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Abstract

We consider the restless Markov bandit problem, in which the state of each arm evolves according to a

Markov process independently of the learner’s actions. We suggest an algorithm, that first represents the

setting as an MDP which exhibits some special structural properties. In order to grasp this information we

introduce the notion of ε-structured MDPs, which are a generalization of concepts like (approximate) state

aggregation and MDP homomorphisms. We propose a general algorithm for learning ε-structured MDPs

and show regret bounds that demonstrate that additional structural information enhances learning.

Applied to the restless bandit setting, this algorithm achieves after any T steps regret of order Õ(
√
T )

with respect to the best policy that knows the distributions of all arms. We make no assumptions on the

Markov chains underlying each arm except that they are irreducible. In addition, we show that index-based

policies are necessarily suboptimal for the considered problem.
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1. Introduction

In the bandit problem the learner has to decide at time steps t = 1, 2, . . . which of the finitely many

available arms to pull. Each arm produces a reward in a stochastic manner. The goal is to maximize the

reward accumulated over time.

Following [1], traditionally it is assumed that the rewards produced by each given arm are independent

and identically distributed (i.i.d.). If the probability distributions of the rewards of each arm are known,

the best strategy is to only pull the arm with the highest expected reward. Thus, in the i.i.d. bandit setting

the regret is measured with respect to the best arm. An extension of this setting is to assume that the

rewards generated by each arm are not i.i.d., but are governed by some more complex stochastic process.

Markov chains suggest themselves as an interesting and non-trivial model. In this setting it is often natural

to assume that the stochastic process (Markov chain) governing each arm does not depend on the actions
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of the learner. That is, the chain takes transitions independently of whether the learner pulls that arm

or not (giving the name restless bandit to the problem). The latter property makes the problem rather

challenging: since we are not observing the state of each arm, the problem becomes a partially observable

Markov decision process (POMDP), rather than being a (special case of) a fully observable MDP, as in the

traditional i.i.d. setting. One of the applications that motivate the restless bandit problem is the so-called

cognitive radio problem (e.g., [2]): Each arm of the bandit is a radio channel that can be busy or available.

The learner (an appliance) can only sense a certain number of channels (in the basic case only a single one)

at a time, which is equivalent to pulling an arm. It is natural to assume that whether the channel is busy

or not at a given time step depends on the past — so a Markov chain is the simplest realistic model —

but does not depend on which channel the appliance is sensing. (See also Example 1 in Section 3 for an

illustration of a simple instance of this problem.)

What makes the restless Markov bandit problem particularly interesting is that one can do much better

than pulling the best arm. This can be seen already on simple examples with two-state Markov chains (see

Section 3 below). Remarkably, this feature is often overlooked, notably by some early work on restless

bandits, e.g. [3], where the regret is measured with respect to the mean reward of the best arm. This feature

also makes the problem more difficult and in some sense more general than the non-stochastic bandit

problem, in which the regret usually is measured with respect to the best arm in hindsight [4]. Finally, it is

also this feature that makes the problem principally different from the so-called rested bandit problem, in

which each Markov chain only takes transitions when the corresponding arm is pulled.

Thus, in the restless Markov bandit problem that we study, the regret should be measured not with

respect to the best arm, but with respect to the best policy knowing the distribution of all arms. To

understand what kind of regret bounds can be obtained in this setting, it is useful to compare it to the

i.i.d. bandit problem and to the problem of learning an MDP. In the i.i.d. bandit problem, the minimax

regret expressed in terms of the horizon T and the number of arms only is O(
√
T ), cf. [5]. If we allow

problem-dependent constants into consideration, then the regret becomes of order log T but depends also

on the gap between the expected reward of the best and the second-best arm. In the problem of learning to

behave optimally in an MDP, nontrivial problem-independent finite-time regret guarantees (that is, regret

depending only on T and the number of states and actions) are not possible to achieve. It is possible to

obtain O(
√
T ) regret bounds that also depend on the diameter of the MDP [6] or similar related constants,

such as the span of the optimal bias vector [7]. Regret bounds of order log T are only possible if one

additionally allows into consideration constants expressed in terms of policies, such as the gap between the

average reward obtained by the best and the second-best policy [6]. The difference between these constants

and constants such as the diameter of an MDP is that one can try to estimate the latter, while estimating

the former is at least as difficult as solving the original problem — finding the best policy. Turning to our

restless Markov bandit problem, so far, to the best of our knowledge no regret bounds are available for the
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general problem. However, several special cases have been considered. Specifically, O(log T ) bounds have

been obtained in [8] and [9]. While the latter considers the two-armed restless bandit case, the results of [8]

are constrained by some ad hoc assumptions on the transition probabilities and on the structure of the

optimal policy of the problem. The algorithm proposed in [8] alternates exploration and exploitation steps,

where the former shall guarantee that estimates are sufficiently precise, while in the latter an optimistic arm

is chosen by a policy employing UCB-like confidence intervals. Computational aspects of the algorithm are

however neglected. In addition, while the O(log T ) bounds of [8] depend on the parameters of the problem

(i.e., on the unknown distributions of the Markov chains), it is unclear what order the bounds assume in

the worst case, that is, when one takes the supremum over the bandits satisfying the assumptions imposed

by the authors.

Finally, while regret bounds for the Exp3.S algorithm [4] can be applied in the restless bandit setting,

these bounds depend on the “hardness” of the reward sequences, which in the case of reward sequences

generated by a Markov chain can be arbitrarily high. We refer to [10] for an overview of bandit algorithms

and corresponding regret bounds.

Here we present an algorithm for which we derive Õ(
√
T ) regret bounds, making no assumptions on the

distribution of the Markov chains except that they are irreducible. The algorithm is based on constructing

an approximate MDP representation of the POMDP problem, and then using a modification of the Ucrl2

algorithm of [6] to learn this approximate MDP. In addition to the horizon T and the number of arms

and states, the regret bound also depends on the diameter and the mixing time (which can be eliminated

however) of the Markov chains of the arms. If the regret has to be expressed only in these terms, then our

lower bound shows that the dependence on T cannot be significantly improved.

A common feature of many bandit algorithms is that they look for an optimal policy in an index form

(starting with the Gittins index [11], and including UCB [12], and, for the Markov case, [13], [9]). That is,

for each arm the policy maintains an index which is a function of time, states, and rewards of this arm only.

At each time step, the policy samples the arm that has maximal index. This idea also leads to conceptually

and computationally simple algorithms. One of the results in this work is to show that, in general, for the

restless Markov bandit problem, index policies are suboptimal.

The rest of the paper is organized as follows. Section 2 defines the setting, in Section 3 we give some

examples of the restless bandit problem, as well as demonstrate that index-based policies are suboptimal.

