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Abstract

We consider the problem of recovering the parameter α ∈ R
K of a sparse function

f (i.e. the number of non-zero entries of α is small compared to the number K of
features) given noisy evaluations of f at a set of well-chosen sampling points. We
introduce an additional randomization process, called Brownian sensing, based on
the computation of stochastic integrals, which produces a Gaussian sensing ma-
trix, for which good recovery properties are proven, independently on the number
of sampling points N , even when the features are arbitrarily non-orthogonal. Un-
der the assumption that f is Hölder continuous with exponent at least 1/2, we pro-
vide an estimate �α of the parameter such that �α − �α�2 = O(�η�2/

√
N), where

η is the observation noise. The method uses a set of sampling points uniformly
distributed along a one-dimensional curve selected according to the features. We
report numerical experiments illustrating our method.

1 Introduction

We consider the problem of sensing an unknown function f : X → R (where X ⊂ R
d), where f

belongs to span of a large set of (known) features {ϕk}1≤k≤K of L2(X ):

f(x) =

K�

k=1

αkϕk(x),

where α ∈ R
K is the unknown parameter, and is assumed to be S-sparse, i.e. �α�0 def

= |{i : αk �=
0}| ≤ S. Our goal is to recover α as accurately as possible.

In the setting considered here we are allowed to select the points {xn}1≤n≤N ∈ X where the
function f is evaluated, which results in the noisy observations

yn = f(xn) + ηn, (1)

where ηn is an observation noise term. We assume that the noise is bounded, i.e.,

�η�22
def
=

N�

n=1

η2n ≤ σ2. We write DN = ({xn, yn}1≤n≤N ) the set of observations and we are in-

terested in situations where N � K, i.e., the number of observations is much smaller than the
number of features ϕk.

The question we wish to address is: how well can we recover α based on a set of N noisy mea-
surements? Note that whenever the noise is non-zero, the recovery cannot be perfect, so we wish to
express the estimation error �α− �α�2 in terms of N , where �α is our estimate.
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The proposed method. We address the problem of sparse recovery by combining the two ideas:

• Sparse recovery theorems (see Section 2) essentially say that in order to recover a vector
with a small number of measurements, one needs incoherence. The measurement basis,
corresponding to the pointwise evaluations f(xn), should to be incoherent with the rep-
resentation basis, corresponding to the one on which the vector α is sparse. Interpreting
these basis in terms of linear operators, pointwise evaluation of f is equivalent to mea-
suring f using Dirac masses δxn

(f)
def
= f(xn). Since in general the representation basis

{ϕk}1≤k≤K is not incoherent with the measurement basis induced by Dirac operators, we
would like to consider another measurement basis, possibly randomized, in order that it
becomes incoherent with any representation basis.

• Since we are interested in reconstructing α, and since we assumed that f is linear in α,
we can apply any set of M linear operators {Tm}1≤m≤M to f =

�
k αkϕk, and consider

the problem transformed by the operators; the parameter α is thus also the solution to the
transformed problem Tm(f) =

�
k αkTm(ϕk).

Thus, instead of considering theN×K sensing matrixΦ = (δxn
(ϕk))k,n, we consider a newM×K

sensing matrix A = (Tm(ϕk))k,m, where the operators {Tm}1≤m≤M enforce incoherence between
bases. Provided that we can estimate Tm(f) with the data set DN , we will be able to recover α. The
Brownian sensing approach followed here uses stochastic integral operators {Tm}1≤m≤M , which
makes the measurement basis incoherent with any representation basis, and generates a sensing
matrix A which is Gaussian (with i.i.d. rows).

The proposed algorithm (detailed in Section 3) recovers α by solving the system Aα ≈ �b by l1
minimization1, where �b ∈ R

M is an estimate, based on the noisy observations yn, of the vector
b ∈ R

M whose components are bm = Tmf .

Contribution: Our contribution is a sparse recovery result for arbitrary non-orthonormal functional
basis {ϕk}k≤K of a Hölder continuous function f . Theorem 4 states that our estimate �α satisfies
�α − �α�2 = O(�η�2/

√
N) with high probability whatever N , under the assumption that the noise

η is globally bounded, such as in [3, 14]. This result is obtained by combining two contributions:

• We show that when the sensing matrix A is Gaussian, i.e. when each row of the matrix is
drawn i.i.d. from a Gaussian distribution, orthonormality is not required for sparse recovery.
This result, stated in Proposition 1 (and used in Step 1 of the proof of Theorem 4), is a
consequence of Theorem 3.1 of [12].

