
Markov Decision Processes
in Artificial Intelligence

Groupe PDMIA

April 27, 2009



2



Contents

Chapter 1. Approximate Dynamic Programming . . . . . . . . . . . . . . . 7
Rémi MUNOS

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. Approximate Value Iteration (AVI) . . . . . . . . . . . . . . . . . . . . 10

1.2.1. Sample-based implementation and supervised learning . . . . . . 11
1.2.2. Analysis of the AVI algorithm . . . . . . . . . . . . . . . . . . . . 13
1.2.3. Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3. Approximate Policy Iteration (API) . . . . . . . . . . . . . . . . . . . . 16
1.3.1. Analysis in L∞-norm of the API algorithm . . . . . . . . . . . . . 17
1.3.2. Approximate policy evaluation . . . . . . . . . . . . . . . . . . . . 19
1.3.3. Linear approximation and least-squares methods . . . . . . . . . . 20

1.4. Direct minimization of the Bellman residual . . . . . . . . . . . . . . . 27
1.5. Towards an analysis of dynamic programming in Lp-norm . . . . . . . 28

1.5.1. Intuition of an Lp analysis in dynamic programming . . . . . . . . 29
1.5.2. PAC bounds for RL algorithms . . . . . . . . . . . . . . . . . . . . 31

1.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5



6



Chapter 1

Approximate Dynamic Programming

In any complex or large scale sequential decision making problem, there is a cru-
cial need to use function approximation to represent the relevant functions such as the
value function or the policy.

The Dynamic Programming (DP) and Reinforcement Learning (RL) methods in-
troduced in the chapters ?? and ?? make the implicit assumption that the value func-
tion can be perfectly represented (i.e. kept in memory), for example by using a look-up
table (with a finite number of entries) assigning a value to all possible states (assumed
to be finite) of the system. Those methods are called “exact” because they provide
an exact computation of the optimal solution of the considered problem (or at least,
enable the computations to converge to this optimal solution). However, such methods
often apply to toy problems only, since in most interesting applications, the number of
possible states is so large (and possibly infinite if we consider continuous spaces) that
a perfect representation of the function at all states is impossible. It becomes necessary
to approximate the function by using a moderate number of coefficients (which can be
stored in a computer), and therefore extend the range of DP and RL to methods using
such “approximate” representations. These “approximate” methods combine DP and
RL methods with function approximation tools.

EXAMPLE.– Let us come back to the example of the car where maintenance opera-
tions should be optimized (see volume 1, section ??). We have seen that the number
of possible states is very large, although the state may be sometimes factorized, (see
chapter ?? of volume 2). However, even if we consider a single element of the car,

Chapter written by Rémi MUNOS.

7



8 Markov Decision Processes in AI

the brakes for example, the number of possible states may be described by a contin-
uous variable (thickness of break pads). The state of (this element of) the car may
thus vary continuously in a given interval and all previously seen methods would not
apply here since they assume that the number of possible states is finite. The tools
introduced in this chapter enable to take into account this problematic of continuous
state space. This point is illustrated explicitly in the optimal replacement problem,
Paragraph 1.2.3).

In this chapter we study the use of function approximation (taking inspiration from
statistical learning and approximation theory) for approximating the value function,
and we generalize DP and RL methods to this approximate resolution setting. Perfor-
mance bounds resulting from the use of approximate representations will be expressed
in terms of the capacity and approximation power of the considered function spaces.

1.1. Introduction

The idea of using function approximation in DP comes back to the early days of
this domain. For example, Samuel [SAM 67] used linear approximation of the value
function for the game of checkers, Bellman and Dreyfus [BEL 59] used polynomi-
als in order to increase the speed of DP. A first theoretical analysis is undertaken
in [REE 77]. More recently, RL and DP combined with function approximation en-
abled to solve successfully several large scale applications; for example, the program
TD-Gammon [TES 95] using a neural network, produced a world champion program
in backgammon. Other application domains include operational research and task
scheduling [ZHA 95], e.g. the control of a set of lifts [CRI 96], factory maintenance
[MAH 97], dynamic channel allocation [SIN 97], seats allocation on planes [GOS 04].
Some specific applications are described more precisely in the latter parts of each of
the two volumes.

The purpose of this chapter is to present briefly the new problems that appear when
one considers approximate solution to PD and RL problems and to provide bounds on
the performance loss resulting of these approximations.

For simplicity of presentation, we consider here only the case of a discounted
reward problem in infinite-time horizon. Thus, for a given policy π (mapping an
action to each possible state), the value function V π is defined as the expectation of
the sum of future discounted rewards:

V π(s) def= E
[∑
t≥0

γtr(st, π(st))|s0 = s, π
]
. (1.1)

(where γ ∈ [0, 1) is the discount factor)

Other criteria (e.g. finite-time horizon or undiscounted problems) are subject to
similar conceptual analysis, but may show differences in the mathematical formalism.



Approximate Dynamic Programming 9

For these extensions, we refer the reader to the work of synthesis of Bertsekas and
Tsitsiklis [BER 96].

The approach followed in this chapter is to build a approximation of the optimal
value function, hoping that the performance of a greedy policy with respect to (w.r.t.)
such approximation will provide near-optimal performance. This hope is justified by
the fact that if V is a good approximation of the optimal value function V ∗, then the
performance V π of the policy π which is greedy w.r.t. V is close to the performance
V ∗ of an optimal policy π∗. Recall that we say that a policy π : S 7→ A is greedy
w.r.t. a function V if, at any state s ∈ S, the action π(s) is an action that maximizes
the immediate reward plus the discounted expectation of V at the next state, i.e.:

π(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
]
.

Indeed we have the following result [BER 96, p. 262]:

PROPOSITION 1.1.– Let V be a real-valued function defined on S and π be a policy
greedy w.r.t. V . Then, the performance loss resulting from using policy π instead of
the optimal policy (i.e. difference between the optimal value function V ∗ and the value
function V π) is bounded as:

||V ∗ − V π||∞ ≤
2γ

1− γ
||V − V ∗||∞, (1.2)

where || · ||∞ denotes the supremum norm, written L∞ (i.e. ||f ||∞
def= maxs∈S |f(s)|),

and γ is the discount factor.

Let us notice that in general, the value function V π is different from the function
V . This bound gives an argument justifying our approach of searching to construct a
good approximation of the optimal value function (i.e. small ||V − V ∗||) in order to
deduce a policy whose performance is close to the optimum (i.e. small ||V ∗ − V π||).
Since the proof is elementary we include it now.

PROOF.– We remind the definition of the Bellman operators L and Lπ (defined in
Chapter ??, Paragraph ??): For any real-valued function W defined over S:

LW (s) def= max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)W (s′)
]
,

LπW (s) def= r(s, π(s)) + γ
∑
s′∈S

p(s′|s, π(s))W (s′).

Lπ also writes (in vector notation) LπW = rπ+γPπW , where Pπ is the transition
matrix for policy π (i.e. whose elements (s, s′) are p(s′|s, π(s))), and rπ the vector
with components r(s, π(s)).



10 Markov Decision Processes in AI

We have the property that L and Lπ are contraction operators in L∞ norm, with a
contraction factor γ. This means that, for any couple of functions W1 and W2 defined
over S, we have ||LW1 − LW2||∞ ≤ γ||W1 −W2||∞ and similarly for the operator
Lπ (the proof is elementary).

From the fact that V ∗ and V π are fixed points of the operators L and Lπ respec-
tively (which means that V ∗ = LV ∗ and V π = LπV

π), by using triangle inequality,
it comes that :

||V ∗ − V π||∞ ≤ ||LV ∗ − LπV ||∞ + ||LπV − LπV π||∞
= ||LV ∗ − LV ||∞ + γ||V − V π||∞
≤ γ||V ∗ − V ||∞ + γ(||V − V ∗||∞ + ||V ∗ − V π||∞),

were we use at the second line the fact that the policy π is greedy with respect to V ,
i.e. LV = LπV . We deduce the bound on the performance loss V ∗ − V π resulting
from using policy π instead of an optimal policy π∗ :

||V ∗ − V π||∞ ≤
2γ

1− γ
||V ∗ − V ||∞.

�

In order to build a good approximation of the optimal value function, we need to
generalize the previously seen DP and RL algorithms. We now start by presenting the
approximate value iteration algorithm. Then, in Sections 1.3 and 1.4 we consider the
approximate policy iteration algorithm and the Bellman residual minimization algo-
rithm. Finally, in Section 1.5, we explain the limits of the usual L∞-norm analysis
of DP and explore extensions to Lp-norm analysis (for p ≥ 1) and establish prelimi-
nary links with the field of Statistical Learning. In particular, we provide finite-time
(i.e. non-asymptotic) performance bounds in terms of the capacity and richness of the
considered function spaces used in the approximations.