Section 4 presents the main results: the upper and lower bounds on the achievable regret in the considered

problem; Sections 5 and 7 introduce the algorithm for which the upper bound is proven; the latter part relies

on ε-structured MDPs, a generalization of concepts like (approximate) state aggregation in MDPs [14] and

MDP homomorphism [15], introduced in Section 6. This section also presents an extension of the Ucrl2

algorithm of [6] designed to work in this setting. The (longer) proofs are given in Section 8 and 9 (with

some details deferred to the appendices), while Section 10 presents some directions for further research.
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2. Preliminaries

Given are K arms, where underlying each arm j there is an irreducible Markov chain with state space Sj ,

some initial state in Sj , and transition matrix Pj . For each state s in Sj there is a reward distribution with

mean rj(s) and support in [0, 1]. For the time being, we will assume that the learner knows the number of

states for each arm and that all Markov chains are aperiodic. In Section 8, we discuss periodic chains, while

in Section 10 we indicate how to deal with unknown state spaces. In any case, the learner knows neither

the transition probabilities nor the mean rewards.

For each time step t = 1, 2, . . . the learner chooses one of the arms, observes the current state s of the

chosen arm i and receives a random reward with mean ri(s). After this, the state of each arm j changes

according to the transition matrices Pj . The learner however is not able to observe the current state of the

individual arms. We are interested in competing with the optimal policy π∗ which knows the mean rewards

and transition matrices, yet observes as the learner only the current state of the chosen arm. Thus, we are

looking for algorithms which after any T steps have small regret with respect to π∗, i.e. minimize

T · ρ∗ −
∑T
t=1 rt,

where rt denotes the (random) reward earned at step t and ρ∗ is the average reward of the optimal policy π∗.

It will be seen in Section 5 that we can represent the problem as an MDP, so that π∗ and ρ∗ are indeed

well-defined. Also, while for technical reasons we consider the regret with respect to Tρ∗, our results also

bound the regret with respect to the optimal T -step reward.

2.1. Mixing Times and Diameter

If an arm j is not selected for a large number of time steps, the distribution over states when selecting j will

be close to the stationary distribution µj of the Markov chain underlying arm j. Let µts be the distribution

after t steps when starting in state s ∈ Sj . Then setting

dj(t) := max
s∈Sj

‖µts − µj‖1 := max
s∈Sj

∑
s′∈Sj

|µts(s′)− µj(s′)|,

we define the ε-mixing time of the Markov chain as

T jmix(ε) := min{t ∈ N | dj(t) ≤ ε}.

Setting somewhat arbitrarily the mixing time of the chain to T jmix := T jmix( 1
4 ), one can show (cf. eq. 4.36 in

[16]) that

T jmix(ε) ≤
⌈
log2

(
1
ε

)⌉
· T jmix. (1)

Finally, let Tj(s, s
′) be the expected time it takes in arm j to reach a state s′ when starting in state s, where

for s = s′ we set Tj(s, s) := 1. Then we define the diameter of arm j to be Dj := maxs,s′∈Sj
Tj(s, s

′).
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3. Examples

Next we present a few examples that give insight into the nature of the problem and the difficulties in

finding solutions. In particular, the examples demonstrate that (i) the optimal reward can be (much) bigger

than the average reward of the best arm, (ii) the optimal policy does not maximize the immediate reward,

and (iii) the optimal policy cannot always be expressed in terms of arm indexes.

Example 1 (best arm is suboptimal). In this example the average reward of each of the two arms of a

bandit is 1
2 , but the reward of the optimal policy is close to 3

4 . Consider a two-armed bandit. Each arm has

two possible states, 0 and 1, which are also the rewards. Underlying each of the two arms is a (two-state)

Markov chain with transition matrix

 1− ε ε

ε 1− ε

, where ε is small. Thus, a typical trajectory of each

arm looks like this:

000000000001111111111111111000000000 . . . ,

and the average reward for each arm is 1
2 . It is easy to see that the optimal policy starts with any arm, and

then switches the arm whenever the reward is 0, and otherwise sticks to the same arm. The average reward

is close to 3
4 — much larger than the reward of each arm.

This example has a natural interpretation in terms of cognitive radio: two radio channels are available,

each of which can be either busy (0) or available (1). A device can only sense (and use) one channel at a

time, and one wants to maximize the amount of time the channel it tries to use is available.

Example 2 (another optimal policy). Consider the previous example, but with ε close to 1. Thus, a typical

trajectory of each arm is now

01010101001010110 . . . .

Here the optimal policy switches arms if the previous reward was 1 and stays otherwise.

Example 3 (optimal policy is not myopic). In this example the optimal policy does not maximize the

immediate reward. Again, consider a two-armed bandit. Arm 1 is as in Example 1, and arm 2 provides

Bernoulli i.i.d. rewards with probability 1
2 of getting reward 1. The optimal policy (which knows the

distributions) will sample arm 1 until it obtains reward 0, when it switches to arm 2. However, it will

sample arm 1 again after some time t (depending on ε), and only switch back to arm 2 when the reward on

arm 1 is 0. Note that whatever t is, the expected reward for choosing arm 1 will be strictly smaller than 1
2 ,

since the last observed reward was 0 and the limiting probability of observing reward 1 (when t → ∞)

is 1
2 . At the same time, the expected reward of the second arm is always 1

2 . Thus, the optimal policy will

sometimes “explore” by pulling the arm with the smaller expected reward.

An intuitively appealing idea is to look for an optimal policy which is index-based. That is, for each

arm the policy maintains an index which is a function of time, states, and rewards of this arm only. At
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Figure 1: The example used in the proof of Theorem 4. Dashed transitions are with probability 1
2

, others are deterministic

with probability 1. Numbers are rewards in the respective state.

each time step, the policy samples the arm that has maximal index. This seems promising for at least two

reasons: First, the distributions of the arms are assumed independent, so it may seem reasonable to evaluate

them independently as well; second, this works in the i.i.d. case (e.g., the Gittins index [11] or UCB [12]).

This idea also motivates the setting when just one out of two arms is Markov and the other is i.i.d., see

e.g. [9]. Index policies for restless Markov bandits were also studied in [13]. Despite their intuitive appeal,

in general, index policies are suboptimal.

Theorem 4 (index-based policies are suboptimal). For each index-based policy π there is a restless Markov

bandit problem in which π behaves suboptimally.

Proof. Consider the three bandits L (left), C (center), and R (right) in Figure 1, where C and R start

in the 1 reward state. (Arms C and R can easily be made aperiodic by adding further sufficiently small

transition probabilities.) Assume that C has been observed in the 1
2 reward state one step before, while R

has been observed in the 1 reward state three steps ago. The optimal policy will choose arm L which gives

reward 1
2 with certainty (C gives reward 0 with certainty, while R gives reward 7

8 with probability 1
2 ) and

subsequently arms C and R. However, if arm C was missing, in the same situation, the optimal policy would

choose R: Although the immediate expected reward is smaller than when choosing L, sampling R gives also

information about the current state, which can earn reward 3
4 a step later. Clearly, no index based policy

will behave optimally in both settings.