• The sensing matrixA is made Gaussian by choosing the operators Tm to be stochastic inte-
grals: Tmf

def
= 1√

M

�
C fdB

m, where Bm are Brownian motions, and C is a 1-dimensional
curve of X appropriately chosen according to the functions {ϕk}k≤K (see the discussion
in Section 4). We call A the Brownian sensing matrix.

We have the property that the recovery property using the Brownian sensing matrix A only depends
on the number of Brownian motions M used in the stochastic integrals and not on the number of
sampled points N . Note that M can be chosen arbitrarily large as it is not linked with the limited
amount of data, but M affects the overall computational complexity of the method. The number of
sample N appears in the quality of estimation of b only, and this is where the assumption that f is
Hölder continuous comes into the picture.

Outline: In Section 2, we survey the large body of existing results about sparse recovery and relate
our contribution to this literature. In Section 3, we explain in detail the Brownian sensing recovery
method sketched above and state our main result in Theorem 4.

In Section 4, we first discuss our result and compare it with existing work. Then we comment on
the choice and influence of the sampling domain C on the recovery performance.

Finally in Section 5, we report numerical experiments illustrating the recovery properties of the
Brownian sensing method, and the benefit of the latter compared to a straightforward application of
compressed sensing when there is noise and very few sampling points.

1where the approximation sign ≈ refers to a minimization problem under a constraint coming from the
observation noise.
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2 Relation to existing results
A standard approach in order to recover α2 is to consider the N ×K matrix Φ = (ϕk(xn))k,n, and
solve the system Φ�α ≈ y where y is the vector with components yn. Since N � K this is an ill-
posed problem. Under the sparsity assumption, a successful idea is first to replace the initial problem
with the well-defined problem of minimizing the �0 norm of α under the constraint thatΦ�α ≈ y, and
then, since this problem is NP-hard, use convex relaxation of the �0 norm by replacing it with the �1
norm. We then need to ensure that the relaxation provides the same solution as the initial problem
making use of the �0 norm. The literature on this problem is huge (see [3, 9, 10, 17, 20, 4, 13] for
examples of papers that initiated this field of research).

Generally, we can decompose the reconstruction problem into two distinct sub-problems. The first
sub-problem (a) is to state conditions on the matrix Φ ensuring that the recovery is possible and
derive results for the estimation error under such conditions:

The first important condition is the Restricted Isometry Property (RIP), introduced in [6], from
which we can derive the following recovery result stated in [7]:

Theorem 1 (Candés & al, 2006) Let δS be the restricted isometry constant of Φ√
N

, defined as δS =

sup{|�
Φ√
N

a�2

�a�2

− 1|; �a�0 ≤ S}. Then if δ3S + δ4S < 2, for every S-sparse vector α ∈ R
K , the

solution �α to the �1-minimization problem min{�a�1; a satisfies �Φa− y�22 ≤ σ2} satisfies

��α− α�22 ≤ CSσ
2

N
,

where CS depends only on δ4S .

Additional recent results on that property are to be found in [5].

Apart from the historical RIP, many other conditions emerged from works reporting the practical
difficulty to have the RIP satisfied, and thus weaker conditions ensuring reconstruction were derived.
See [19] for a precise survey of such conditions. A weaker condition for recovery is the compatibility
condition which leads to the following result from [18]:
Theorem 2 (Van de Geer & Buhlmann, 2009) Assuming that the compatibility condition is satis-
fied, i.e. for a set S of indices of cardinality S and a constant L,

C(L,S) = min
�S� Φ√

N
α�22

�αS�21
, α satisfies �αSc�1 ≤ L�αS�1

�
> 0,

then for every S-sparse vector α ∈ R
K , the solution �α to the �1-minimization problem

min{�α�1;α satisfies �αSc�1 ≤ L�αS�1} satisfies for C a numerical constant:

��α− α�22 ≤ C

C(L,S)2
σ2 log(K)

N
.

The second sub-problem (b) of the global reconstruction problem is to provide the user with a
simple way to efficiently sample the space in order to build a matrix Φ such that the conditions
for recovery are fulfilled, at least with high probability. This can be difficult in practice since it
involves understanding the geometry of high dimensional objects. For instance, to the best of our
knowledge, there is no result explaining how to sample the space so that the corresponding sensing
matrix Φ satisfies the nice recovery properties needed by the previous theorems, for a general family
of features {ϕk}k≤K .