1.2. Approximate Value Iteration (AVI)

Again, we consider solving a Markov Decision Problem (MDP) [PUT 94] using a
discounted criterion under an infinite horizon setting. The set of states is assumed to
be large (but finite for the moment, in order to keep notations simple).

From what has been said in Chapter ??, Volume 1, the value iteration algorithm
consists in calculating the optimal value function V ∗ by successive evaluations Vn
computed by the iteration Vn+1 = LVn, where L is the Bellman operator. Thanks to
the contraction property (in L∞-norm) of L, the iterates Vn converge to V ∗ (the fixed-
point of L) when n → ∞ (since we have ||Vn+1 − V ∗||∞ = ||TVn − TV ∗||∞ ≤
γ||Vn − V ∗||∞ ≤ γn||V1 − V ∗||∞).



Approximate Dynamic Programming 11

When the number of states is so large that an exact representation of the func-
tion Vn is impossible to memorized, we need to consider approximate representa-
tions; which results in the so-called approximate value iteration (AVI) algorithm. AVI
is very popular and has been implemented from the early works on DP [BEL 59,
SAM 59] and more recently in the context of RL [BER 96, SUT 98] with many vari-
ants, such as the fitted Q-iteration [ERN 05].

Let us write F the space of considered approximation functions. For example, F
may be the span of a finite set of generative functions (called features): Any function
in F is thus defined as a linear combination of the features weighted by some real
coefficients. This is the so-called linear approximation.

AVI algorithm builds a sequence of functions Vn ∈ F calculated according to the
iterations:

Vn+1 = ALVn, (1.3)

where L is the Bellman operator and A an approximation operator from functions in
F . For example, in the case of linear approximation,A is the projection operator onto
F , which means that : Af ∈ F is the function in F with the minimal distance to f :
||Af − f || = infg∈F ||g − f || (for some norm || · ||).

Thus, AVI consists in a sequence of iterations where at each round, a new rep-
resentation Vn+1 ∈ F is obtained by projecting onto F the Bellman image of the
previous approximation Vn. The iteration process (1.3) is illustrated in Figure 1.1.

When the approximation operation is performed based on data (samples) (for ex-
ample when considering a projection minimizing an empirical distance), then we call
this supervised learning or regression (see for example [HAS 01]); This case is illus-
trates in the next paragraph.

1.2.1. Sample-based implementation and supervised learning

For illustration, a sample-based implementation of AVI could be defined as fol-
lows: at step n, we select K states (sk)1≤k≤K independently sampled from a given
distribution µ over the state space S. We compute the Bellman image of Vn at those
states, thus defining the values {vk

def= LVn(sk)}. Then we make a call to a su-
pervised learning algorithm provided with the learning data {(sk, vk)}1≤k≤K (input,
desired output), which returns a function Vn+1 ∈ F minimizing an empirical error,
such as:

Vn+1 = arg min
f∈F

1
K

∑
1≤k≤K

(
f(sk)− vk

)2
. (1.4)

This minimization problem is defined in terms of the quadratic norm L2, like this
is the case in least-squares methods, locally linear regression, neural networks, and



12 Markov Decision Processes in AI

Vn

Vn+1

Vn

F

A

L

L

V*L

Figure 1.1. Schematic representation of a AVI iteration: the approximation space F is a vec-
tor space of finite dimension. Vn ∈ F is the approximation at time n. The Bellman opera-
tor L is applied to Vn (in general, LVn does not belong to F , i.e. it is not representable in
this approximation architecture), then the projection A onto F defines the next approximation
Vn+1 = ALVn. The optimal value function V ∗ (fixed-point of L) is also shown.

many other supervised learning algorithms. Of course, there exists other minimization
problems using different norms, such as the L1-norm (absolute value) or its variants
(such as the ε-insensitive L1 norm used in the Support Vectors Machines [VAP 98])
as well as regularized version [?] which are often used. This regression problem is a
specific case of supervised learning (or statistical learning). We will not go further in
the details of the important issues (overfitting, bias-variance tradeoff) of this domain
and refer the interested reader to usual references, such as [HAS 01].

Let us simply mention that linear approximation consists in performing a projec-
tion onto a vector space spanned by a finite family of features, which includes decom-
position with splines, Fourier basis, radial basis functions, wavelets. Sometimes, a
better regression is obtained when the family of generative functions upon which the
projection is performed is chosen according to the smoothness and regularities of the
function we wish to approximate. Such cases, referred to as non-linear approxima-
tion, may be particularly efficient when the target function possesses local regularities
(for example, in adaptive wavelet bases [MAL 97] such functions may be represented
sparsely, i.e. with a small number of non-zero coefficients). Greedy algorithms, like
matching pursuit and other variants [DAV 97] select the best basis functions among a
redundant dictionnary. Approximation theory studies the approximation error in terms



Approximate Dynamic Programming 13

of the regularities of the target function [DEV 98]. In statistical learning, examples of
other non-linear approximation tools that are very popular are neural networks, lo-
cally weighted regression [ATK 97], Support Vector Machines and kernel methods in
Reproducing Kernel Hilbert Spaces [VAP 97, VAP 98].

1.2.2. Analysis of the AVI algorithm

Consider the AVI algorithm defined by the iteration (1.3) and define:

εn
def= LVn − Vn+1 (1.5)

the approximation error at round n. In general, AVI does not converge to the optimal
value function V ∗ (in opposition to the value iteration algorithm) since V ∗ usually
does not belong to the representation space F . Actually, even if V ∗ ∈ F , we would
have no guarantee that the iterates Vn converge to V ∗. In reality, AVI may oscillate
or even diverge, as illustrated in very simple examples described in [BAI 95, TSI 96a]
and [BER 96, p. 334]. However, this algorithm is very popular because it has shown
good results in real applications.

In order to understand the reason for this variety of observed behaviors depending
on the applications, we wish to analyze the AVI algorithm and establish performance
bounds. A first result provides a bound on the performance loss (w.r.t. optimal per-
formance) resulting from the use of a policy πn greedy w.r.t. Vn, as a function of the
approximation errors εn.

PROPOSITION 1.2 [BER 96].– Write πn a greedy policy w.r.t. the approximate Vn,
and V πn the value function corresponding to that policy, we have :

lim sup
n→∞

||V ∗ − V πn ||∞ ≤
2γ

(1− γ)2
lim sup
n→∞

||εn||∞. (1.6)

PROOF.– From (1.2) applied to Vn, we deduce:

||V ∗ − V πn ||∞ ≤
2γ

1− γ
||V ∗ − Vn||∞. (1.7)

Moreover:

||V ∗ − Vn+1||∞ ≤ ||LV ∗ − LVn||∞ + ||LVn − Vn+1||∞
≤ γ||V ∗ − Vn||∞ + ||εn||∞.

Now, taking the limit sup, it comes:

lim sup
n→∞

||V ∗ − Vn||∞ ≤
1

1− γ
lim sup
n→∞

||εn||∞,



14 Markov Decision Processes in AI

which, combined to (1.7), leads to (1.6). �

Notice that this bound makes use of the L∞-norm of the approximation errors εn,
which means that it depends on the worst possible error εn(s) over all the domain
(when s sweeps S). This uniform error is general difficult to control, especially for
large state space problems. In addition, it is not very useful from a practical point
of view since most function approximation techniques and supervised learning algo-
rithms solve, as illustrated in Paragraph 1.2.1, an empirical minimization problem in
L2 or L1 norm. We will see in Section 1.5 a possible extension of Proposition 1.2 to
Lp-norms (for p ≥ 1). However, let us mention existing works [GOR 95, GUE 01] on
function approximation using L∞-norm such as the averagers in the field of DP.

1.2.3. Numerical illustration

Here we illustrate the behavior of the AVI algorithm for an optimal replacement
problem, excerpted from [RUS 96]. We also show on this example that the previous
results generalize naturally to the case of continuous state spaces.

A one-dimensional variable st ∈ S
def= [0, smax] measures the accumulated use of

a product (for example the odometer may measure the global state of a car). st = 0
denotes a brand new product. At each discrete time t (for example each year), there
are two possible decisions: either keep (at = K), or replace (at = R) the product, in
which case, an additional cost Cremplace (for selling the current product and buying a
new one) is suffered.