4. Main Results

Theorem 5 (main upper bound on regret). Consider a restless bandit with K aperiodic arms having state

spaces Sj, diameters Dj, and mixing times T jmix (j = 1, . . . ,K). Then with probability at least 1 − δ the

regret of Algorithm 2 (presented in Section 5 below) after T > 2 steps is upper bounded by

90 · S · dTmixe3/2 ·
∏K
j=1(4Dj) ·

⌈
max
i

log2(4Di)
⌉
· log2

2

(
T
δ

)
·
√
T ,

where S :=
∑K
j=1 |Sj | is the total number of states and Tmix := maxj T

j
mix the maximal mixing time. This

bound also holds with a slightly worse numerical constant for the regret with respect to the best T -step policy.
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Further, the dependence on Tmix can be eliminated to show that with probability at least 1 − δ the regret is

bounded by

O
(
S ·
∏K
j=1(4Dj) ·max

i
log(4Di) · log7/2

(
T
δ

)
·
√
T
)
.

Remark 6. For periodic chains the bound of Theorem 5 has worse dependence on the state space, for

details see Section 9 below.

Remark 7. Choosing δ = 1
T in Theorem 5, it is straightforward to obtain respective upper bounds on the

expected regret.

Theorem 8 (lower bound on regret). For any algorithm, any K > 1, and any m ≥ 1 there is a K-armed

restless bandit problem with a total number of S := Km states, such that the regret after T steps is lower

bounded by Ω(
√
ST ).

Remark 9. While it is easy to see that lower bounds depend on the total number of states over all arms,

the dependence on other parameters in our upper bound is not clear. For example, intuitively, while in the

general MDP case one wrong step may cost up to D — the MDP’s diameter [6] — steps to compensate for,

here the Markov chains evolve independently of the learner’s actions, and the upper bound’s dependence on

the diameter may be just an artefact of the proof.

5. Constructing the Algorithm I: MDP Representation

For the sake of simplicity, we start with the simpler case when all Markov chains are aperiodic. In

Section 9, we indicate how to adapt the proofs to the periodic case.

5.1. MDP Representation

We represent the restless bandit setting as an MDP by recalling for each arm the last observed state

and the number of time steps which have gone by since this last observation. Thus, each state of the MDP

representation is of the form (sj , nj)
K
j=1 := (s1, n1, s2, n2, . . . , sK , nK) with sj ∈ Sj and nj ∈ N, meaning

that each arm j has not been chosen for nj steps when it was in state sj . More precisely, (sj , nj)
K
j=1 is a

state of the considered MDP if and only if (i) all nj are distinct and (ii) there is a j with nj = 1.1

The action space of the MDP is {1, 2, . . . ,K}, and the transition probabilities from a state (sj , nj)
K
j=1

are given by the nj-step transition probabilities p
(nj)
j (s, s′) of the Markov chain underlying the chosen arm j

(these are defined by the matrix power of the single step transition probability matrix, i.e. P
nj

j ). That is,

the probability for a transition from state (sj , nj)
K
j=1 to (s′j , n

′
j)
K
j=1 under action j is given by p

(nj)
j (sj , s

′
j)

1Actually, one would need to add for each arm j with |Sj | > 1 a special state for not having sampled j so far. However, for

the sake of simplicity we assume that in the beginning each arm is sampled once. The respective regret is negligible.
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iff (i) n′j = 1, (ii) n′` = n` + 1 and s` = s′` for all ` 6= j. All other transition probabilities are 0. Finally,

the mean reward for choosing arm j in state (sj , nj)
K
j=1 is given by

∑
s∈Sj

p
(nj)
j (sj , s) · rj(s). This MDP

representation has already been considered in [8].

Obviously, within T steps any policy can reach only states with nj ≤ T . Correspondingly, if we are

interested in the regret within T steps, it will be sufficient to consider the finite sub-MDP consisting of

states with nj ≤ T . We call this the T -step representation of the problem, and the regret will be measured

with respect to the optimal policy in this T -step representation.2

5.2. Structure of the MDP Representation

The MDP representation of our problem has some special structural properties. In particular, rewards

and transition probabilities for choosing arm j only depend on the state of arm j, that is, sj and nj .

Moreover, the support for each transition probability distribution is bounded, and for nj ≥ T jmix(ε) the

transition probability distribution will be close to the stationary distribution of arm j. Thus, one could reduce

the T -step representation further by aggregating states 3 (sj , nj)
K
j=1, (s′j , n

′
j)
K
j=1 whenever nj , n

′
j ≥ T jmix(ε)

and s` = s′`, n` = n′` for all ` 6= j. The rewards and transition probability distributions of aggregated

states are ε-close, so that the error by aggregation can be bounded by results given in [17]. While this

is helpful for approximating the problem when all parameters are known, it cannot be used directly when

learning, since the observations in the aggregated states do not correspond to an MDP anymore. Thus,

while standard reinforcement learning algorithms are still applicable, there are no theoretical guarantees for

them. Instead, we will propose an algorithm which can exploit the structure information available for the

MDP representation of the restless bandit setting directly. For that purpose, we first introduce the notion

of ε-structured MDPs, which can grasp structural properties in MDPs more generally.

6. Digression: ε-structured MDPs and Colored UCRL2

ε-structured MDPs are MDPs with some additional color information indicating similarity of state-action

pairs. Thus, state-action pairs of the same color have similar (i.e., ε-close) rewards and transition probability

distributions. Concerning the latter, we allow the supports of the transition probability distributions to be

different, however demand that they can be mapped to each other by a bijective translation function.

Definition 10. An ε-structured MDP is an MDP with finite state space S, finite action space A, transition

probability distributions p(·|s, a), mean rewards r(s, a) ∈ [0, 1], and a coloring function c : S×A→ C, where

2An undesirable consequence of this is that the optimal average reward ρ∗ which we compare to may be different for different

horizons T . However, as already stated, our regret bounds also hold with respect to the more intuitive optimal T -step reward.
3Aggregation of states s1, . . . , sn means that these states are replaced by a new state sagg inheriting rewards and transition

probabilities from an arbitrary si (or averaging over all s`). Transitions to this state are set to p(sagg|s, a) :=
∑

` p(s`|s, a).
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Algorithm 1 The colored Ucrl2 algorithm for learning in ε-structured MDPs

Input: Confidence parameter δ > 0, aggregation parameter ε > 0, state space S, action space A, coloring

and translation functions, a bound B on the size of the support of transition probability distributions.

Initialization: Set t := 1, and observe the initial state s1.

for episodes k = 1, 2, . . . do

Initialize episode k:

Set the start time of episode k, tk := t. Let Nk (c) be the number of times a state-action pair of color c

has been visited prior to episode k, and vk(c) the number of times a state-action pair of color c has been

visited in episode k. Compute estimates r̂k(s, a) and p̂k(s′|s, a) for rewards and transition probabilities,

using all samples from state-action pairs of the same color c(s, a), respectively.

Compute policy π̃k:

LetMk be the set of plausible MDPs with rewards r̃(s, a) and transition probabilities p̃(·|s, a) satisfying

∣∣r̃(s, a)− r̂k(s, a)
∣∣ ≤ ε+

√
7 log(2Ctk/δ)

2 max{1,Nk(c(s,a))} , (2)∥∥∥p̃(·|s, a)− p̂k(·|s, a)
∥∥∥

1
≤ ε+

√
56B log(2Ctk/δ)

max{1,Nk(c(s,a))} , (3)

where C is the number of distinct colors. Let ρ(π,M) be the average reward of a policy π : S → A on

an MDP M ∈Mk. Choose (e.g. by extended value iteration [6]) an optimal policy π̃k and an optimistic

M̃k ∈Mk such that

ρ(π̃k, M̃k) = max
{
ρ(π,M)

∣∣π : S → A, M ∈Mk

}
. (4)

Execute policy π̃k:

while vk(c(st, π̃k(st))) < max{1, Nk(c(st, π̃k(st)))} do

B Choose action at = π̃k(st), obtain reward rt, and observe next state st+1.

