplacian, for a right hand movement
imagination (presentation of the cue from t = 0 to t = 2 s). The maps have individual color maps, with maximal values 5.54, 3.28 and 4.69
on C3, Cz and C4, respectively (in arbitrary units). The time–frequency windows used for feature extraction are superimposed on the maps.
During the movement, the power in the μ and β bands decreases (ERD) and, approximately 1 s after the movement, it increases (ERS) to
reach a higher level than in the idle state.

followed by a strong ERS [13, 14] (sometimes called beta
rebound as it is most usually seen in the β-frequency band).

We extracted features of the μ and β bands during the
2 s time windows of the motor action and on a subsequent
1.5 s of signal in order to use the bursts of μ and β power
(ERS or rebound) that follow the movement imagination. More
precisely, the features, indicated as rectangles in figure 3, were
the power around 11 and 20 Hz (with 2 Hz wide bands)
extracted at three electrodes over the sensorimotor cortex
(C3, C4 and Cz) during and after the imagination. Thus, six
features were extracted during the movement and six during
the rebound (the benefit of using post-imagination features is
explored in [14]). The time–frequency windows were chosen
according to a preliminary study with the first subject and
deliberately left unchanged for the other subjects.

Visual inspection of the signals showed no systematic
eye-blinking or head-muscle clenching related to the cue
presentations. We did not preprocess the data for such artifacts.
This is also justified because the features used are specifically
sensitive to motor activity of the limbs.

2.3. Evaluation of performances

The classifier was a linear SVM. The theoretical classification
rate r∗

k of a task k is the probability that a new sample of
data from this task would be well classified versus the idle
condition, if an unlimited amount of data were available for
training a linear SVM. Unfortunately, only a small amount of

data is available to evaluate the performance of each task. To
make the performance evaluation as precise as possible, we
used the leave-one-out technique when less than 8 samples
of the task were available, and an eightfold validation when
more repetitions of the task had been recorded. More precisely,
because of the large variance of the classification rate on the
testing set when very little data are available, we computed
the minimum between the classification rate over the training
set (Traini) and the testing set (Testi), and then, evaluated its
mean over the different folds:

1

Nfolds

Nfolds∑
i=1

min(Traini, Testi).

Although this estimator is biased, it gives more reliable results
when little data are available.

2.4. Artificial tasks

One of the goals of our algorithm is to be able to select the
best task among a large number of tasks. However, for the
offline experiment, only a limited number of tasks could be
used (three), because we limited the length of the sessions
in order not to tire the subjects, but still needed a sufficient
number of samples for each task in order to perform a reliable
offline analysis.

To demonstrate the usefulness of our method for a larger
number of tasks, we decided to create artificial (degraded)
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tasks by mixing the features of one of the real tasks (the feet)
with different proportions of the features extracted during the
idle periods.

2.5. Modeling the problem

Let K denote the number of different images to be presented
to the subject during the learning stage (K is thus the number
of imaginary tasks) and N is the total number of images
(the budget). Our goal is to find a selection strategy (i.e.
that chooses at each time step t ∈ {1, . . . , N} an image
kt ∈ {1, . . . , K} to present) which allows us to select in fine
the most discriminative task (i.e. with the highest classification
rate in generalization). Note that, in order to learn an efficient
classifier, we need as much training data as possible, so our
selection strategy should rapidly select the most promising
images in order to obtain more samples from these rather than
from the others.

This issue is relatively close to the stochastic bandit
problem [11, 15]. The classical stochastic bandit problem
is defined by a set of K actions (pulling different arms of
bandit machines). With each action a reward distribution is
associated, which is initially unknown from the learner. At
time t ∈ {1, . . . , N}, if we choose an action kt ∈ {1, . . . , K},
we receive a reward sample drawn independently from the
distribution of the corresponding action kt . The goal of the
stochastic bandit algorithm is to find a selection strategy which
maximizes the sum of obtained rewards.

We model the K different images as the K possible actions
(or arms), and we define the reward as the detection rate of
the corresponding imaginary motor task, against the idle state.
In the bandit problem, pulling a bandit arm directly gives a
stochastic reward which is used to estimate the distribution
of this arm. In our case, when we display a new image,
we obtain a new data sample for the selected motor task,
which provides an additional data sample to train or test
the corresponding classifier and thus obtain a more accurate
performance estimation. The main difference is that for the
stochastic bandit problem, the goal is to maximize the sum
of obtained rewards, whereas the present goal is to maximize
the performance of the classifier. However, the strategies are
similar: since the distributions are initially unknown, one
should first explore all the tasks (exploration phase) but then
rapidly select the best one (exploitation phase). This is called
the exploration–exploitation trade-off. The next paragraph
presents an algorithm to optimize this trade-off.