We assume transitions follow an exponential law with parameter β (with a trun-
cated tail): if the next state y is larger than a given maximal value smax (for example
a critical state for the car) then a new state is immediately drawn and a penalty cost
Cdeath > Cremplace is received. Thus, by writting p(·|s, a) the transition density
function of the next state given that the current state is s and the chosen action is
a ∈ {K, R} (which means that for any subset B ⊂ S the probability of being in B at
the next state is

∫
B
p(ds′|s, a)), we define:

p(s′|s,R) def=
{
q(s′) if s′ ∈ [0, smax],
0 otherwise;

p(s′|s,K) def=

 q(s′ − s) if s′ ∈ [s, smax],
q(s′ − s+ smax) if s′ ∈ [0, s),
0 otherwise;

with q(s) def= βe−βs/(1− e−βsmax) (the truncated exponential density).



Approximate Dynamic Programming 15

The immediate cost function (opposite of a reward) c(s) is the sum of a slowly
increasing monotonous function (which may correspond to maintenance costs for the
car) and a punctually discontinuous cost function (insurance fees for example). The
immediate cost function and the optimal value function (numerically computed by
using a very fine grid) are shown on Figure 1.2 for the numerical values: γ = 0.6,
β = 0.6, Cremplace = 50, Cmort = 70 and smax = 10.

We consider the implementation of the sampled-based AVI algorithm described in
Section 1.2.1. The states {sk

def= ksmax/K}0≤k<K (with K = 200) are uniformly
sampled over the domain S. The approximation function space F is defined by the
vector space of dimension M = 20 generated by a cosine family:

F def=
{
Vα(s) def=

M∑
m=1

αm cos(mπ
s

smax
)
}
α∈IRM

.

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Maintenance cost

State

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

R RR

Value function

K K K

Figure 1.2. Immediate cost function c and optimal value function V ∗. The letters R and K on
the right figure indicate the optimal policy (greedy w.r.t. V ∗) as a function of the state.

Thus, at each step n, a new approximation Vn+1 ∈ F is obtained by solving the
least-squares fitting problem:

Vn+1 = arg min
f∈F

1
K

K∑
k=1

[
f(sk)− LVn(sk)

]2
.

We start with an initial value function V0 = 0. Figure 1.3 represents the first
iteration: the values {LV0(sk)}1≤k≤K are shown by the crosses on the left figure and
the corresponding best fit V1 ∈ F (best approximation in the space F). Figure 1.4
illustrates analogously the second iteration. Figure 1.5 shows the approximate value
function V20 ∈ F obtained after 20 iterations. In this simulation, the AVI algorithm
performs well and a good approximation of the optimal value function V ∗ is obtained
in F .



16 Markov Decision Processes in AI

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

+++++++++++++++++++++++++

++++

+++++++++++++++++++++

++++

+++++++++++++++++++++

++++

+++++++++++++++++++++

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Figure 1.3. Values {LV0(sk)}1≤k≤K (left figure), best fit V1 ∈ F of LV0, as well as the
optimal value function (right figure)

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

+++++++++++++++++++++++++

++++

+++++++++++++++++++++

++++

+++++++++++++++++++++
+++++++++++++++++++++++++

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Figure 1.4. Values {LV1(sk)}1≤k≤K (left figure), best fit V2 ∈ F of LV1, as well as the
optimal value function (right figure)

1.3. Approximate Policy Iteration (API)

We now consider the Approximate Policy Iteration algorithm (API) [BER 96]
which generalizes the policy iteration algorithm described in Chapter ?? to the use
of function approximation. The algorithm is defined by the iteration of the two steps:

– Approximate policy evaluation step: for a policy πn, an approximation Vn of the
value function V πn is generated;

– Policy improvement step: A new policy πn+1 is generated as a greedy policy
w.r.t. Vn, i.e. such that for all s ∈ S,

πn+1(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′|s, a)Vn(s)
]
. (1.8)

Paragraph 1.3.1 provides a bound on the performance loss ||V πn−V ∗||∞ resulting
from the use of the policies generated by the API algorithm, instead of the optimal one,



Approximate Dynamic Programming 17

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

Figure 1.5. Approximation V20 ∈ F obtained at the 20th iteration and the optimal value
function

in terms of the value function approximation errors ||Vn − V πn ||∞. Paragraph 1.3.2
describes the approximate policy evaluation step and paragraph 1.3.3 details the case
of linear approximation providing an extension of TD(λ) algorithm as well as least-
squares methods, and finally an implementation using Q-value function that does not
need the prior knowledge of the transion probabilities is presented.

1.3.1. Analysis in L∞-norm of the API algorithm

We write πn the policy derived by API algorithm at step n. Let Vn be an ap-
proximation of the value function V πn and πn+1 a policy greedy w.r.t. Vn (defined by
(1.8)). The next result (stated in [BER 96, p. 276]) gives a bound on the loss V ∗−V πn
resulting from the use of the policy πn instead of the optimal policy, as a function of
the approximation errors Vn − V πn in L∞-norm.

PROPOSITION 1.3.– We have:

lim sup
n→∞

||V ∗ − V πn ||∞ ≤
2γ

(1− γ)2
lim sup
n→∞

||Vn − V πn ||∞. (1.9)

PROOF.– Define en
def= Vn − V πn the approximation error of V πn by Vn, gn

def=
V πn+1−V πn the performance gain from one iteration to the next and ln

def= V ∗−V πn
the performance loss due to the use of policy πn instead of π∗ (the later being the
quantity that we wish to bound).



18 Markov Decision Processes in AI

If the approximation error is small, then the performance of the next policy cannot
be much worst than the current one. Indeed, using vector notation, we have, compo-
nentwise:

gn = V πn+1 − V πn

= Lπn+1V
πn+1 − Lπn+1V

πn + Lπn+1V
πn − Lπn+1Vn

+Lπn+1Vn − LπnVn + LπnVn − LπnV πn

≥ γPπn+1gn − γ(Pπn+1 − Pπn) en

(where we used the definition of the Bellman operators and the fact that πn+1 is greedy
w.r.t. Vn, thusLπn+1Vn = LVn ≥ LπnVn, so (I−γPπn+1)gn ≥ −γ(Pπn+1−Pπn)en.
Moreover, the matrix Pπn+1 is a stochastic matrix thus its eigenvalues have a modulus
less or equal to one. And since γ < 1, the matrix I − γPπn+1 does not have null
eigenvalue and thus is invertible. Since its inverse (I − γPπn+1)

−1, which also writes∑
t≥0(Pπn+1)

t, only contains positive elements, we deduce that:

gn ≥ −γ(I − γPπn+1)
−1(Pπn+1 − Pπn) en. (1.10)

Now we can bound the loss ln+1 at the next iteration in terms of the current loss
ln: since Lπ∗Vn ≤ Lπn+1Vn, we have:

ln+1 = V ∗ − V πn+1

= Lπ∗V
∗ − Lπ∗V πn + Lπ∗V

πn − Lπ∗Vn + Lπ∗Vn − Lπn+1Vn

+Lπn+1Vn − Lπn+1V
πn + Lπn+1V

πn − Lπn+1V
πn+1

≤ γ[Pπ∗ ln − Pπn+1gn + (Pπn+1 − Pπ∗)en].

From which we deduce, using (1.10), that:

ln+1 ≤ γPπ∗ ln + γ[γPπn+1(I − γPπn+1)
−1(Pπn+1 − Pπn) + Pπn+1 − Pπ∗ ]en

≤ γPπ∗ ln + γ[Pπn+1(I − γPπn+1)
−1(I − γPπn)− Pπ∗ ]en.

Writting fn
def= γ[Pπn+1(I − γPπn+1)

−1(I − γPπn)−Pπ∗ ]en, this last inequality
may rewrite:

ln+1 ≤ γPπ∗ ln + fn.

Taking the limit superior, it comes:

(I − γPπ∗) lim sup
n→∞

ln ≤ lim sup
n→∞

fn,



Approximate Dynamic Programming 19

and using the same argument as before, we deduce:

lim sup
n→∞

ln ≤ (I − γPπ∗)−1 lim sup
n→∞

fn. (1.11)

This inequality having only positive terms, is preserved in norm:

lim sup
n→∞

||ln||∞ ≤
γ

1− γ lim sup
n→∞

||Pπn+1(I − γPπn+1)
−1(I + γPπn) + Pπ∗ ||∞||en||∞

≤ γ

1− γ (
1 + γ

1− γ + 1) lim sup
n→∞

||en||∞ =
2γ

(1− γ)2 lim sup
n→∞

||en||∞

(where we used the fact that all stochastic matrices P have a norm ||P ||∞ = 1).

�

1.3.2. Approximate policy evaluation

We now study the approximation policy evaluation step of API, i.e. for a given
policy π we wish to build a good approximation of the value function V π .

Let us remind that the value function V π is defined as the expectation of the sum
of discounted rewards, when one follows the policy π, see (1.1), and that V π solves
the Bellman equation: V π = LπV

π, where Lπ is the Bellman operator defined by
LπW

def= rπ + γPπW , for any vector W .