B Set t := t+ 1.

end while

end for

C is a set of colors. Further, for each two pairs (s, a), (s′, a′) ∈ S × A with c(s, a) = c(s′, a′) there is a

bijective translation function φs,a,s′,a′ : S → S such that
∑
s′′

∣∣p(s′′|s, a) − p(φs,a,s′,a′(s′′)|s′, a′)
∣∣ < ε and

|r(s, a)− r(s′, a′)| < ε.

If there are states s, s′ in an ε-structured MDP such that c(s, a) = c(s′, a) for all actions a and the

associated translation function φs,a,s′,a is the identity, we may aggregate the states (cf. footnote 3). We call

the MDP in which all such states are aggregated the aggregated ε-structured MDP.

For learning in ε-structured MDPs we consider a modification of the Ucrl2 algorithm of [6]. The colored
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Ucrl2 algorithm is shown as Algorithm 1. As the original Ucrl2 algorithm it maintains confidence intervals

for rewards and transition probabilities which define a set of plausible MDPsM. Unlike the original Ucrl2

algorithm, which defines the set of plausible MDPs by confidence intervals for each single state-action pair,

colored Ucrl2 calculates estimates from all samples of state-action pairs of the same color and works with

respectively adapted confidence intervals (2), (3) for each color to determine the set M of plausible MDPs.

Generally, the algorithm proceeds in episodes, where in each episode k an optimistic MDP M̃k ∈ Mk and

an optimal policy are chosen which maximize the average reward, cf. (4). An episode ends when for some

color c the number of visits in state-action pairs of color c has doubled.

We note that computation of the optimistic MDP and the respective optimal policy in (4) can be done

by extended value iteration as introduced in [6]. This is a modification of standard value iteration where

each iteration can be performed in O(|S|2|A|) computation steps. For details we refer to Section 3.1.2 of [6].

6.1. Further Applications

Although the focus of our work lies on the restless bandit problem, we’d like to note and demonstrate

that ε-structured MDPs are a strong concept which is applicable to a wide range of problems.

6.1.1. MDP aggregation, MDP homomorphism, and ε-structured MDPs

First, it is easy to see that ε-structured MDPs subsume previous notions of similarity like (approximate)

state aggregation in MDPs [14], MDP homomorphism [15], or lax bisimulation [18]. In state aggregation,

one merges states to meta-states when their rewards and transition probabilities are identical or close. This

corresponds to a coloring where all translation functions are the identity. MDP homomorphisms and lax

bisimulation are more general in that they allow arbitrary translation functions just like ε-structured MDPs,

yet they can only capture “total” similarity of two states s, s′ assuming that each action in s can be mapped

to an action in s′ with similar rewards and transitions. Unlike that, in ε-structured MDPs two states can

be similar only with respect to single actions.

Note that while this allows to grasp weaker notions of similarity, the original MDP cannot always be

reduced to a smaller one. However, as we will see below, learning in structured MDPs incurs less regret.

Example 11. Consider a simple gridworld example as shown in Figure 2. The goal state g is assumed to

be absorbing with reward 1. Otherwise, actions up, down, left, right lead to the respective neighbored state4

and give reward 0. Although there is a strong topological structure in this setting, state aggregation cannot

simplify the MDP. MDP homomorphisms work better, as they can exploit the symmetry along the main

diagonal to reduce the state space up to a factor 2. On the other hand, the respective structured MDP only

4For the sake of simplicity, we assume that in border states actions that would leave the environment are simply not available.

Using further colors these actions could be easily taken into account however.
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Figure 2: A simple gridworld example (left). With ordinary state aggregation no simplification is possible. An MDP homo-

morphism can map the states below the main diagonal to the states above it (middle). The corresponding structured MDP

only needs four colors to grasp the topological structure (right).

needs four colors (one for each action) to grasp the whole topological structure (except the goal state g):

Thus, for example, all state-action pairs (s, up) will obtain the same color, and the respective translation

functions Φs,up,s′,up will map the state above s to the state above s′. One additional color is needed for the

goal state.

6.1.2. Continuous state MDPs: Discretizations as colorings

The concept of ε-structured MDPs can be straightforwardly generalized to arbitrary state spaces. Then,

under the assumption that close states behave similarly according to a Lipschitz- or more generally Hölder-

condition for rewards and transition probabilities, respectively, an MDP with continuous state space can be

turned into a structured MDP by coloring close states with the same color. That way, a discretization of

the state space also corresponds to a coloring of the state space.

6.2. Regret Bounds for Colored UCRL2

The following is a generalization of the regret bounds for Ucrl2 to ε-structured MDPs. The theorem

gives improved (with respect to Ucrl2) bounds if there are only a few parameters to estimate in the MDP

to learn. Recall that the diameter of an MDP is the maximal expected transition time between any two

states (choosing an appropriate policy), cf. [6].

Theorem 12. Let M be an ε-structured MDP with finite state space S, finite action space A, transition

probability distributions p(·|s, a), rewards distributions with means r(s, a) and support in [0, 1], coloring

function c, and associated translation functions. Assume the learner has complete knowledge of state-action

pairs ΨK ⊆ S × A, while the state-action pairs in ΨU := S × A \ΨK are unknown and have to be learned.

11



However, the learner knows c and all associated translation functions as well as an upper bound B on the

size of the support of each transition probability distribution in ΨU . Then with probability at least 1 − δ,

after any T steps colored Ucrl2 5 gives regret upper bounded by

42Dε

√
BCUT log

(
T
δ

)
+ ε(Dε + 2)T,

where CU is the total number of colors for states in ΨU , and Dε is the diameter of the aggregated ε-structured

MDP.

The proof of this theorem is given in the appendix.

Remark 13. From the proof of Theorem 12, cf. eq. (A.8), it can be seen that the accumulated reward of the

best T -step policies when starting in different states cannot deviate by more than Dε. Therefore, also the

bias values of each two states differ by at most Dε, cf. p. 339 of [19]. Application of Theorem 9.4.1a of [19]

then shows that the difference between the optimal T -step reward and Tρ∗ is bounded by 2Dε. Hence,

when considering the regret with respect to the best (in general non-stationary) T -step policy one obtains

a bound as in Theorem 12 with an additional additive constant of 2Dε.

Remark 14. For ε = 0, one can also obtain logarithmic bounds analogously to Theorem 4 of [6]. With no

additional information for the learner one gets the original Ucrl2 bounds (with a slightly larger constant),

trivially choosing B to be the number of states and assigning each state-action pair an individual color.