2.6. The UCB-classif algorithm

The image selection strategy is designed by using a variant of
the UCB algorithm [15], which builds a high probability UCB
on the reward value of each task, and selects at each time step
the action corresponding to the reward with highest bound.

The upper bound Bk,t (of action k at time t) is defined in the
stochastic bandit problem as the sum of the empirical reward
r̂k,t and a confidence term which depends on the number of
times Tk,t action k has been chosen up to time t:

Bk,t = r̂k,t +
√

a log N

Tk,t−1
, (1)

Arm 1   Arm 2 Arm 1   Arm 2 Arm 1   Arm 2
T1,1 =1 T2,1 =1 T1,2 =1 T2,2 =2 T1,3 =2 T2,3 =2

t = 1 t = 2 t = 3

Figure 4. This figure represents three snapshots, at times t = 1, 2
and 3, of a bandit with two arms. Although arm 1 is the best arm
(r∗

1 > r∗
2 , represented by the red stars), at time t = 1, since

B1,t < B2,t , arm 2 is selected. Pulling arm 2 gives a better estimate
r̂2,2 of r∗

2 and reduces the confidence interval. At times t = 2 and
t = 3, B1,t will be greater than B2,t , so arm 1 will be selected.

Table 1. Pseudo-code of the UCB-classif algorithm.

The UCB-Classif Algorithm
Parameters: a, N, q
Present each image q times (thus set Tk,qK = q).
for t = qK + 1, . . . , N do

Evaluate by a q-split cross-validation the performance r̂k,t of each
image.

Compute the UCB: Bk,t = r̂k,t +
√

a log N
Tk,t−1

for each image

1 � k � K.
Present image: kt = arg maxk∈{1,...,K} Bk,t .
Update T : Tkt ,t = Tkt ,t−1 + 1 and ∀ k �= kt , Tk,t = Tk,t−1

end for

where a > 0 is a constant. The upper bound in formula (1)
represents a compromise between the empirical reward (first
term) and its uncertainty, which decreases with time (second
term) (see figure 4 for an illustration).

We adapt the idea of the UCB to the adaptive classification
problem and call this algorithm UCB-classif (see the pseudo-
code in table 1). The algorithm builds the Bk,t -values (1), where
r̂k,t represents an estimation of the classification rate, by a
q-fold cross-validation. The cross-validation uses a linear
SVM classifier based on the Tk,t data samples obtained (at
time t) from movement k. Writing r∗

k the classification rate for
the optimal linear SVM classifier (which would be obtained by
using a infinite number of samples), we have the property that
Bk,t is a high probability upper bound on r∗

k : the probability
p(Bk,t < r∗

k ) decreases to zero polynomially fast with N (see
the proof in appendix A.1). The constant a is a measure
of complexity (VC-dimension) of the class of linear SVM
classifiers.

The choice of the initial number of task presentations q
should be made with caution. If q is very small (q < 5), the
algorithm may not give a fair chance to all the tasks. This can
result in the elimination of the best task (although statistically
it does not happen often). Selecting a value of q between 8 and
10 circumvents this problem.

4



J. Neural Eng. 10 (2013) 016012 J Fruitet et al

10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Budget N = 250

Number of tasks (K)

P
ro

b
ab

ili
ty

 o
f 

se
le

ct
in

g
 a

 g
o

o
d

 t
as

k

Uniform, best task
Uniform, 2 best tasks
UCB−Classif, best task
UCB−Classif, 2 best tasks

6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Budget N = 150

Number of tasks (K)

P
ro

b
ab

ili
ty

 o
f 

se
le

ct
in

g
 a

 g
o

o
d

 t
as

k

Uniform, best task
Uniform, 2 best tasks
UCB−Classif, best task
UCB−Classif, 2 best tasks

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Number of tasks: K = 8

Budget N

P
ro

b
ab

ili
ty

 o
f 

se
le

ct
in

g
 a

 g
o

o
d

 t
as

k

Uniform, best task
Uniform, 2 best tasks
UCB−Classif, best task
UCB−Classif, 2 best tasks

Figure 5. Probability of selecting the best task (full line), or one of the two best tasks (dashed line), as a function of the budget N (left graph)
or of the number of tasks K (center and right graphs), on average over all ten subjects. The UCB-classif algorithm (in red) enables a more
reliable selection than the uniform strategy (in black). The confidence interval with p < 0.05 of the gain provided by UCB-classif is
represented as error bars.