Several methods enable to find an approximation of V π:
– iterative methods, analogously to the AVI algorithm, where the operatorLπ com-

bined with an approximation operator A is iterated according to: Vn+1 = ALπVn. A
result similar to that in Proposition 1.2 may easily be deduced;

– linear system methods, since the Bellman operator Lπ is affine, V π is the so-
lution of a linear system: (I − γPπ)V π = rπ , and usual methods for solving ap-
proximately linear systems may apply. The main drawback of those methods is their
computational complexity when the number of states is large;

– Monte-Carlo (MC) methods. From the definition of the value function (1.1), an
unbiased estimate of V π(s) is obtained by simulating M ≥ 1 trajectories starting
from the initial state s, using policy π, and taking the empirical average of the sum
of discounted rewards obtained along those M trajectories. The variance of this es-
timate is O(1/M). If we repeat this process from initial states {sk}1≤k≤K sampled
from a distribution µ over S, and derive estimates {vk} of {V π(sk)}, then a good
approximation in F may be found by solving the least-squares fitting problem:

arg min
f∈F

1
K

K∑
k=1

(f(sk)− vk)2.



20 Markov Decision Processes in AI

Again, this is a projection of V π onto F (using the empirical L2-norm defined
by the samples). There exists several variance reduction techniques that enable to
improve the accuracy of the estimate. For example, from a first rough approximation
of the value function, one may use a MC method estimating the residual which enables
to make a correction in order to improve the current estimate, and this process may be
iterated (recursive Monte-Carlo methods) [MUN 06];

– Temporal Difference (TD) algorithms. TD algorithms [SUT 88] are based on
stochastic approximation algorithms [KUS 97] for finding the fixed-point of contrac-
tant operators. The generalization of those methods to approximate functions is not
obvious in general (no convergence proof for λ < 1) but such approaches have been
applied with great success, for example in the game of backgammon [TES 95]. In the
case of linear approximation (the method will be described in the next section), there
exists theoretical guarantees on the resulting performance [TSI 96b];

– Least-squares methods. In the case of linear approximation, one may also con-
sider very efficient methods based on least-squares fitting. This setting is consider in
the next paragraph.

1.3.3. Linear approximation and least-squares methods

In this section we consider the specific case of linear approximation. This case has
been often studied in combination with TD(λ) algorithms [TSI 96b] (see Section ??)
or least-squares methods (Least Squares Temporal Differences LSTD(0) [BRA 96],
LSTD(λ) [BOY 99]) and applied, with success, to control problems [LAG 03].

The value function is approximated by a linear combination of K basis functions
called features (φk)1≤k≤K , which means that the approximation space F is a vector
space spanned by those features:

F def= {Vα(s) def=
K∑
k=1

αkφk(s), α ∈ IRK}.

Our goal is to find a parameter α ∈ IRK such that Vα is close to V π . Let us start
with the direct extension of TD(λ) algorithm previously seen (Chapter ??).

1.3.3.1. TD(λ)

TD(λ) algorithm is defined like in Chapter ??. We use an eligibility trace z ∈ IRK

with same dimension (K) as the parameter α, initialized to zero. From an initial state,
we generate a trajectory (s0, s1, s2, . . . ) by using policy π. At each time t, we compute
the temporal difference for the current approximation Vα:

dt
def= r(st, π(st)) + γVα(st+1)− Vα(st)



Approximate Dynamic Programming 21

and update both the parameter α and the trace z:

αt+1 = αt + ηtdtzt,

zt+1 = λγzt + φ(st+1),

where the ηt is a decreasing sequence and φ : S → IRK the vector of components φk.

This algorithm builds a sequence of approximations Vαt that converges, under
some ergodicity assumption of the corresponding Markov chain to a function whose
approximation error (distance to V π) is bounded in terms of the minimal approxima-
tion error using functions in F .

PROPOSITION 1.4 [TSI 96B].– Assume that the steps (ηt) satisfy
∑
t≥0 ηt =

∞ and
∑
t≥0 η

2
t < ∞, there exists a distribution µ over S such that ∀s, s′ ∈ S,

limt→∞ P (st = s′|s0 = s) = µ(s′) and that the vectors (φk)1≤k≤K are linearly
independent. Then αt converges. Write α∗ its limit. We have:

||Vα∗ − V π||µ ≤
1− λγ
1− γ

inf
α
||Vα − V π||µ, (1.12)

where ||·||µ means theL2-norm weighted by the distribution µ, i.e. ||f ||µ
def=
[∑

s∈S f(s)2µ(s)
]1/2

.

When λ = 1, we obtain the result that the Monte-Carlo estimate gives the best
approximation of V π in F , i.e. the projection of V π onto F . Now, if λ < 1, the
approximation quality deteriorates (introduction of a bias), but the variance of the
estimate is smaller, thus approximating its value up to some given accuracy may be
easier.

From its stochastic approximation aspect, TD(λ) is very costly in terms of experi-
mental data, in the sense that it requires the observation of many transitions st, at →
st+1 (and several times the same transitions) in order to see the parameter α converg-
ing. This problem has motivated the introduction of least-squares methods which are
much more parsimonious in terms of data.

1.3.3.2. Least Squares methods

Least-squares methods (Least Squares Temporal Differences [BRA 96, BOY 99,
LAG 03]) are based on the property that since the approximate function Vα is linear in
α and the operator Lπ is affine, then the Bellman mapping: α → Rα

def= LπVα − Vα
is also affine. Since the Bellman residual of the desired value function V π is zero,
i.e. LπV π − V π = 0, it seems reasonable to search for a parameter α such that
the Bellman residual Rα be as close as possible to 0. Two approaches are generally
considered (see [SCH 03, MUN 03]):



22 Markov Decision Processes in AI

– the quadratic residual (QR) solution: the parameter αQR minimizes the norm of
the Bellman residual Rα (see illustration Figure 1.6):

αQR = arg min
α∈IRK

||Rα||µ,

for some norm || · ||µ;
– the temporal difference (TD) solution: the parameter αTD is such that the residual

RαTD is orthogonal to all features φk, thus toF (see Figure 1.6). Thus VαTD is the fixed-
point of the combined Bellman operator Lπ followed by the orthogonal projection A
onto F (according to the L2-norm weighted by the distribution µ). It is the same
solution as that obtained by TD(λ) for λ = 0 (which justifies its name).

V
π

π
L

V
ππ

L

π
L

V
α

A

F

A

A

V
α

TD

minimum || residual ||

QR

Figure 1.6. Approximation of the value function V π in F . The best possible approximation
AV π is the projection of V π onto F . The quadratic residual solution VαQR minimizes (in F)

the norm ||LπVα−Vα||. The temporal difference solution VαTD is such thatALπVαTD = VαTD .

In both cases, the parameter α is obtained by solving a linear system of size K
(the number of parameters). Those methods are called projection methods [JUD 98]
because we search for a parameter α such that the residual is orthogonal to a set of
test functions (the features φk in the TD case, the derivatives ∂αkRα in the QR case).
Let us consider the corresponding linear systems.

Quadratic residual solution: since the mapping α→ Rα is affine, the mapping
α → ||Rα||2µ (for a L2 norm weighted by µ) is quadratic. Its minimum (obtained by
setting its gradient to zero) is thus the solution to the linear system: Aα = b, with the



Approximate Dynamic Programming 23

squared matrix A and the vector b (of size K) being defined as:{
Aij

def= 〈φi − γPπφi, φj − γPπφj〉µ, for 1 ≤ i, j ≤ K
bi

def= 〈φi − γPπφi, rπ〉µ, for 1 ≤ i ≤ K
(1.13)

where the inner product 〈u, v〉µ of two functions u and v (defined on S) is defined by

〈u, v〉µ
def=
∑
s∈S u(s)v(s)µ(s).

This system always possesses a (unique) solution when µ > 0 and the features
φk are linearly independent (since in that case, the matrix A is positive definite). Let
us notice that this problem may be considered as a linear regression problem with
another set of basis functions {ψi

def= φi − γPπφi}i=1..K where it comes down to
finding α that minimizes ||α ·ψ− rπ||µ. Usual supervised learning methods may thus
be considered.