Remark 15. Theorem 12 is given for finite state MDPs. However, under the mentioned Lipschitz/Hölder

conditions for rewards and transition probabilities (cf. Section 6.1.2) and some additional technical assump-

tions an analogous result can be derived for continuous state MDPs, where ε in Theorem 12 is replaced

with the precision determined by the Lipschitz/Hölder parameters. For details we refer to [20]. We note

that the algorithm and the derived results in [20] differ from the ones given here in that Dε, the diameter

in the discretized MDP, is replaced with the bias span of the optimal policy. The reason for this is that the

aim of [20] is to derive sublinear regret bounds by eventually choosing a suitable discretization. With that

respect (an analogon of) Theorem 12 is not very satisfactory, since the regret bound depends on the chosen

discretization, that is, on the respective diameter of the discretized MDP. Unlike that, as will be seen below,

in the restless bandit setting we are able to bound the diameter of the respective aggregated ε-structured

MDP in a satisfactory way.

7. Constructing the Algorithm II: Coloring the T -step representation

Now, we can turn the T -step representation of any restless bandit into an ε-structured MDP as follows.

We assign the same color to state-action pairs where the chosen arm is in the same state, that is, we assign

5For the sake of simplicity the algorithm was given for the case ΨK = ∅. It is obvious how to extend the algorithm when

some parameters are known.
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colors such that c((si, ni)
K
i=1, j) = c((s′i, n

′
i)
K
i=1, j

′) iff j = j′, sj = s′j , and either nj = n′j or nj , n
′
j ≥ T

j
mix(ε).

The respective translation functions are chosen to map states (s1, n1 +1, . . . , sj−1, nj−1 +1, s, 1, sj+1, nj+1 +

1, . . . , sK , nK+1) to states (s′1, n
′
1+1, . . . , s′j−1, n

′
j−1+1, s, 1, s′j+1, n

′
j+1+1, . . . , s′K , n

′
K+1). This ε-structured

MDP can be learned with colored Ucrl2. This is basically our proposed restless bandits algorithm, see

Algorithm 2. (The dependence on the horizon T and the mixing times T jmix as input parameters can be

eliminated, cf. the proof of Theorem 5 in Section 8.)

Algorithm 2 The restless bandits algorithm

Input: Confidence parameter δ > 0, the number of states Sj and mixing time T jmix of each arm j,

horizon T .

B Choose ε = 1/
√
T and execute colored Ucrl2 (with confidence parameter δ) on the ε-structured MDP

described in Section 7.

8. Proofs

8.1. Proof of the Upper Bound

We start with bounding the diameter in aggregated ε-structured MDPs corresponding to a restless bandit

problem.

Lemma 16. Consider a restless bandit with K aperiodic arms having diameters Dj and mixing times T jmix

(j = 1, . . . ,K). For ε ≤ 1/4, the diameter Dε in the respective aggregated ε-structured MDP can be upper

bounded by

Dε ≤ 2
⌈

log2(4 max
j
Dj)

⌉
·
⌈
Tmix(ε)

⌉
·
K∏
j=1

(4Dj),

where we set Tmix(ε) := maxj T
j
mix(ε).

Proof. Let µj be the stationary distribution of arm j. It is well-known that the expected first return

time τj(s) in state s satisfies µj(s) = 1/τj(s). Set τj := maxs τj(s), and τ := maxj τj . Then, τj ≤ 2Dj .

Now consider the following scheme to reach a given state (sj , nj)
K
j=1: First, order the states (sj , nj)

descendingly with respect to nj . Thus, assume that nj1 > nj2 > . . . > njK = 1. Take dTmix(ε)e samples

from arm j1. (Then each arm will be ε-close to the stationary distribution, and the probability of reaching

the right state sji when sampling arm ji afterwards is at least µji(sji) − ε.) Then sample each arm ji

(i = 2, 3, . . . ,K) exactly nji−1
− nji times.

We first show the lemma for ε ≤ µ0 := minj,s µj(s)/2. As observed before, for each arm ji the probability

of reaching the right state sji is at least µji(sji) − ε ≥ µji(sji)/2. Consequently, the expected number of

restarts of the scheme necessary to reach a particular state (sj , nj)
K
j=1 is upper bounded by

∏K
j=1 2/µj(sj).
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As each trial takes at most 2dTmix(ε)e steps, recalling that 1/µj(s) = τj(s) ≤ 2Dj proves the bound for

ε ≤ µ0.

Now assume that ε > µ0. Since Dε ≤ Dε′ for ε > ε′ we obtain a bound of 2dTmix(ε′)e
∏K
j=1(4Dj) with

ε′ := µ0 = 1/2τ . By (1) and our assumption that ε ≤ 1
4 , we have

Tmix(ε′) ≤ dlog2(1/ε′)e · Tmix(1/4) ≤ dlog2(2τ)e · Tmix(ε),

which proves the lemma.

Proof of Theorem 5. First, note that in each arm j the support of the transition probability distribution is

upper bounded by |Sj |, and that the coloring described in Section 7 uses not more than
∑K
j=1 |Sj | dT

j
mix(ε)e

colors. Hence, Theorem 12 with CU =
∑K
j=1 |Sj | dT

j
mix(ε)e and B = maxi |Si| shows that the regret is

bounded by

42Dε

√
max
i
|Si| ·

∑K
j=1|Sj | ·

⌈
T jmix(ε)

⌉
· T log

(
T
δ

)
+ ε(Dε + 2)T (5)

with probability ≥ 1− δ. Since ε = 1/
√
T , one obtains after some minor simplifications the first bound by

Lemma 16 and recalling (1). Note that when we consider regret with respect to the best T -step policy, by

Remark 13 we have an additional additive constant of 2Dε in (5), which only slightly increases the numerical

constant of the regret bound.

If the horizon T is not known, guessing T using the doubling trick (i.e., executing the algorithm for

T = 2i with confidence parameter δ/2i in rounds i = 1, 2, . . .) achieves the bound given in Theorem 5 with

worse constants.

Similarly, if Tmix is unknown, one can perform the algorithm in rounds i = 1, 2, . . . of length 2i with

confidence parameter δ/2i, choosing an increasing function a(t) to guess an upper bound on Tmix at the

beginning t of each round. This gives a bound of order a(T )3/2
√
T with a corresponding additive constant.

In particular, choosing a(t) = log t the regret is bounded by

O
(
S

K∏
j=1

(4Dj) ·max
i

log(Di) · log7/2(T/δ) ·
√
T
)

with probability ≥ 1− δ.

8.2. Proof of the Lower Bound

Proof of Theorem 8. ConsiderK arms all of which are deterministic cycles of lengthm and hencem-periodic.

Then the learner faces m distinct ordinary bandit problems (each corresponding to states of the same period

in each cycle) having K arms. By choosing suitable rewards, each of these bandit problems can be made

to force regret of order Ω(
√
KT/m) in the T/m steps the learner deals with the problem [4]. Overall, this

gives the claimed bound of Ω(
√
mKT ) = Ω(

√
ST ). Adding a sufficiently small probability (with respect to

the horizon T ) of staying in some state of each arm, one obtains the same bounds for aperiodic arms.
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9. The Periodic Case

Now let us turn to the case where one or more arms are periodic, and let mj be the period of arm j. Note

that periodic Markov chains do not converge to a stationary distribution. However, taking into account the

period of the arms, one can generalize our results to the periodic case. Considering in an mj-periodic Markov

chain the mj-step transition probabilities given by the matrix Pmj , one obtains mj distinct aperiodic classes

(subchains depending on the period of the initial state) each of which converges to a stationary distribution

µj,` with respective mixing time T j,`mix(ε), ` = 1, 2, . . . ,mj . The ε-mixing time T jmix(ε) of the chain then can

be defined as

T jmix(ε) := mj max
`
T j,`mix(ε).