Figure 4 is a graphical illustration showing how the UCB-
classif algorithm works. The idea behind the algorithm is that
it selects at time t an image k either because it has a good
classification rate r̂k,t (thus it is interesting to obtain more
samples from it to perform exploitation) or because it has
not been sampled many times, making its classification rate
uncertain (thus it is important to explore it more). In fine, this
allows the image that has the highest classification rate to be
sampled more often. The UCB-classif algorithm guarantees
that non-optimal images are presented only a negligible
fraction of times (log N times out of a total budget N). The
best image (or motor task) is thus sampled N − O(log N)

times (see the proof in appendix A.2).

3. Results

3.1. Offline performance analysis of UCB-classif

We compare the performance of the UCB-classif sampling
strategy to the Uniform strategy, i.e. the standard way of
selecting a task, consisting of N/K presentations of each image
and, once all the data have been acquired, selecting the task
that maximizes the classification accuracy. To obtain a precise
evaluation of the performance, we use a bootstrap technique:
for each budget N and number of tasks K, we simulate 500
online selections by randomly choosing the data used by
the UCB-classif algorithm or the uniform strategy. We then
compute the probability of selecting the best-performing tasks
and compare them between methods. The best-performing
tasks were defined by ranking the task performances based
on the whole dataset, and even on other recording sessions
when they were available (which was the case for seven of the
ten offline subjects). Because for some subjects, the two best-
ranked tasks have very close performance, we computed both
the probability of selecting the best task and the probability of
selecting one of the best two tasks.

Figure 5 shows these probabilities according to different
budgets and numbers of tasks. The UCB-classif strategy
significantly outperforms the uniform strategy, even for
relatively small N.

When eight tasks are used (left graph of figure 5), the
probability of selecting the best task (and one of the two best
tasks) with UCB-classif and a budget of N = 150 is similar or
higher to those obtained by the uniform strategy for a budget of
N = 250. Thus, only 150 trials are needed to select a good task
instead of 250. For this application, the time spent to select the
task is reduced from 35 to 20 min with no loss of reliability.

For a budget of N = 250 (right graph of figure 5), the
number of tasks that can be explored with the same reliability
rises from 10 to around 20 when the UCB-classif algorithm is
used instead of the uniform strategy.

One can note that our algorithm does not guarantee that the
task selected is the best performing, indeed the probabilities
shown in figure 5 are not all equal to one. But the chance
of selecting a non-optimal task is lower for UCB-classif than
for the uniform strategy and becomes lower as N/K becomes
large. A strategy to avoid selecting a non-optimal task is to
increase the budget N, which represents a compromise between
spending time on task selection and risking to select a task with
non-optimal performance.

3.2. Online performance analysis of UCB-classif

In order to accurately measure the gain in using UCB-
classif compared to the uniform strategy, at least 100 task
selections should be made with both techniques on a large
group of subjects. This would require hundreds of hours of
recordings for each subject, which is not feasible. This is
why we have used an offline analysis to precisely evaluate
the performance of UCB-classif. We nevertheless designed
an online experiment for the purpose of verifying that the
UCB-classif algorithm could indeed be used online and that
it leads to the selection of well-performing tasks. For this
online evaluation, we repeated between 3 and 5 times, for
each subject, the selection of one task among the three with
UCB-classif 3.

3 For the first subject, one task selection was also made using the uniform
strategy, but since the purpose of the online experiment was not to evaluate
the uniform strategy, this was not reproduced with the other subjects.
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Figure 6. Example of a task sequence delivered during one run of the online session (recorded on subject A4, last run reported in table 2).

Table 2. Tasks selected during online experiments for four subjects.
A budget of N = 60 was used to determine the best task among
K = 3. The number of presentations Nb and the final detection rate
of each task is indicated for each experiment.