However, it is proven in [14] that under some hypotheses on the functional basis, we are able to
recover the strong RIP property for the matrix Φ with high probability. This result, combined with a
recovery result, is stated as follows:

Theorem 3 (Rauhut, 2010) Assume that {ϕk}k≤K is an orthonormal basis of functions under a
measure ν, bounded by a constant Cϕ, and that we build DN by sampling f at random according
to ν. Assume also that the noise is bounded �η�2 ≤ σ. If N

log(N) ≥ c0C
2
ϕS log(S)2 log(K) and

N ≥ c1C
2
ϕS log(p−1), then with probability at least 1 − p, for every S-sparse vector α ∈ R

K , the

2Note that reconstructing α is a more challenging and different goal than having a good approximation of
the function f itself, as studied e.g. in [8].
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solution �α to the �1-minimization problem min{�a�1; a satisfies �Aa− y�22 ≤ σ2} satisfies

��α− α�22 ≤ c2σ
2

N
,

where c0, c1 and c2 are some numerical constants.

In order to prove this theorem, the author of [14] showed that by sampling the points i.i.d. from ν,
then with with high probability the resulting matrixΦ is RIP. The strong point of this Theorem is that
we do not need to check conditions on the matrix Φ to guarantee that it is RIP, which is in practice
infeasible. But the weakness of the result is that the initial basis has to be orthonormal and bounded
under the given measure ν in order to get the RIP satisfied: the two conditions ensure incoherence
with Dirac observation basis. The specific case of an unbounded basis i.e., Legendre Polynomial
basis, has been considered in [15], but to the best of our knowledge, the problem of designing a
general sampling strategy such that the resulting sensing matrix possesses nice recovery properties
in the case of non-orthonormal basis remains unaddressed. Our contribution considers this case and
is described in the following section.

3 The “Brownian sensing” approach

A need for incoherence. When the representation and observation basis are not incoherent, the
sensing matrix Φ does not possess a nice recovery property. A natural idea is to change the observa-
tion basis by introducing a set ofM linear operators {Tm}m≤M acting on the functions {ϕk}k≤K .

We have Tm(f) =

K�

k=1

αkTm(ϕk) for all 1 ≤ m ≤ M and our goal is to define the operators

{Tm}m≤M in order that the sensing matrix (Tm(ϕk))m,k enjoys a nice recovery property, whatever
the representation basis {ϕk}k≤K .

The Brownian sensing operators. We now consider linear operators defined by stochastic inte-
grals on a 1-dimensional curve C of X . First, we need to select a curve C ⊂ X of length l, such
that the covariance matrix VC , defined by its elements (VC)i,j =

�
C ϕiϕj (for 1 ≤ i, j ≤ K), is

invertible. We will discuss the existence of a such a curve later in Section 4. Then, we define the
linear operators {Tm}1≤m≤M as stochastic integrals over the curve C: Tm(g)

def
= 1√

M

�
C gdB

m,
where {Bm}m≤M areM independent Brownian motions defined on C.
Note that up to an appropriate speed-preserving parametrization g : [0, l] → X of C, we can
work with the corresponding induced family {ψk}k≤K , where ψk = ϕk ◦ g, instead of the fam-
ily {ϕk}k≤K .

The sensing method. With the choice of the linear operators {Tm}m≤M defined above, the param-
eter α ∈ R

K now satisfies the following equation
Aα = b , (2)

where b ∈ R
M is defined by its components bm

def
= Tm(f) = 1√

M

�
C f(x)dB

m(x) and the so-

called Brownian sensing matrix A (of size M ×K) has elements Am,k
def
= Tm(ϕk). Note that we

do not require sampling f in order to compute the elements of A. Thus, the samples only serve for
estimating b and for this purpose, we sample f at points {xn}1≤n≤N regularly chosen along the
curve C.
In general, for a curve C parametrized with speed-preserving parametrization g : [0, l] → X of C,
we have xn = g( n

N l) and the resulting estimate �b ∈ R
M of b is defined with components:

�bm =
1√
M

N−1�

n=0

yn(B
m(xn+1)−Bm(xn)) . (3)

Note that in the special case when X = C = [0, 1], we simply have xn = n
N .