Obviously, after that many steps each aperiodic class will be ε-close to its stationary distribution when

sampling in the respective period. That is, sampling after dT jmix(ε)e + ` steps (` = 0, . . . ,mj − 1) one is

ε-close to the stationary distribution of one of the mj aperiodic classes. As for aperiodic chains we set

T jmix := T jmix( 1
4 ), cf. Section 2.1.

9.1. Algorithm

Due to the possible periodic nature of some arms, in general for obtaining the MDP representation we

cannot simply aggregate all states (sj , nj), (s′j , n
′
j) with nj , n

′
j ≥ T

j
mix(ε) as in the case of aperiodic chains,

but aggregate them only if additionally nj ≡ n′j mod mj .

If the periods mj are not known to the learner, one can use the least common denominator (lcd) of

1, 2, . . . , |Sj | as (multiple of the true) period. Since by the prime number theorem the latter is exponential

in |Sj | — e.g. [21] shows that the lcd of 1, 2, . . . , n is between 2n and 4n if n ≥ 9 — the obtained results

for periodic arms show worse dependence on the number of states. Of course, in practice one can also

obtain improved upper bounds by estimating the period of each arm by the greatest common divisor of the

observed return times in each state. However, it is not obvious how to obtain high probability bounds for

the convergence of these estimates to the true period of a Markov chain, even when assuming knowledge of

the mixing time as in our setting.

9.2. Regret Bound and Proof

First, concerning (the proof of) Lemma 16 the sampling scheme has to be slightly adapted to the setting

of periodic arms so that one samples in the right period when trying to reach a particular state, giving

slightly worse bounds depending on the arms’ periods.

Lemma 17. Consider a restless bandit with K arms having periods mj, diameters Dj, and mixing times

T jmix (j = 1, . . . ,K). For ε ≤ 1/4, the diameter Dε in the respective aggregated ε-structured MDP can be
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upper bounded by

Dε ≤
(
2
⌈
Tmix(ε)

⌉
+ lcd(m1,m2, . . . ,mK)

)⌈
log2(4 max

j
Dj)

⌉
·
K∏
j=1

(4Dj),

where we set Tmix(ε) := maxj T
j
mix(ε).

Proof. Let µj,` be the stationary distribution of the aperiodic class of period ` in arm j. As before, in

each subchain the expected first return time τj,`(s) in a state s of period ` satisfies µj,`(s) = 1/τj,`(s). Set

τj,` := maxs τj,`(s), and τ := maxj,` τj,`. Then, τj,` ≤ 2Dj for ` = 1, 2, . . . ,mj . (Note that τj,` counts only

steps in the aperiodic subchain of period ` and considers only states in this chain, while Dj considers all

steps and all states.)

Now consider the following modified scheme to reach a given state (sj , nj)
K
j=1, assuming that this state

is reachable (which need not be the case in the periodic setting): First, as before, order the states (sj , nj)

descendingly with respect to nj , so that nj1 > nj2 > . . . > njK = 1. Take dTmix(ε)e samples from arm j1.

(Then each arm will be ε-close to the stationary distribution, and the probability of reaching the right

state sji when sampling arm ji afterwards in the right period is at least µji(sji)−ε.) Unlike in the aperiodic

case where we can continue sampling each arm ji (i ≥ 2) exactly nji−1
−nji times, here we have to take into

account that we can hit the right state in each arm only if we sample it in the right period. Thus, in order

to assure that we can hit each of the states by the above mentioned scheme, we continue sampling arm j1 an

appropriate (with respect to the current state) number of times to reach the right period. Obviously, this

can be done within at most lcd(m1,m2, . . . ,mK) steps. Only then we sample each arm ji (i = 2, . . . ,K)

exactly nji−1
−nji times, guaranteeing that the probability of hitting each state sj is at least µj,`(sj)(sj)−ε,

where `(s) denotes the period of state s.

The rest of the proof then is analogous to the proof of Lemma 16. Again, we first show the lemma for

ε ≤ µ0 := minj,s µj,`(s)(s)/2. In this case µj,`(sj)(sj)−ε ≥ µji,`(sj)(sj)/2, and the expected number of restarts

of the scheme necessary to reach a particular state (sj , nj)
K
j=1 is upper bounded by

∏K
j=1 2/µj,`(sj)(sj). As

each trial takes at most 2dTmix(ε)e + lcd(m1, . . . ,mK) steps, recalling that 1/µj,`(s)(s) = τj,`(s)(s) ≤ 2Dj

proves the bound for ε ≤ µ0.

If ε > µ0, we can again use that Dε ≤ Dε′ for ε > ε′. Then setting ε′ := µ0 = 1/2τ we obtain a bound

of
(
2dTmix(ε′)e+ lcd(m1, . . . ,mK)

)∏K
j=1(4Dj). Application of (1) gives

Tmix(ε′) ≤ dlog2(1/ε′)eTmix(1/4) ≤ dlog2(4τ)eTmix(ε)

and proves the lemma.

Concerning Theorem 5, the proof given in Section 8 still holds for the periodic case. In particular, in

spite of the different aggregation the bound STmix on the number of needed colors used in the original proof
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is still valid. The only difference in the proofs is that to bound the diameter now Lemma 16 is replaced with

Lemma 17, giving slightly worse bounds when periods of the single arms are known. As already discussed

above, when the periods are unknown, the learner can upper bound them by lcd(1, 2, . . . , S), which results in

bounds exponential in the number of states. Still, these bounds have optimal dependence on the horizon T .

10. Extensions and Outlook

Unknown state space. If (the size of) the state space of the individual arms is unknown, some additional

exploration of each arm will sooner or later determine the state space. Thus, we may execute our algorithm

on the known state space where between two episodes we sample each arm until all known states have

been sampled at least once. The additional exploration is upper bounded by O(log T ), as there are only

O(log T ) many episodes (cf. Appendix A.4), and the time of each exploration phase can be bounded with

known results. That is, the expected number of exploration steps needed until all states of an arm j have

been observed is upper bounded by Dj log(3|Sj |) (cf. Theorem 11.2 of [16]), while the deviation from the

expectation can be dealt with by Markov inequality or results from [22]. That way, one obtains bounds as

in Theorem 5 for the case of unknown state space.