Subject Right hand Feet Tongue Selected

A1 Nb Rate Nb Rate Nb Rate task
Uniform 20 79% 20 75% 20 57% Right hand
UCB-classif 23 77% 27 79% 10 48% Feet
UCB-classif 16 70% 34 88% 10 74% Feet
UCB-classif 21 75% 30 82% 9 61% Feet
A2
UCB-classif 26 88% 20 86% 14 78% Right hand
UCB-classif 25 78% 23 76% 12 69% Right hand
UCB-classif 22 63% 26 70% 12 60% Feet
UCB-classif 27 89% 22 84% 11 71% Right hand
UCB-classif 23 80% 24 83% 13 57% Feet
A3
UCB-classif 24 79% 15 56% 21 64% Right hand
UCB-classif 42 94% 11 67% 7 63% Right hand
UCB-classif 35 87% 14 69% 11 54% Right hand
UCB-classif 26 84% 21 61% 13 50% Right hand
UCB-classif 32 78% 17 74% 11 43% Right hand
A4
UCB-classif 16 80% 28 97% 16 78% Feet
UCB-classif 19 72% 30 87% 11 40% Feet
UCB-classif 16 70% 34 86% 10 57% Feet
UCB-classif 15 64% 34 88% 11 55% Feet
UCB-classif 19 73% 28 86% 13 76% Feet

The observations made during the online recordings can
be found in table 2, namely for each run: the number of
presentations of each task, final detection rate of each task and
the task selected. Figure 6 gives an example of task sequence
delivered during one of the runs.

For three out of four subjects, each experiment with the
UCB-classif algorithm led to the selection of the best task,
whereas the unique attempt of using the uniform strategy
resulted in the selection of a non-optimal task. For subject
A2, the performances of the right hand and the feet were
very similar, which makes it irrelevant to determine the ‘best’
task. The UCB-classif algorithm alternatively selected one or
the other, and always succeeded in rapidly eliminating the
worst task (the tongue). Observe that when tasks have similar
performance, they end up having similar presentation rates.

For all subjects, the performance of the tongue is lower
than the two other tasks, and we can observe that the UCB-
classif algorithm allocates only a small budget to the tongue
and focuses on evaluating the detection rate of the right hand
and the feet.

In addition to the experiments reported in table 2, subject
A3 performed an extra run, with five instead of three tasks

(right hand, left hand, feet, tongue, right arm movement) and
a budget of N = 120. It resulted in the selection of the best
task, namely the right hand.

4. Discussion and perspectives

The results of the UCB-classif algorithm on the offline analysis
and the online sessions are very promising. Because it is
not penalized by non-efficient tasks, UCB-classif allows the
exploration of larger sets of motor tasks than customary up to
now. For example, for eight tasks, on average only 150 trials
are necessary, whereas 250 would be needed with the naı̈ve,
uniform, task selection. This can automatically reduce the time
required for this selection phase, with no loss of reliability. In
order to fully validate the method, we have applied it online4.
The tasks selected online achieved detection rates between
70% and 97%, with an average of 84.6%.

The use of UCB-classif is all the more worthwhile as
the number of tasks is large: for only three or four tasks,
as customary in BCI today, it offers little advantage over
uniform task selection. But this new selection method, by
accommodating a large number of tasks, allows us to explore
different movement strategies for a given limb (e.g. kicking,
rotating, swaying, repeating brisk movements).

For this study, we have chosen to use a very small set of
fixed features (12 features, extracted from three electrodes, two
frequency bands and two time windows) that were calibrated
on only one subject during a preliminary experiment. The
detection rate could be further improved by using a larger set
of subject-specific features [16] and more advanced techniques
(like the CSP [17] or feature selection [18]). This is why,
once the best task has been determined using UCB-classif,
the acquired data should be used to automatically adjust the
features for each subject. By rapidly focusing, during this
exploratory phase, on the most discriminative task, sufficient
data will be available to appropriately tune the features, in
addition to training the classifier.

An alternative strategy would be to start tuning the features
while running UCB-classif. Unfortunately, this would give rise
to two issues: first, an important risk of over-fitting, especially
for an initially very small amount of data, second a risk of
favoring the tasks that have been the most sampled, and for
which the features will thus be the best tuned.