The final step of the proposed method is to apply standard recovery techniques (e.g., l1 minimization
or Lasso) to compute �α for the system (2) where b is perturbed by the so-called sensing noise
ε

def
= b−�b (estimation error of the stochastic integrals).
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3.1 Properties of the transformed objects
We now give two properties of the Brownian sensing matrix A and the sensing noise ε = b−�b .
Brownian sensing matrix. By definition of the stochastic integral operators {Tm}m≤M , the sensing
matrix A = (Tm(ϕk))m,k is a centered Gaussian matrix, with

Cov(Am,k, Am,k�) =
1

M

�

C
ϕk(x)ϕk�(x)dx .

Moreover by independence of the Brownian motions, each row Am,· is i.i.d. from a centered Gaus-
sian distribution N(0, 1

M VC), where VC is the K ×K covariance matrix of the basis, defined by its
elements Vk,k� =

�
C ϕk(x)ϕk�(x)dx. Thanks to this nice structure, we can prove that A possesses a

property similar to RIP (in the sense of [12]) whenever M is large enough:

Proposition 1 For p > 0 and any integer t > 0, when M > C�

4 (t log(K/t) + log 1/p)), with C �

being a universal constant (defined in [16, 1]), then with probability at least 1− p, for all t−sparse
vectors x ∈ R

K ,
1

2
νmin,C�x�2 ≤ �Ax�2 ≤ 3

2
νmax,C�x�2,

where νmax,C and νmin,C are respectively the largest and smallest eigenvalues of V 1/2
C .

Sensing noise. In order to state our main result, we need a bound on �ε�22. We consider the simplest
deterministic sensing design where we choose the sensing points to be uniformly distributed along
the curve C3.

Proposition 2 Assume that �η�22 ≤ σ2 and that f is (L, β)-Hölder, i.e.

∀(x, y) ∈ X 2, |f(x)− f(y)| ≤ L|x− y|β ,
then for any p ∈ (0, 1], with probability at least 1 − p, we have the following bound on the sensing
noise ε = b−�b computed on the curve C of length l:

�ε�22 ≤ σ̃2(N,M, p)

N
,

where

σ̃2(N,M, p)
def
= 2

� L2l2β

N2β−1
+ σ2

��
1 + 2

log(1/p)

M
+ 4

�
log(1/p)

M

�
.

Remark 1 The bound on the sensing noise �ε�22 contains two contributions: an approximation
error term which comes from the approximation of a stochastic integral with N points and that
scales with L2l2β/N2β , and the observation noise term of order σ2/N . The observation noise term
(when σ2 > 0) dominates the approximation error term whenever β ≥ 1/2.

3.2 Main result.
In this section, we state our main recovery result for the Brownian sensing method, described in
Figure 1, using a uniform sampling method along a one-dimensional curve C ⊂ X ⊂ R

d. The proof
of the following theorem can be found in the supplementary material.

Theorem 4 (Main result) Assume that f is (L, β)-Hölder on X and that VC is invertible. Let us
write the condition number κC = νmax,C/νmin,C , where νmax,C and νmin,C are respectively the
largest and smallest eigenvalues of V 1/2

C . Write r =
�
(3κC − 1)( 1

4
√
2−1

)
�2

. For any p ∈ (0, 1], let

M ≥ 4c(4Sr log( K
4Sr ) + log 1/p) (where c is a universal constant defined in [16, 1]). Then, with

probability at least 1− 3p, the solution �α obtained by the Brownian sensing approach described in
Figure 1, satisfies

��α− α�22 ≤ C
� κ4

C
maxk

�
C ϕ

2
k

� σ̃2(N,M, p)

N
,

where C is a numerical constant and σ̃(N,M, p) is defined in Proposition 2.

Note that a similar result (not reported in this conference paper) can be proven in the case of
i.i.d. sub-Gaussian noise, instead of a noise with bounded �2 norm considered here.

3Note that other deterministic, random, or low-discrepancy sequence could be used here.
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Input: a curve C of length l such that VC is invertible. Parameters N and M .

• Select N uniform samples {xn}1≤n≤N along the curve C,
• Generate M Brownian motions {Bm}1≤m≤M along C.
• Compute the Brownian sensing matrix A ∈ R

M×K

(i.e. Am,k = 1√
M

�
C ϕk(x)dB

m(x)).

• Compute the estimate �b ∈ R
M

(i.e. �bm = 1√
M

�N−1

n=0
yn(B

m(xn+1)−Bm(xn))).

• Find �α, solution to

min
a

�
�a�1 such that �Aa−�b�22 ≤

σ̃2(N,M, p)

N

�
.