When µ is the stationnary distribution associated to the policy π (this means that
we have µPπ = µ, i.e. µ(s) =

∑
s′ p(s|s′, π(s′))µ(s′) for all s ∈ S), one may deduce

a bound on the approximation error V π − VαQR in terms of the minimized residual or
in terms of the distance between V π and F (in L2-norm with weight µ):

PROPOSITION 1.5.– We have:

||V π − VαQR ||µ ≤ 1
1− γ

||RαQR ||µ =
1

1− γ
inf
Vα∈F

||LπVα − Vα||µ (1.14)

≤ 1 + γ

1− γ
inf
Vα∈F

||V π − Vα||µ. (1.15)

PROOF.– Since µ is the stationnary distribution associated to π, we have the property
that ||Pπ||µ = 1 (see for example [TSI 96b]). In addition, for all α, we have:

Rα = LπVα − Vα = (I − γPπ)(V π − Vα), (1.16)

thus by considering αQR, we deduce that V π − VαQR = (I − γPπ)−1RαQR . Thus in
norm:

||V π − VαQR ||µ ≤ ||(I − γPπ)−1||µ||RαQR ||µ

≤
∑
t≥0

γt||Pπ||tµ||RαQR ||µ ≤
1

1− γ
||RαQR ||µ,

which proves (1.14). Moreover, taking the norm of (1.16), it comes ||Rα||µ ≤ (1 +
γ)||V π − Vα||µ and (1.15) follows. �



24 Markov Decision Processes in AI

Temporal Difference solution: The TD solution, i.e. the fixed-point of the com-
bined Bellman operator Lπ followed by the projection A onto F (using norm || · ||µ),
is obtained by solving the linear system Aα = b with the matrix A and the vector b:{

Aij
def= 〈φi, φj − γPπφj〉µ, for 1 ≤ i, j ≤ K,

bi
def= 〈φi, rπ〉µ, for 1 ≤ i ≤ K.

(1.17)

We should be careful here, because the invertibility of the matrixA depends on the
considered distribution µ. It is invertible when the features (φi) are linearly indepen-
dent and when µ is the stationnary distribution associated to the policy π [MUN 03].
In that case, the obtained solution is the same as that obtained by TD(0) algorithm
[SCH 03]. A consequence of Proposition 1.4 is the bound on the approximation error
in terms of the distance between V π and F (in L2-norm weighted by µ):

||V π − VαTD ||µ ≤
1

1− γ
inf
Vα∈F

||V π − Vα||µ.

The generalization of least squares methods to TD(λ) systems with λ > 0 (i.e. pro-
viding the TD(λ) solution) may be found in [BOY 99].

Let us notice that the size of the linear system is K, the number of coefficients
(or number of features), which in general is much smaller than the number of states
(the latter possibly being infinite). However, in order to use this method, one needs
to be able to compute the result of the transition operator Pπ applied to the features
φk, as well as the inner products (weighted sum over all states for which µ > 0).
This problem is all the more troublesome when one considers the RL setting when
the transition probabilities are unknown from the learning agent. In addition, when
this evaluation method is used in an API algorithm, the lack of knowledge of those
probabilities makes the policy improvement step (1.8) problematic. Those problems
are solved by introducing, like in Chapter ??, an approximation of the state-action
value function Q. We now explain this implementation.

1.3.3.3. Linear approximation of the state-action value function

Here we do not assume anymore that the transition probabilities p(s′|s, a) are
known from the learning agent. Rather, we now assume that the agent has access to
generative model [KAK 03] which enables to sample a successor state s′ ∼ p(·|s, a)
in any state s action a, and thus to generate trajectories when following a given policy.

Here we consider an approximation of the state-action value function (or Q-value
function)Qπ [WAT 89, SUT 98] instead of the value function V π . We remind thatQπ

is defined, for any couple (s, a), by the immediate reward when action a is chosen in



Approximate Dynamic Programming 25

state s plus the expected sum of discounted rewards when we use policy π afterwards,
i.e. by using the definition of V π:

Qπ(s, a) def= r(s, a) + γ
∑
s′∈S

p(s′|s, a)V π(s′).

The representations in terms of Q-value function or V-value function are equiv-
alent: Qπ may be expressed using V π as shown above, and symmetrically V π is
defined from Qπ according to: V π(s) = Qπ(s, π(s)). However, the benefit of the
Q-value function is that the greedy policy is very easily deduced: for any s ∈ S, the
greedy policy w.r.t. V π in s is arg maxa∈AQπ(s, a).

In a way similar to what has been done in the previous paragraph, we consider the
linear approximation space:

F def=
{
Qα(s, a) def=

K∑
k=1

αkφk(x, a), α ∈ IRK
}
,

where the features φk are now defined over the product space S ×A.

API algorithm using Q-value function representation is defined as follows: at
round n, the approximate policy evaluation step computes an approximation Qn of
Qπn ; the policy improvement step defines the next policy πn+1 as:

πn+1(s)
def= arg max

a∈A
Qn(s, a).

The two kinds of least-squares methods for policy evaluation apply immediately.
In addition, the matrix A and vector b of the linear systems (1.13) and (1.17) may be
estimated from observed data, as explained in [LAG 03]: a data base D is built from
a set of transitions. At each transition (state s, action a) to state s′ ∼ p(·|s, a) with
reward r, we add to D, the data (s, a, s′, r). Those data about transitions and rewards
are built incrementally [BOY 99] or from the observation of trajectories induced by
different policies [LAG 03], or also from data coming from prior knowledge about the
state dynamics.

From this data base D, at each round n of the API algorithm, in order to approx-
imately evaluate the policy πn, we select in D the data {(sm, am, s′m, rm)}1≤m≤M
such that the chosen action corresponds to the policy under evaluation (i.e. am =
πn(sm)). From this selected set of data, we define an unbiased estimate of A and b
for the TD system (1.17): for 1 ≤ i, j ≤ K:{

Âij
def= 1

M

∑M
m=1 φi(sm, am)[φj(sm, am)− γφj(s′m, πn(s′m))],

b̂i
def= 1

M

∑M
m=1 φi(sm, am)rm.



26 Markov Decision Processes in AI

Indeed, since the next states s′ are generated according to p(·|s, a), we have the
property that φj(s′, πn(s′)) is an unbiased estimate of the operator Pπn applied to φj
in s, i.e.

∑
s′∈S p(s

′|s, a)φj(s′, πn(s′)). Moreover, from the law of large numbers,
when the number of sampled data M is large, the empirical average over those M
samples concentrates around the corresponding expectation, i.e. the inner products
in (1.17). Thus Â and b̂ are unbiased and consistent estimates of A and b with a
variance of order O(1/M). When the system (1.17) is invertible, the solution α̂ of
the approximated system Âα = b̂ tends to the solution αTD of the temporal difference
system (1.17) when M →∞.

In a similar way, we could think that:

1
M

M∑
m=1

[
φi(sm, am)−γφi(s′m, πn(s′m))

][
φj(sm, am)−γφj(s′m, πn(s′m))

]
(1.18)

would provide an unbiased estimate of the element Aij for the quadratic residual sys-
tem (1.13). However this is not true (see [SUT 98, p. 220] or [LAG 03, MUN 03]).
This estimate would actually lead to a parametrization that tends to reduce the variance
of the Q-value function of the successor states. The problem comes from the fact that
the random variables φi(s′, πn(s′)) and φj(s′, πn(s′)) are correlated. Several ways to
recover an unbiased estimate of A and b are:

– for each couple (sm, am), use two independent samples s′m and s′′m drawn from
p(·|sm, am) by using the generative model, in order to decorrelate φi(s′m, πn(s

′
m))

and φj(s′′m, πn(s
′′
m)). Then, an unbiased estimate ofA and b for the quadratic residual

system (1.13) is:
Âij

def= 1
M

∑M
m=1

[
φi(sm, am)− γφi(s′m, πn(s′m))

][
φj(sm, am)− γφj(s′′m, πn(s′′m))

]
,

b̂i
def= 1

M

∑M
m=1

[
φi(sm, am)− γφi(s′m, πn(s′m))

]
rm;

– If one only possesses a single sample s′m per couple (sm, am) (for instance be-
cause the data have been generated by following trajectories) we can consider the
nearest-neighbor sm′ of sm such that the data (sm′ , am, s′m′ , rm′) is in D. This in-
troduces a bias (due to the distance between the samples sm and sm′ ) which depends
on the smoothness of the transition probabilities and the density of points. The corre-
sponding estimate of A and b for the system (1.13) is deduced analogously;

– A third approach, analyzed in [ANT 08], consists in modifying the criterion to
be minimized by subtracting from the residual (||LπQn−Qn||2µ) a term (||ALπQn−
LπQn||2µ where ALπQn is the projection onto F of LπQn) whose estimate (from
data) has the same bias as that of the residual (1.18), killing consequently the bias of
the resulting estimate. We do not further describe this approach but simply mention
the fact that in the specific case of linear approximation, the corresponding solution is
the same as that of the temporal difference system, but this method extends naturally
to non-linear approximation. See [?] for such an implementation using penalization.



Approximate Dynamic Programming 27

The algorithms that have been presented in this section are efficient in terms of
samples, since the observed transition and reward data s, a → s′, r are memorized
and enable to find directly the parameter α by solving a linear system. Incremental
versions are of course possible.