The BCI targeted in this paper uses only one motor task to
control a single brain-button. It would be interesting to aim for
BCI that use two or more tasks to control more buttons. With
this in view, we are studying an extended version of UCB-
classif that will be able to select a pair (or a triplet) of tasks

4 The code, which runs with the OpenViBE software platform, can be made
available upon request.
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that will maximize both the detection rate of each task against
idle state and the classification rate between the two (or three)
tasks.

We have developed a variant of the algorithm for
which the budget N does not need to be specified [19].
The algorithm automatically finds the optimal number of
presentations in order to select the best task with a fixed
probability of confidence. Unfortunately, the differences
between classification accuracies are generally too small,
and this automatic adjustment of the budget results in long
experiments. We think that a good compromise is to start with
a fixed budget, and for a human observer to decide when to
stop the selection, based on the classification performance as
well as on the level of commitment and the tiredness of the
subject.
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Appendix. The UCB-classif algorithm

A proof of the upper bound used in UCB-classif is given in
appendix A.1. This result is then used in appendix A.2 to
calculate the theoretical performances of UCB-classif.

A.1. High probability bound for the classification error

Let D be a probability distribution in R
d ×{0, 1}. Let H be the

set of binary linear classifiers in R
d , i.e. if (x, y) ∼ D, (i.e. are

drawn from D); then, h(x) is the inferred class of the sample
while the true class is y.

We define the {0, 1} loss of a classifier h as

LD(h) = E(x,y)∼D(1h(x)�=y).

Let h∗ be the best linear classifier on D for the {0, 1} loss:

h∗ = arg min
h∈H

LD(h).

Let now X = {(x1, y1), . . . , (xT , yT )} be T i.i.d. points in
R

d × {0, 1}, sampled from D. We define the {0, 1} empirical
loss of a classifier h as

L̂X (h) = 1

T

N∑
t=1

(1h(xt )�=yt ).

Let ĥ∗ ∈ H be the best empirical classifier on X in H for the
empirical {0, 1} loss:

ĥ∗ = arg min
h∈H

L̂X (h).

Theorem 1 (Vapnik 1982). We have with the probability 1−2δ

that

|LD(h∗) − L̂X (ĥ∗)| � 2

√
d(log(2T/d) + 1) + log(4/δ)

T
.

In our setting and for task k, 1 − r∗
k is the {0, 1} loss of the

best classifier for task k and 1 − r̂k,t is the empirical {0, 1} loss
of the empirical best classifier for task k with Tk,t samples. We
thus have with the probability 1 − 2δ that for task k

|r∗
k − r̂k,t | � 2

√
d(log(2Tk,t/d) + 1) + log(4/δ)

Tk,t
, (A.1)

where d is the dimension of the feature space, which in this
paper is 12. Let us now choose δ = 1/N2. Using (A.1),
Tk,t < N, we have with the probability 1 − 2/N2 that

|r∗
k−r̂k,t | � 2

√
d(log(2N/d) + 1) + log(4N2)

Tk,t
�

√
a log(N)

Tk,t
,

where a = 6(d + 1) when N is big enough. We thus have with
the probability 1 − 2/N2 that

r∗
k � r̂k,t +

√
a log(N)

Tk,t
� r∗

k + 2

√
a log(N)

Tk,t
. (A.2)

This proves that Bk,t = r̂k,t +
√

a log(N)

Tk,t
is an upper bound with

the high probability on r∗
k .

A.2. Theoretical performances of UCB-classif

In the event of large probability that Bk,t is an upper bound on
r∗

k for any k and any N large enough, we know that we pull at
time t a sub-optimal arm k if, for the best arm k∗ with reward
r∗, Bk∗,t � Bk,t .

According to (A.2) this implies that

r∗ � Bk∗,t � Bk,t � r∗
k + 2

√
a log(N)

Tk,t
.

This means by a simple computation that we pull a sub-optimal
arm k only if

Tk,t � 4
a log(N)

(r∗ − r∗
k )2

.

Since Tk,t is the number of times arm k is pulled, we thus pull
the suboptimal arms only a number of times in O(log(N))

and, finally, pull the optimal arm N − O(log(N)) times, more
precisely at least N−∑

k �=∗ 4 a log(N)

(r∗−r∗
k )2 times. Moreover, the error

of the empirical classifier on the best arm is such that, with
high probability,

|r∗ − r̂∗| �
√√√√ a log(N)

N − ∑
k �=∗ 4 a log(N)

(r∗−r∗
k )2

.
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