Figure 1: The Brownian sensing approach using a uniform sampling along the curve C.

4 Discussion.
In this section we discuss the differences with previous results, especially with the work [14] recalled
in Theorem 3. We then comment on the choice of the curve C and illustrate examples of such curves
for different bases.

4.1 Comparison with known results

The order of the bound. Concerning the scaling of the estimation error in terms of the number
of sensing points N , Theorem 3 of [14] (reminded in Section 2) states that when N is large enough
(i.e., N = Ω(S log(K))), we can build an estimate �α such that ��α− α�22 = O(σ

2

N ). In comparison,
our bound shows that ��α − α�22 = O(L

2l2β

N2β + σ2

N ) for any values of N . Thus, provided that the
function f has a Hölder exponent β ≥ 1/2, we obtain the same rate as in Theorem 3.

A weak assumption about the basis. Note that our recovery performance scales with the condi-
tion number κC of VC as well as the length l of the curve C. However, concerning the hypothesis
on the functions {ϕk}k≤K , we only assume that the covariance matrix VC is invertible on the curve
C, which enables to handle arbitrarily non-orthonormal bases. This means that the orthogonality
condition on the basis functions is not a crucial requirement to deduce sparse recovery properties.
To the best of our knowledge, this is an improvement over previously known results (such as the
work of [14]). Note however that if κC or l are too high, then the bound becomes loose. Also the
computational complexity of the Brownian sensing increases when κC is large, since it is necessary
to take a large M , i.e. to simulate more Brownian motions in that case.

A result that holds without any conditions on the number of sampling points. Theorem 4
requires a constraint on the number of Brownian motions M (i.e., that M = Ω(S logK)) and not
on the number of sampling points N (as in [14], see Theorem 3). This is interesting in practical
situations when we do not know the value of S, as we do not have to assume a lower-bound on N
to deduce the estimation error result. This is due to the fact that the Brownian sensing matrix A
only depends on the computation of the M stochastic integrals of the K functions ϕk, and does not
depend on the samples. The bound shows that we should take M as large as possible. However, M
impacts the numerical cost of the method. This implies in practice a trade-off between a large M
for a good estimation of α and a lowM for low numerical cost.

4.2 The choice of the curve

Why sampling along a 1-dimensional curve C instead of sampling over the whole space X? In
a bounded spaceX of dimension 1, both approaches are identical. But in dimension d > 1, following
the Brownian sensing approach while sampling over the whole space would require generating M
Brownian sheets (extension of Brownian motions to d > 1 dimensions) over X , and then building
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the M × K matrix A with elements Am,k =
�
X ϕk(t1, ...td)dB

m
1 (t1)...dB

m
d (td). Assuming that

the covariance matrix VX is invertible, this Brownian sensing matrix is also Gaussian and enjoys
the same recovery properties as in the one-dimensional case. However, in this case, estimating
the stochastic integrals bm =

�
X fdBm using sensing points along a (d-dimensional) grid would

provide an estimation error ε = b−�b that scales poorly with d since we integrate over a d dimensional
space. This explains our choice of selecting a 1-dimensional curve C instead of the whole space X
and sampling N points along the curve. This choice provides indeed a better estimation of b which
is defined by a 1-dimensional stochastic integrals over C. Note that the only requirement for the
choice of the curve C is that the covariance matrix VC defined along this curve should be invertible.

In addition, in some specific applications the sampling process can be very constrained by physical
systems and sampling uniformly in all the domain is typically costly. For example in some medical
experiments, e.g., scanner or I.R.M., it is only possible to sample along straight lines.

What the parameters of the curve tell us on a basis. In the result of Theorem 4, the length l of
the curve C as well as the condition number κC = νmax,C/νmin,C are essential characteristics of the
efficiency of the method. It is important to note that those two variables are actually related. Indeed,
it may not be possible to find a short curve C such that κC is small. For instance in the case where
the basis functions have compact support, if the curve C does not pass through the support of all
functions, VC will not be invertible. Any function whose support does not intersect with the curve
would indeed be an eigenvector of VC with a 0 eigenvalue. This indicates that the method will not
work well in the case of a very localized basis {ϕk}k≤K (e.g. wavelets with compact support), since
the curve would have to cover the whole domain and thus l will be very large. On the other hand,
the situation may be much nicer when the basis is not localized, as in the case of a Fourier basis.
We show in the next subsection that in a d-dimensional Fourier basis, it is possible to find a curve C
(actually a segment) such that the basis is orthonormal along the chosen line (i.e. κC = 1).