1.4. Direct minimization of the Bellman residual

In addition to the usual value and policy iteration methods previously seen, we
mention here a method which aims at directly minimizing the norm of the Bellman
residual (for the operator L). The idea is very simple: since the optimal value function
V ∗ is the fixed-point of the operator L, i.e. the norm of its residual ||LV ∗ − V ∗|| is
zero, we may wish to find the minimum in a function space F of the norm of the
residual:

inf
Vα∈F

||LVα − Vα||, (1.19)

where || · || is a given norm.

The following results tells us that if the residual is well minimized (in L∞-norm),
then the performance of the corresponding greedy policy is close to the optimum.

PROPOSITION 1.6 [WIL 93].– Let V be a function defined over S and π a greedy
policy w.r.t. V . The performance loss resulting from using the policy π instead of an
optimal policy is bounded in terms of the Bellman residual of V as:

||V ∗ − V π||∞ ≤
2

1− γ
||LV − V ||∞. (1.20)

PROOF.– Since LπV = LV ≥ Lπ∗V , we have:

V ∗ − V π = Lπ∗V
∗ − Lπ∗V + Lπ∗V − LV + LπV − LπV π

≤ γPπ∗(V ∗ − V π + V π − V ) + γPπ(V − V π).

Thus:
(I − γPπ∗)(V ∗ − V π) ≤ γ(Pπ∗ − Pπ)(V π − V ),

and from the property V π − V = (I − γPπ)−1(LV − V ), it comes:

V ∗ − V π ≤ γ(I − γPπ∗)−1(Pπ∗ − Pπ)(I − γPπ)−1(LV − V )

=
[
(I − γPπ∗)−1 − (I − γPπ)−1

]
(LV − V ), (1.21)



28 Markov Decision Processes in AI

thus in norm L∞:

||V ∗ − V π||∞ ≤
[
||(I − γPπ∗)−1||∞ + ||(I − γPπ)−1||∞

]
||LV − V ||∞

≤ 2
1− γ

||LV − V ||∞.

Thus we have a performance guarantee for policies greedy w.r.t. functions Vα ef-
ficiently minimizing the norm of the residual. However the minimization problem
(1.19) may be hard to solve, even in the case of a linear parametrization, since the
operator L is not affine (in opposition to the operator Lπ) because of the maximum
operator over actions. There does not exist simple methods for finding the global
minimum (in opposition to the previous case using the operator Lπ and a linear ap-
proximation where the norm of the residual to be minimized α → ||LπVα − Vα||µ
was a quadratic mapping in α). However local optimization techniques exist (such as
gradient methods, where the direction opposite to the gradient ∇α||LVα − Vα||2µ is
followed), for example neural networks are commonly used in practice to minimize
the L2-norm of the residual, although there are no global convergence guarantee.

1.5. Towards an analysis of dynamic programming in Lp-norm

We have provided several performance bounds ((1.6) and (1.9) respectively for the
AVI and API algorithms) in terms of the approximation errors in L∞-norm. However,
as illustrated in paragraph 1.2.1, usual supervised learning algorithms solve an opti-
mization problem using an empirical Lp-norm (with p = 1 or 2). Hence, bounds on
the approximation errors (such as (1.12) or (1.15)) are of Lp kind whereas those on
error propagation in dynamic programming are of L∞ kind.

The fundamental problem of the analysis of DP with function approximation lies
in the different tools that are used to analyze DP and approximation theory:

– usual DP analysis makes use of the norm L∞, which is very natural since the
Bellman operators L and Lπ are contraction operators in this norm. The value itera-
tion, policy iteration, and their RL variants are all based on this property;

– function approximation make almost exclusively use of Lp-norms: for example
least squares methods, neural networks, Support Vector Machines and other kernel
methods, etc.

The different norms explain the difficulty to analyze DP combined with function
approximation. For example, if one considers the AVI algorithm defined by (1.3),
the Bellman operator L is a contraction in L∞-norm, the approximation operator A
is a non-expansion in L2-norm (in the case of an orthogonal projection onto F), but



Approximate Dynamic Programming 29

one cannot say anything about the combined operator AL. The L∞ analysis of this
algorithm, illustrated by the result (1.6), provides a performance bound in terms of
the uniform approximation error ||εn||∞, which is very difficult to control, especially
in large scale problems. This result is hardly useful in practice. Moreover, most of
the approximation operators and supervised learning algorithms solve a minimization
problem using an empirical L1 or L2 norm, for example (1.4). The uniform error
||εn||∞ is difficult to bound in terms of the error actually minimized by the empirical
Lp problem (1.4).

An Lp analysis of the AVI algorithm which would take into account the approx-
imation errors in Lp-norm would enable to evaluate the performance in terms of the
empirical errors and a capacity term (such as usual Vapnik-Chervonenkis dimension
or covering numbers [POL 84, VAP 98]) of the considered function space F . Indeed,
following usual results in statistical learning, the approximation error in Lp-norm (the
so-called generalization error) may be upper bounded by the empirical error (or learn-
ing error) actually minimized plus a capacity term of F . In addition, since most of
the approximation operators and supervised learning algorithms provide good fits by
minimizing a Lp-norm, it appears essential to analyze the performance of dynamic
programming using this same norm.

First steps along this direction are reported in [MUN 07, MUN 08] and briefly
described in the two next section.

1.5.1. Intuition of an Lp analysis in dynamic programming

First let us remind the definition of Lp-norm (for p ≥ 1) weighted by a distribution
µ: ||f ||p,µ

def=
[∑

s∈S µ(s)|f(s)|p
]1/p

. When p = 2, we use the simplified notation
||f ||µ.

The underlying intuition of anLp analysis of DP is simple and comes from compo-
nentwise bounds. Indeed, let f and g two positive functions defined over S, such that
f ≤ Pg, with P being a stochastic matrix. Of course, this implies that ||f ||∞ ≤ ||g||∞
(since ||P ||∞ = 1), but in addition, if ν and µ are distributions over S such that
νP ≤ Cµ, (one should interpret the notation νP as the matrix product of the row
vector ν by the matrix P ) for some constant C ≥ 1, then we may also deduce that
||f ||p,ν ≤ C1/p||g||p,µ.



30 Markov Decision Processes in AI

Indeed, we have:

||f ||pp,ν =
∑
s∈S

ν(s)|f(s)|p ≤
∑
s∈S

ν(s)
∣∣ ∑
s′∈S

P (s′|s)g(s′)
∣∣p

≤
∑
s∈S

ν(s)
∑
s′∈S

P (s′|s)|g(s′)|p

≤ C
∑
s′∈S

µ(s′)|g(s′)|p = C||g||pp,µ,

where we used Jensen’s inequality (i.e. convexity of x→ |x|p) at the second line.

For instance, the componentwise bound (1.21) enables to deduce the bound (1.20)
in terms of the L∞-norm of the Bellman residual. From this same bound (1.21), we
may also deduce a bound in terms of the Lp-norm of the Bellman residual:

||V ∗ − V π||p,ν ≤
2

1− γ
C(ν, µ)1/p||LV − V ||p,µ, (1.22)

where ν and µ are two distributions over S and C(ν, µ) is a constant that measures the
concentrability (relative to µ) of the discounted future state distribution (given that the
initial state is sampled from ν) of the MDP (seer [MUN 07, MUN 08] for a precise
definition and the link with Lyapunov exponents in dynamical systems). This bound
is tighter that the L∞ bound since when p→∞ we recover the bound (1.20).

Similar results may be derived for the AVI and API algorithms. For illustration,
for the AVI algorithm, one may prove the componentwise bound:

lim sup
n→∞

V ∗ − V πn ≤ lim sup
n→∞

(I − γPπn)−1

( n−1∑
k=0

γn−k
[
(Pπ∗)n−k + PπnPπn−1 . . . Pπk+2Pπk+1

]
|εk|
)
,

with εk = LVk − Vk+1 (approximation error at round k). By taking the L∞-norm,
this bound gives (1.6). But one may also deduce the Lp-norm bound:

lim sup
n→∞

||V ∗ − V πn ||p,ν ≤
2γ

(1− γ)2
C(ν, µ)1/p lim sup

n→∞
||εn||p,µ. (1.23)

Similarly for the API algorithm, the componentwise bound (1.11) enables to de-
duce the L∞ result (1.9) as previously shown, but also to derive the following Lp

bound:

lim sup
n→∞

||V ∗ − V πn ||p,ν ≤
2γ

(1− γ)2
C(ν, µ)1/p lim sup

n→∞
||Vn − V πn ||p,µ. (1.24)



Approximate Dynamic Programming 31

This Lp analysis in DP enables to establish a link with statistical learning and
deduce PAC bounds (Probably Approximately Correct) [VAL 84, BOU 92] for RL
algorithm.