Improving the bounds. All parameters considered, there is still a large gap between the lower and the

upper bound on the regret. As a first step, it would be interesting to find out whether the dependence on the

diameter of the arms is necessary. Also, the current regret bounds do not make use of the interdependency

of the transition probabilities in the Markov chains and treat n-step and n′-step transition probabilities

independently. Finally, a related open question is how to obtain estimates and upper bounds on mixing

times. Whereas it is not easy to obtain upper bounds on the mixing time in general, for reversible Markov

chains Tmix can be linearly upper bounded by the diameter, cf. Lemma 15 in Chapter 4 of [23]. While it is

possible to compute an upper bound on the diameter of a Markov chain from samples of the chain, we did

not succeed in deriving any useful results on the quality of such bounds.

More general models. After considering bandits with i.i.d. and Markov arms, the next natural step is

to consider more general time-series distributions. Generalizations are not straightforward: already for the

case of Markov chains of order (or memory) 2 the MDP representation of the problem (Section 5) breaks

down, and so the approach taken here cannot be easily extended. Stationary ergodic distributions are an

interesting more general case, for which the first question is whether it is possible to obtain asymptotically

sublinear regret. Further important generalizations include problems in which arms are dependent and

possibly non-stationary. For example, if each arm is a model of the environment, and “pulling” an arm

means executing a policy that is optimal for the selected model, then there is both dependence between the

arms and non-stationarity that results from attempting to learn the parameters of the models; for details

and some results on this problem see [24, 25, 26].
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Appendix A. Proof of Theorem 12

The proof is an adaptation of the proof of the original regret bound for Ucrl2, that is, Theorem 2 in [6].

We therefore follow the main steps of the proof of Theorem 2 in [6], and often refer to the original proof for

technical details.

Let us first give a brief overview. In Appendix A.1 we first define the regret ∆k of an episode k, so

that we can bound the the regret by the sum over the ∆k and another term dealing with the randomness

of the observed rewards. In Appendix A.2 we handle the regret due to failing confidence intervals. This is

the only part of the proof where the adaptations of the original proof are not straightforward and a more

refined argument is necessary. In Appendix A.3 and Appendix A.4 we bound the difference of the optimal

average reward and the mean reward of each visited state, using the confidence intervals for the rewards and

the transition probabilities. In the final Appendix A.5 we conclude by summing up the individual regret

terms.

Before starting, we recall some notation. Let M denote the true MDP with transition probabilities

p(·|s, a), mean rewards r(s, a), and optimal average reward ρ∗. Mk is the set of plausible MDPs whose

transition probabilities p̃(·|s, a) and rewards r̃(s, a) satisfy (2) and (3), where p̂(·|s, a) and r̂(s, a) are the

estimated transition probabilities and rewards, respectively. Further, let M̃k be the optimistic MDP chosen

by the algorithm from the set Mk, and π̃k the policy chosen by the algorithm in episode k.
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Appendix A.1. Splitting into Episodes

Let vk(s, a) be the number of times action a has been chosen in state s in episode k, and set

∆k :=
∑
s,a

vk(s, a)(ρ∗ − r(s, a)).

Using Hoeffding’s inequality to deal with the randomness of the observed rewards one can show (cf. Section

4.1 of [6]) that with probability at least 1− δ
12T 5/4 the regret after T steps is upper bounded by

m∑
k=1

∆k +
√

5
8T log

(
8T
δ

)
. (A.1)

Appendix A.2. Failing Confidence Intervals

Concerning the regret with respect to the true MDP M being not contained in the set of plausible

MDPs Mk, we cannot use the same argument (that is, Lemma 17 in Appendix C.1) as in [6], since the

random variables we consider for rewards and transition probabilities are independent, yet not identically

distributed.

Instead, fix a state-action pair (s, a), let S(s, a) be the set of states s′ with p(s′|s, a) > 0 and recall that

r̂(s, a) and p̂(·|s, a) are the estimates for rewards and transition probabilities calculated from all samples of

state-action pairs of the same color c(s, a). Now assume that at step t there have been n > 0 samples of

state-action pairs of color c(s, a) and that in the i-th sample action ai has been chosen in state si and a

transition to state s′i has been observed (i = 1, . . . , n). Then∥∥∥p̂(·|s, a)− E[p̂(·|s, a)]
∥∥∥

1
=

∑
s′∈S(s,a)

∣∣∣p̂(s′|s, a)− E[p̂(s′|s, a)]
∣∣∣

≤ sup
x∈{−1,1}|S(s,a)|

∑
s′∈S(s,a)

(
p̂(s′|s, a)− E[p̂(s′|s, a)]

)
x(s′)

= sup
x∈{−1,1}|S(s,a)|

1
n

n∑
i=1

(
x(φsi,ai,s,a(s′i))−

∑
s′

p(s′|si, ai) · x(φsi,ai,s,a(s′))
)
. (A.2)

For fixed x ∈ {−1, 1}|S(s,a)|,

Xi := x(φsi,ai,s,a(s′i))−
∑
s′

p(s′|si, ai) · x(φsi,ai,s,a(s′))

is a martingale difference sequence with |Xi| ≤ 2, so that by Azuma-Hoeffding inequality (e.g., Lemma 10

in [6]), Pr{
∑n
i=1Xi ≥ θ} ≤ exp(−θ2/8n) and in particular

Pr
{∑n

i=1Xi ≥
√

56Bn log
(

2tCU

δ

)}
≤
(

δ
2tCU

)7B

< δ
2B20t7CU

.

Recalling that by assumption |S(s, a)| ≤ B, a union bound over all sequences x ∈ {0, 1}|S(s,a)| then shows

from (A.2) that

Pr
{∥∥∥p̂(·|s, a)− E[p̂(·|s, a)]

∥∥∥
1
≥
√

56B
n log (2CU t/δ)

}
≤ δ

20t7CU
. (A.3)
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Concerning the rewards, as in the proof of Lemma 17 in Appendix C.1 of [6] — but now using Hoeffding’s

inequality for independent and not necessarily identically distributed random variables — we have that

Pr
{∣∣r̂(s, a)− E[r̂(s, a)]

∣∣ ≥√ 7
2n log (2CU t/δ)

}
≤ δ

60t7CU
. (A.4)

A union bound over all t possible values for n and all CU colors of states in ΨU shows that the confidence

intervals in (A.3) and (A.4) hold with probability at least 1 − δ
15t6 for the actual counts N(c(s, a)) and all

state-action pairs (s, a). (Note that equations (A.3) and (A.4) are the same for state-action pairs of the

same color.)

By linearity of expectation, E[r̂(s, a)] can be written as 1
n

∑n
i=1 r(si, ai) for the sampled state-action pairs

(si, ai). Since the (si, ai) are assumed to have the same color c(s, a), it holds that |r(si, ai) − r(s, a)| < ε

and hence |E[r̂(s, a)]− r(s, a)| < ε. Similarly,
∥∥E[p̂(·|s, a)]− p(·|s, a)

∥∥
1
< ε. Together with (A.3) and (A.4)

this shows that with probability at least 1− δ
15t6 for all state-action pairs (s, a)

∣∣r̂(s, a)− r(s, a)
∣∣ < ε+

√
7 log(2CU t/δ)

2N(c(s,a)) , (A.5)∥∥∥p̂(·|s, a)− p(·|s, a)
∥∥∥

1
< ε+

√
56B log(2CU t/δ)

N(c(s,a)) . (A.6)

Thus, the true MDP is contained in the set of plausible MDPs M(t) at step t with probability at least

1− δ
15t6 , just as in Lemma 17 of [6]. Then as in Section 4.2 of [6], bounding the sum by a respective integral

we have
∑T
bT 1/4c+1

δ
15t6 ≤

δ
12T 5/4 , so that

m∑
k=1

∆k1M 6∈Mk
≤

T∑
t=1

t1M 6∈M(t) ≤
bT 1/4c∑
t=1

t1M 6∈M(t) +

T∑
t=bT 1/4c+1

t1M 6∈M(t) ≤
√
T (A.7)

holds with probability at least 1− δ
12T 5/4 .