4.3 Examples of curves

For illustration, we exhibit three cases for which one can easily derive a curve C such that VC is
invertible. The method described in the previous section will work with the following examples.

X is a segment of R: In this case, we simply take C = X , and the sparse recovery is possible
whenever the functions {ϕk}k≤K are linearly independent in L2.

Coordinate functions: Consider the case when the basis are the coordinate functions
ϕk(t1, ...td) = tk. Then we can define the parametrization of the curve C by g(t) =
α(t)(t, t2, . . . , td), where α(t) is the solution to a differential equation such that �g�(t)�2 = 1 (which
implies that for any function h,

�
h ◦ g =

�
C h). The corresponding functions ψk(t) = α(t)tk are

linearly independent, since the only functions α(t) such that the {ψk}k≤K are not linearly indepen-
dent are functions that are 0 almost everywhere, which would contradict the definition of α(t). Thus
VC is invertible.

Fourier basis: Let us now consider the Fourier basis in R
d with frequency T :

ϕn1,...,nd
(t1, .., td) =

�

j

exp
�
− 2iπnjtj

T

�
,

where nj ∈ {0, ..., T − 1} and tj ∈ [0, 1]. Note that this basis is orthonormal under the uniform
distribution on [0, 1]d. In this case we define g by g(t) = λ(t 1

Td−1 , t
T

Td−1 , ..., t
Td−1

Td−1 ) with λ =�
1−T−2

1−T−2d (so that �g�(t)�2 = 1), thus we deduce that:

ψn1,...,nd
(t) = exp

�
−

2iπtλ
�

j njT
j−1

T d

�
.

Since nk ∈ {0, ..., T − 1}, the mapping that associates
�

j njT
j−1 to (n1, . . . , nd) is a bijection

from {0, . . . , T − 1}d to {0, . . . , T d − 1}. Thus we can identify the family (ψn1,...,nd
) with the one

dimensional Fourier basis with frequency Td

λ , which means that the condition number ρ = 1 for
this curve. Therefore, for a d-dimensional function f , sparse in the Fourier basis, it is sufficient to
sample along the curve induced by g to ensure that VC is invertible.
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5 Numerical Experiments
In this section, we illustrate the method of Brownian sensing in dimension one. We consider
a non-orthonormal family {ϕk}k≤K of K = 100 functions of L2([0, 2π]) defined by ϕk(t) =
cos(tk)+cos(t(k+1))√

2π
. In the experiments, we use a function f whose decomposition is 3-sparse and

which is (10, 1)-Hölder, and we consider a bounded observation noise η, with different noise levels,
where the noise level is defined by σ2 =

�N
n=1 η

2
n.
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Figure 2: Mean squared estimation error using Brownian sensing (plain curve) and a direct l1-
minimization solving Φα ≈ y (dashed line), for different noise level (σ2 = 0, σ2 = 0.5, σ2 = 1),
plotted as a function of the number of sample points N .

In Figure 2, the plain curve represents the recovery performance, i.e., mean squared error, of Brow-
nian sensing i.e., minimizing �a�1 under constraint that �Aa − �b�2 ≤ 1.95

�
2(100/N + 2) using

M = 100 Brownian motions and a regular grid of N points, as a function of N 4. The dashed curve
represents the mean squared error of a regular l1 minimization of �a�1 under the constraint that
�Φa − y�22 ≤ σ2 (as described e.g. in [14]), where the N samples are drawn uniformly randomly
over the domain. The three different graphics correspond to different values of the noise level σ2

(from left to right 0, 0.5 and 1). Note that the results are averaged over 5000 trials.

Figure 2 illustrates that, as expected, Brownian sensing outperforms the method described in [14]
for noisy measurements5. Note also that the method described in [14] recovers the sparse vector
when there is no noise, and that Brownian sensing in this case has a smoother dependency w.r.t. N .
Note that this improvement comes from the fact that we use the Hölder regularity of the function:
Compressed sensing may outperform Brownian sensing for arbitrarily non regular functions.