1.5.2. PAC bounds for RL algorithms

We now provide a PAC bound (detailed in [MUN 08]) for a RL algorithm based
on AVI. We consider a large state space, for example continuous. At each iteration,
the approximation operator consists in performing an empirical regression based on
a finite number N of sampled states, where in each state, the Bellman operator is
estimated by using M transition samples obtained from the generative model.

More precisely, we repeat K approximate policy iteration steps (1.3). At round
1 ≤ k < K, Vk ∈ F denotes the current value function approximation, and a new
approximation Vk+1 is obtained as follows. We sample N states {sn}1≤n≤N ∈ S
independently from a distribution µ over S. For each state sn and each action a ∈ A,
we generate M successor states {s′n,a,m ∼ p(·|sn, a)}1≤m≤M and we formulate an
empirical estimate of the Bellman operator applied to Vk in sn :

vn
def= max

a∈A

[
r(sn, a) + γ

1
M

M∑
m=1

Vk(s′n,a,m)
]
.

Finally Vn+1 is defined as the solution to this Lp fitting problem:

Vn+1
def= arg min

f∈F

1
N

N∑
n=1

∣∣f(sn)− vn
∣∣p.

At round K, we write πK a greedy policy w.r.t. VK and we wish to evaluate its
performance (compared to the optimal performance) in terms of the number of itera-
tions K, the number of sampled states N , the number of successors M , the capacity
of the function spaceF , the smoothness of the MDP (concentrability constant C(ν, µ)
in the bound (1.23)), and the Bellman residual d(LF ,F) of the function space F . We
have the following result.

PROPOSITION 1.7 [MUN 08].– For any δ > 0, with probability at least 1 − δ, we
have:

||V ∗ − V πK ||p,ν ≤ 2γ
(1− γ)2

C(ν, µ)1/p d(LF ,F) +O(γK) (1.25)

+O

{(
VF+ log(1/δ)

N

)1/2p

+
(

log(1/δ)
M

)1/2
}
,



32 Markov Decision Processes in AI

where d(LF ,F) def= supg∈F inff∈F ||Lg−f ||p,µ is the Bellman residual of the space
F , and VF+ a capacity measure (the pseudo-dimension) of F [HAU 95].

The four terms of this bound respectively mean:
– the Bellman residual d(LF ,F) generalizes the notion of Bellman residual to a

class of functions F . It measures how well the function space F enables to approxi-
mate functions Lg, g ∈ F (images by the Bellman operator of functions in F). This
term is analogous to the notion of distance between the target function and F in the
case of regression. However here there is no target function to approximate since our
goal is to approximate the fixed-point of the Bellman operator with functions in F .
When the MDP is smooth (for example if the transition probabilities p(s′|·, a) and
the reward function r(·, a) are Lipschitzian), we can show that the term d(LF ,F)
decreases when the function space F increases (since then the Bellman operator pos-
sesses a regularizing effect and the space LF is a subspace of Lipschitz functions with
Lipschitz coefficient independent of F , see [MUN 08]);

– the term coming from the finite number K of iteration, tends to 0 exponentially
fast;

– two terms of order O((VF+/N)1/2p) + O(1/
√
M) bound the estimation error

in terms of the number of samples N and M .

This result states that, if we use enough samples (N , M , K), the performance of
this algorithm can be arbitrarily close (up to a constant) to the Bellman residual of the
space F , which itself can be made arbitrarily small by considering a sufficiently rich
function approximation class. This kind of bound is analogous to the bounds obtained
in supervised learing [GYÖ 02] and allows to analyze the stability and convergence
rate of AVI based on samples, especially:

– it enables to understand the bias-variance trade-off in approximate dynamic pro-
gramming. Indeed, the performance bound (1.25) contains a bias term, the Bellman
residual d(LF ,F), that decreases when F gets richer, and a variance term, due to the
capacity VF+ of F , that increases with the richness of F , but which may be reduced
by using a larger number of samples N (in order to avoid overfitting);

– it enables to understand the well-known counter-examples (of divergence of the
algorithm) mentioned in previous works (in particular, the Bellman residual d(LF ,F)
of the function spaces used in [BAI 95, TSI 96a] is infinite) and to be able to predict
the behavior of this kind of algorithms in terms of the characteristics of the MDP, the
capacity and richness of the function space F and the number of samples.

1.6. Conclusions

The results mentioned in the previous paragraph are a direct consequence of sta-
tistical learning results combined with the Lp-norm analysis of DP briefly introduced.



Approximate Dynamic Programming 33

Many extensions are possible, such as RL methods based on API (like the LSPI of
[LAG 03]) even when samples are obtained by the observation of a unique trajectory
[ANT 08]. In parallel to these theoretical works, we should mention the important di-
versity and quantity of works about the use of approximate representations of the value
function for the purpose of decision making. Kernel methods [SCH 01] have been ap-
plied to DP and RL [ORM 02, RAS 04], as well as decision trees [WAN 99, ERN 05],
neural networks [BER 96, COU 02], Bayesian approaches [DEA 98], factored repre-
sentations [GUE 01, KOL 00, DEG 06] (see Chapter ??) only to cite a few.

This chapter focused on approximate representation of the value function, follow-
ing the dynamic programming principle initiated by Bellman [BEL 57]. Let us finally
mention that there exists a completely different approach, somehow dual to this one,
which consists in searching directly an approximation of the optimal policy by con-
sidering a class of parameterized policies. Those methods, now called direct policy
search originate from Pontryagin’s principle [PON 62] which sets necessary condi-
tions for optimality by considering sensitivity analysis of the performance measure
with respect to the policy parameters. This approach is the object of another chapter.



34



Bibliography

[ANT 08] ANTOS A., SZEPESVÁRI C., MUNOS R., “Learning Near-Optimal Policies with
Bellman-Residual Minimization Based Fitted Policy Iteration and a Single Sample Path”,
Machine Learning Journal, 2008, à paraître.

[ATK 97] ATKESON C. G., MOORE A. W., SCHAAL S. A., “Locally Weighted Learning”, AI
Review, vol. 11, 1997.

[BAI 95] BAIRD L. C., “Residual Algorithms: Reinforcement Learning with Function Ap-
proximation”, Proceedings of the 12th International Conference in Machine Learning
(ICML’95), San Francisco, CA, Morgan Kaufman Publishers, 1995.

[BEL 57] BELLMAN R. E., Dynamic Programming, Princeton University Press, Princeton,
N.J., 1957.

[BEL 59] BELLMAN R., DREYFUS S., “Functional Approximation and Dynamic Program-
ming”, Math. Tables and other Aids Comp., vol. 13, p. 247–251, 1959.

[BER 96] BERTSEKAS D., TSITSIKLIS J., Neuro-Dynamic Programming, Athena Scientific,
Belmont, MA, 1996.

[BOU 92] BOUCHERON S., Théorie de l’Apprentissage: de l’approche formelle aux enjeux
cognitifs, Hermès, Paris, 1992.

[BOY 99] BOYAN J., “Least-Squares Temporal Difference Learning”, Proceedings of the 16th
International Conference on Machine Learning (ICML’99), p. 49–56, 1999.

[BRA 96] BRADTKE S., BARTO A., “Linear Least-Squares Algorithms for Temporal Differ-
ence Learning”, Journal of Machine Learning Research, vol. 22, p. 33–57, 1996.

[COU 02] COULOM R., Reinforcement Learning using Neural Networks, with Applications
to Motor Control, PhD thesis, Institut National Polytechnique de Grenoble, 2002.

[CRI 96] CRITES R., BARTO A., “Improving Elevator Performance using Reinforcement
Learning”, Advances in Neural Information Processing Systems 8 (NIPS’95), 1996.

[DAV 97] DAVIES G., MALLAT S., AVELLANEDA M., “Adaptive Greedy Approximations”,
Journal of Constructive Approximation, vol. 13, p. 57–98, 1997.

[DEA 98] DEARDEN R., FRIEDMAN N., RUSSELL S., “Bayesian Q-learning”, Proceedings
of the National Conference on Artificial Intelligence (AAAI’98), 1998.

35



36 Markov Decision Processes in AI

[DEG 06] DEGRIS T., SIGAUD O., WUILLEMIN P.-H., “Learning the Structure of Factored
Markov Decision Processes in Reinforcement Learning Problems”, Proceedings of the
International Conference on Machine Learning (ICML’06), 2006.

[DEV 98] DEVORE R., “Nonlinear Approximation”, Acta Numerica, vol. 7, p. 51–150, 1998.