Appendix A.3. Episodes with M ∈Mk

Now assuming that the true MDP M is inMk, we first reconsider extended value iteration [6]. In Section

4.3.1 of [6] it is shown that for the state values ui(s) in the i-th iteration it holds that maxs ui(s)−mins ui(s) ≤

D, where D is the diameter of the MDP. Now we want to replace D with the diameter Dε of the aggregated

MDP. For this, first note that for any two states s, s′ which are aggregated we have by definition of the

aggregated MDP that ui(s) = ui(s
′). As it takes at most Dε steps on average to reach any aggregated state,

repeating the argument of Section 4.3.1 of [6] shows that

max
s
ui(s)−min

s
ui(s) ≤ Dε. (A.8)

Let P̃k :=
(
p̃k(s′|s, π̃k(s))

)
s,s′

be the transition matrix of π̃k on M̃k, and vk :=
(
vk
(
s, π̃k(s)

))
s

the row

vector of visit counts in episode k for each state and the corresponding action chosen by π̃k. Then as shown
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in Section 4.3.1 of [6], we have by definition and convergence6 of (extended) value iteration

∆k ≤ vk
(
P̃k − I

)
wk +

∑
s,a

vk(s, a)
(
r̃k(s, a)− r(s, a)

)
,

where wk is the normalized state value vector with wk(s) := u(s) − (mins u(s) − maxs u(s))/2, so that

‖wk‖ ≤ Dε

2 . Now for (s, a) ∈ ΨK we have r̃k(s, a) = r(s, a), while for (s, a) ∈ ΨU the term r̃k(s, a)−r(s, a) ≤

|r̃k(s, a)−r̂k(s, a)|+|r(s, a)−r̂k(s, a)| is bounded according to (2) and (A.5), as we assume that M̃k,M ∈Mk.

Summarizing state-action pairs of the same color we get

∆k ≤ vk
(
P̃k − I

)
wk + 2

∑
c∈C(ΨU )

vk(c) ·
(
ε+

√
7 log(2CU tk/δ)
2 max{1,Nk(c)}

)
,

where C(ΨU ) is the set of colors of state-action pairs in ΨU . Let Tk be the length of episode k. Then noting

that N ′k(c) := max{1, Nk(c)} ≤ tk ≤ T we obtain

∆k ≤ vk
(
P̃k − I

)
wk + 2εTk +

√
14 log

(
2CUT
δ

) ∑
c∈C(ΨU )

vk(c)√
N ′k(c)

. (A.9)

Appendix A.4. The True Transition Matrix

Let Pk :=
(
p(s′|s, π̃k(s))

)
s,s′

be the transition matrix of π̃k in the true MDP M . We split

vk
(
P̃k − I

)
wk = vk

(
P̃k − Pk

)
wk + vk

(
Pk − I

)
wk. (A.10)

By assumption M̃k,M ∈ Mk, so that using (3) and (A.6) the first term in (A.10) can be bounded by

(cf. Section 4.3.2 of [6])

vk
(
P̃k − Pk

)
wk ≤

∑
s,a

vk
(
s, a
)
·
∥∥p̃k(·|s, a)− p(·|s, a)

∥∥
1
· ‖wk‖∞

≤ 2
∑

c∈C(ΨU )

vk
(
c) ·
(
ε+

√
56B log(2CUT/δ)

N ′k(c)

)
· Dε

2

≤ εDε Tk +Dε

√
56B log

(
2CUT
δ

) ∑
c∈C(ΨU )

vk(c)√
N ′k(c)

, (A.11)

since — as for the rewards — the contribution of state-action pairs in ΨK is 0.

Concerning the second term in (A.10), we define the sequence Xt :=
(
p(·|st, at)− est+1

)
wk(t)1M∈Mk(t)

,

where ei denotes the unit vector with 1 in coordinate i, and k(t) is the index of the episode which contains

step t. Then as shown in Section 4.3.2 of [6], we can write

vk
(
Pk − I

)
wk =

tk+1−1∑
tk

Xt + wk(stk+1
)− wk(stk) ≤

tk+1−1∑
tk

Xt +Dε.

6For the sake of simplicity, we neglect the error by value iteration, which is explicitly considered in Section 4.3.1 of [6].

Taking into account this error only slightly deteriorates the constant in our bound.
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Further, Xt is a martingale difference sequence with |Xt| ≤ Dε, so that application of Azuma-Hoeffding

inequality (cf. Section 4.3.2 of [6]) gives that with probability at least 1− δ
12T 5/4

m∑
k=1

vk(Pk − I)wk1M∈Mk
≤ Dε

√
5
2T log

(
8T
δ

)
+Dε CU log2

(
8T
CU

)
. (A.12)

Here m is the number of episodes, and the bound m ≤ CU log2 (8T/CU ) used to obtain (A.12) is derived

analogously to Appendix C.2 of [6].

Appendix A.5. Summing over Episodes with M ∈Mk

To conclude, we sum (A.9) over all episodes with M ∈Mk, using (A.10), (A.11), and (A.12), which

yields that with probability at least 1− δ
12T 5/4

m∑
k=1

∆k1M∈Mk
≤ Dε

√
5
2T log

(
8T
δ

)
+Dε CU log2

(
8T
CU

)
+ ε(Dε + 2)T

+

(
Dε

√
56B log

(
2CUT
δ

)
+
√

14 log
(

2CUT
δ

)) m∑
k=1

∑
c∈C(ΨU )

vk(c)√
N ′k(c)

. (A.13)

As shown in Section 4.3.3 and Appendix C.3 of [6], using that vk(c) ≤ N ′k(c) for all colors c and applying

Jensen’s inequality, one obtains ∑
c∈C(ΨU )

∑
k

vk(c)√
N ′k(c)

≤
(√

2 + 1
)√

CUT .

Thus, evaluating (A.1) by summing ∆k over all episodes, by (A.7) and (A.13) the regret is upper bounded

with probability ≥ 1− δ
4T 5/4 by

m∑
k=1

∆k1M/∈Mk
+

m∑
k=1

∆k1M∈Mk
+
√

5
8T log

(
8T
δ

)
≤
√

5
8T log

(
8T
δ

)
+
√
T +Dε

√
5
2T log

(
8T
δ

)
+Dε CU log2

(
8T
CU

)
+ε(Dε + 2)T + 3

(√
2 + 1

)
Dε

√
14BCUT log

(
2CUT
δ

)
.

Further simplifications as in Appendix C.4 of [6] finish the proof.
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