Conclusion
In this paper, we have introduced a so-called Brownian sensing approach, as a way to sample an un-
known function which has a sparse representation on a given non-orthonormal basis. Our approach
differs from previous attempts to apply compressed sensing in the fact that we build a “Brownian
sensing” matrixA based on a set of Brownian motions, which is independent of the function f . This
enables us to guarantee nice recovery properties of A. The function evaluations are used to estimate
the right hand side term b (stochastic integrals). In dimension d we proposed to sample the function
along a well-chosen curve, i.e. such that the corresponding covariance matrix is invertible. We pro-
vided competitive reconstruction error rates of order O(�η�2/

√
N) when the observation noise η is

bounded and f is assumed to be Hölder continuous with exponent at least 1/2. We believe that the
Hölder assumption is not strictly required (the smoothness of f is assumed to derive nice estimations
of the stochastic integrals only), and future works will consider weakening this assumption, possibly
by considering randomized sampling designs.
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Supplementary materials for the paper:
Sparse Recovery with Brownian Sensing
Proof of Proposition 1

First, we prove a very short Lemma describing some properties of the matrix A.

Lemma 1 Let us consider M independent Brownian motions (B1, ..., BM ) on X , and define the
M ×K matrix A with elements

Am,k =
1√
M

��

C
ϕk(x)dB

m(x)
�
.

Then A is a centered Gaussian matrix where each row Am,· is i.i.d. from N (0, 1
M VC), where VC is

theK ×K covariance matrix of the basis, defined by its elements Vk,k� =
�
C ϕk(x)ϕk�(x)dx.

Proof: Indeed, from the definition of stochastic integrals, each Am,k ∼ N (0, 1
M

�
C ϕ

2
k(x)dx),

and Cov(Am,k, Am,k�) = 1
M

�
C ϕk(x)ϕk�(x)dx. Thus each row Am,· ∼ N (0, 1

M VC) and are
independent by independence of the Brownian motions. Additionally, we have

E[(ATA)k,k� ] = E

� 1

M

M�

m=1

Am,kAm,k�

�
= Vk,k�,C .

�

Now let us define B = AV
−1/2
C . Since each row of A is an independent draw of N (0, VC), then

each row of B is an independent draw of N (0, I). Thus B is a matrix with elements i.i.d. from
N (0, 1). We thus can use the following result (as stated in [11], see also [16, 1]):

Theorem 5 For p� > 0 and any integer t > 0, whenM > C �δ−2(t log(K/t) + log 1/p�)), with C �

being a universal constant, see [16, 1], then with probability at least 1 − p�, there exists δt ≤ δ (δt
is the RIP constant of B for t-sparse vectors) such that for all t−sparse vectors x ∈ R

K ,

(1− δt)�x�2 ≤ �Bx�2 ≤ (1 + δt)�x�2.

Since VC is symmetric, it is possible to write VC = UDUT with U an orthogonal matrix and
D a diagonal matrix with the eigenvalues of V as diagonal elements (SVD decomposition). Thus,
V 1/2 = UD1/2UT whereD1/2 is the diagonal matrix with the square roots of the diagonal elements
of D (i.e., the eigenvalues of V 1/2

C ).

Note that if U is an orthogonal matrix, BU is also RIP with the same constant as B (see [9] for the
preservation of the RIP property to a change of orthonormal basis). Applying this and Theorem 5
with δ = 1/2 for 2t-sparse vectors, we have that wheneverM > 4C �(2t log(K/2t) + log 1/p�), the
RIP constant δ2t ≤ 1/2, i.e. for all 2t−sparse vectors x,

1

2
�x�2 ≤ �BUx�2 ≤ 3

2
�x�2.

Now if we consider a 2t−sparse vector x, thenD1/2x is also 2t−sparse with same support as x, and
we also have that νmin,C�x�2 ≤ �D1/2x�2 ≤ νmax,C�x�2. Thus the matrix BUD1/2 satisfies

νmin,C
2

�x�2 ≤ �BUD1/2x�2 ≤ 3νmax,C
2

�x�2.

As mentioned before, the preservation of the RIP property to a change of orthonormal base (see [9])
can be applied with U and thus as A = BV 1/2 = BUD1/2UT to obtain:

1

2
νmin,C�x�2 ≤ �Ax�2 ≤ 3

2
νmax,C�x�2.
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Proof of Proposition 2

We prove here without loss of generality (because of we can always parametrize the curve) the result
forX = [0, l]. Let us recall that f is (L, β)-Hölder and that we write σ = �η�2. The estimation error
εm = bm − �bm, given the samples (xn, yn)n, follows a centered Gaussian distribution (w.r.t. the
choice of the Brownian Bm) with variance