[ERN 05] ERNST D., GEURTS P., WEHENKEL L., “Tree-Based Batch Mode Reinforcement
Learning”, Journal of Machine Learning Research, vol. 6, p. 503–556, 2005.

[GOR 95] GORDON G., “Stable Function Approximation in Dynamic Programming”, Pro-
ceedings of the 12th International Conference on Machine Learning (ICML’95), San Fran-
cisco, CA, Morgan Kaufmann, p. 261–268, 1995.

[GOS 04] GOSAVI A., “A Reinforcement Learning Algorithm Based on Policy Iteration for
Average Reward: Empirical Results with Yield Management and Convergence Analysis”,
Machine Learning, vol. 55, p. 5–29, 2004.

[GUE 01] GUESTRIN C., KOLLER D., PARR R., “Max-norm Projections for Factored MDPs”,
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJ-
CAI’01), p. 673–680, 2001.

[GYÖ 02] GYÖRFI L., KOHLER M., KRZYŻAK A., WALK H., A Distribution-Free Theory of
Nonparametric Regression, Springer-Verlag, 2002.

[HAS 01] HASTIE T., TIBSHIRANI R., FRIEDMAN J., The Elements of Statistical Learning,
Springer Series in Statistics, 2001.

[HAU 95] HAUSSLER D., “Sphere Packing Numbers for Subsets of the Boolean n-Cube with
Bounded Vapnik-Chervonenkis Dimension”, Journal of Combinatorial Theory Series A,
vol. 69, p. 217–232, 1995.

[JUD 98] JUDD K., Numerical Methods in Economics, MIT Press, Cambridge, MA, 1998.

[KAK 03] KAKADE S., On the Sample Complexity of Reinforcement Learning, PhD thesis,
Gatsby Computationel Neuroscience Unit, University College London, 2003.

[KOL 00] KOLLER D., PARR R., “Policy Iteration for Factored MDPs”, Proceedings of the
16th Conference on Uncertainty in Artificial Intelligence (UAI’00), p. 326–334, 2000.

[KUS 97] KUSHNER H., YIN G., Stochastic Approximation Algorithms and Applications,
Springer-Verlag, New York, 1997.

[LAG 03] LAGOUDAKIS M., PARR R., “Least-Squares Policy Iteration”, Journal of Machine
Learning Research, vol. 4, p. 1107–1149, 2003.

[MAH 97] MAHADEVAN S., MARCHALLECK N., DAS T., GOSAVI A., “Self-Improving Fac-
tory Simulation using Continuous-Time Average-Reward Reinforcement Learning”, Pro-
ceedings of the 14th International Conference on Machine Learning (ICML’97), 1997.

[MAL 97] MALLAT S., A Wavelet Tour of Signal Processing, Academic Press, Londres,
Royaume-Uni, 1997.

[MUN 03] MUNOS R., “Error Bounds for Approximate Policy Iteration”, Proceedings of the
19th International Conference on Machine Learning (ICML’03), 2003.



Bibliography 37

[MUN 06] MUNOS R., “Geometric Variance Reduction in Markov chains. Application to
Value Function and Gradient Estimation”, Journal of Machine Learning Research, vol. 7,
p. 413–427, 2006.

[MUN 07] MUNOS R., “Performance Bounds in Lp norms for Approximate Value Iteration”,
SIAM Journal on Control and Optimization, vol. 46, 2007.

[MUN 08] MUNOS R., SZEPESVÁRI C., “Finite Time Bounds for Sampling Based Fitted
Value Iteration”, Journal of Machine Learning Research, 2008, à paraître.

[ORM 02] ORMONEIT D., SEN S., “Kernel-Based Reinforcement Learning”, Machine Learn-
ing, vol. 49, p. 161–178, 2002.

[POL 84] POLLARD D., Convergence of Stochastic Processes, Springer Verlag, New York,
1984.

[PON 62] PONTRYAGIN L., BOLTYANSKII V., GAMKRILEDZE R., MISCHENKO E., The
Mathematical Theory of Optimal Processes, Interscience, New York, 1962.

[PUT 94] PUTERMAN M., Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, John Wiley & Sons, Inc., New York, Etats-Unis, 1994.

[RAS 04] RASMUSSEN C., KUSS M., “Gaussian Processes in Reinforcement Learning”, Ad-
vances in Neural Information Processing Systems 16 (NIPS’03), Cambridge, MA, MIT
Press, p. 751–759, 2004.

[REE 77] REETZ D., “Approximate Solutions of a Discounted Markovian Decision Problem”,
Bonner Mathematischer Schriften, vol. 98: Dynamische Optimierungen, p. 77–92, 1977.

[RUS 96] RUST J., “Numerical Dynamic Programming in Economics”, AMMAN H.,
KENDRICK D., RUST J., Eds., Handbook of Computational Economics, Elsevier, North
Holland, 1996.

[SAM 59] SAMUEL A., “Some Studies in Machine Learning using the Game of Checkers”,
IBM Journal of Research Development, vol. 3, num. 3, p. 210–229, 1959.

[SAM 67] SAMUEL A., “Some Studies in Machine Learning using the Game of Checkers, II –
Recent Progress”, IBM Journal on Research and Development, vol. 11, num. 6, p. 601–617,
1967.

[SCH 01] SCHOLKOPF B., SMOLA A. J., Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond, MIT Press, Cambridge, MA, 2001.

[SCH 03] SCHOKNECHT R., “Optimality of Reinforcement Learning Algorithms with Lin-
ear Function Approximation”, Advances in Neural Information Processing Systems 15
(NIPS’02), 2003.

[SIN 97] SINGH S., BERTSEKAS D., “Reinforcement Learning for Dynamic Channel Alloca-
tion in Cellular Telephone Systems”, Advances in Neural Information Processing Systems
9 (NIPS’96), 1997.

[SUT 88] SUTTON R., “Learning to Predict by the Method of Temporal Differences”, Machine
Learning, vol. 3, num. 1, p. 9–44, 1988.

[SUT 98] SUTTON R. S., BARTO A. G., Reinforcement Learning: An Introduction, Bradford
Book, MIT Press, Cambridge, MA, 1998.



38 Markov Decision Processes in AI

[TES 95] TESAURO G., “Temporal Difference Learning and TD-Gammon”, Communication
of the ACM, vol. 38, p. 58–68, 1995.

[TSI 96a] TSITSIKLIS J. N., VAN ROY B., “Feature-Based Methods for Large Scale Dynamic
Programming”, Machine Learning, vol. 22, p. 59–94, 1996.

[TSI 96b] TSITSIKLIS J., ROY B. V., An Analysis of Temporal Difference Learning with
Function Approximation, Report num. LIDS-P-2322, MIT, 1996.

[VAL 84] VALIANT L. G., “A Theory of the Learnable”, Communications of the ACM, vol. 27,
num. 11, p. 1134–1142, November 1984.

[VAP 97] VAPNIK V., GOLOWICH S. E., SMOLA A., “Support Vector Method for Function
Approximation, Regression Estimation and Signal Processing”, Advances in Neural Infor-
mation Processing Systems 9 (NIPS’96), p. 281–287, 1997.

[VAP 98] VAPNIK V., Statistical Learning Theory, John Wiley & Sons, New York, 1998.

[WAN 99] WANG X., DIETTERICH T., “Efficient Value Function Approximation Using Re-
gression Trees”, Proceedings of the IJCAI Workshop on Statistical Machine Learning for
Large-Scale Optimization, 1999.

[WAT 89] WATKINS C., Learning from Delayed Rewards, PhD thesis, Cambridge University,
Cambridge, Royaume-Uni, 1989.

[WIL 93] WILLIAMS R. J., BAIRD III L. C., Tight Performance Bounds on Greedy Policies
Based on Imperfect Value Functions, Report num. NU-CCS-93-14, Northeastern Univer-
sity, College of Computer Science, Boston, MA, November 1993.

[ZHA 95] ZHANG W., DIETTERICH T., “A Reinforcement Learning Approach to Job-Shop
Scheduling”, Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI’95), 1995.



Index

A

approximate dynamic programming 7
Approximate Policy Iteration 16
Approximate Value Iteration 10
approximation capacity 8
approximation operator 11
approximation power 8
approximation theory 12

B

Bellman operator 9
bias-variance trade-off 32

C

covering number 29

D

dynamic programming exact methods 7
with function approximation 7

E

empirical error 11

F

feature 11
function approximation 7

G H

generalization error 29

generative model 24
kernel methods 13

L

learning error 29
least-squares methods 21
Lp-norm 28

N O

neural networks 13

P

policy greedy 9
probably approximately correct 31

Q

quadratic norm 11

R

regression 11

S

supervised learning 11
Support Vector Machines 13

V W

value iteration 10
VC dimension 29

39