V(εm) = V

�
1√
M

�� l

0

f(x)dBm(x)−
N−1�

n=0

yn(B
m
xn+1

−Bm
xn
)
��

=
1

M
V

�� l

0

�
f(x)−

�

n

(f(l
(n+ 1)

N
) + ηn)Ix∈[l n

N
;l

(n+1)
N

]

�
dBm(x)

�

=
1

M

� l

0

�
f(x)−

�

n

(f(l
n

N
) + ηn)Ix∈[l n

N
;l

(n+1)
N

]

�2
dx

=
1

M

�

n

� l
(n+1)

N

l n
N

(f(x)− f(l n
N

)− ηn)2dx

≤ 1

MN

�

n

(
Llβ

Nβ
+ |ηn|)2dx

=
2

MN

� L2l2β

N2β−1
+

�

n

|ηn|2
�

≤ 2

MN

� L2l2β

N2β−1
+ σ2

�
.

We now wish to apply Bernstein’s inequality in order to bound �ε�2 in high probability. We recall
the following result (see e.g. [2]):

Theorem 6 (Bernstein’s inequality) Let (X1, ....XM ) be independent real valued random vari-
ables and assume that there exist two positive numbers v and d such that:

�M
m=1 E(X

2
m) ≤ v and

for all integers r ≥ 3,
M�

m=1

E[(Xm)r+] ≤
r!

2
vdr−2.

Let S =
�M

m=1(Xm − E(Xm)), then for any x ≥ 0, we have P(S ≥
√
2vx+ dx) ≤ exp(−x).

Let us check that the assumptions for applying Bernstein’s inequality hold with the choice v =
8M(V(εm))2 and d = 2V(εm). Indeed, since the εm are i.i.d. centered Gaussian, by writing
Xm = ε2m, we have Xm ≥ 0 and for any integer r ≥ 2, E(Xr

m) = (V(εm))r (2r)!
2rr! . This gives�M

m=1 E[X
2
m] = 3M(V(εm))2 ≤ v, and for r ≥ 3,

M�

m=1

E[Xr
m] =M(V(εm))r

(2r)!

2rr!
≤M(V(εm))r × 2rr! ≤ r!

2
vdr−2.

We thus apply Bernstein’s inequality (and recall that V(εm) ≤ 2
MN

�
L2l2β

N2β−1 + σ2
�
) to obtain that

with probability at least 1− p,

�ε�22 ≤ 2
�L2l2β

N2β
+
σ2

N

��
1 + 4

�
log(1/p)

M
+ 2

log(1/p)

M

�
.
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Proof of Theorem 4

Following [12], we define αt > 0 (respectively βt > 0) as the maximal (resp. minimal) values such
that for all x ∈ R

K which are t−sparse,
αt�x�2 ≤ �Ax�2 ≤ βt�x�2. (4)

We now define γt = βt

αt
and use Theorem 3.1 of [12] applied to sparse vectors, in the case of �1

minimization, reminded below:

Theorem 7 (Foucart, Lai) For any integer S > 0, for t ≥ S, whenever γ2t − 1 ≤ 4(
√
2− 1)

�
t
S ,

the solution �α to the �1-minimization problem

min �a�1, under the constraint �Aa− b�22 ≤ �ε�22,

satisfies �α− �α�2 ≤ D2�ε�2

β2S
, whereD2 is a constant which depends on γ2t, S and t defined in [12].

In order to apply this results, we now provide conditions such that (4) holds, as well as an upper
bound on the noise �ε2�, and a lower bound on β2S .
Step 1. Recovery Condition: We recall the results of Proposition 1 and have that (4) holds with
α2t ≥ 1

2νmin,C and β2t ≤ 3
2νmax,C with probability 1 − p� as long as M > C�

4 (t log(K/t) +

log 1/p�)). Thus γ2t ≤ 3
νmax,C

νmin,C
= 3κC .

A sufficient condition for (7) is that 3κC − 1 ≤ 4(
√
2− 1)

�
t
S .

By defining r =
�
(3κC − 1)( 1

4
√
2−1

)
�2

(note that r only depends on VC), condition (7) holds when-
ever t > Sr, thus with probability 1− p�, whenever

M > 4C ��2�Sr� log K

2Sr
+ log 1/p�

�
. (5)

Note that this condition holds when the number of Brownian motions M (which can be chosen
arbitrarily) is large enough (and does not depend on the number of observations N ).

Step 2. Upper bound on �ε2�: This is the result of Proposition 2.

Step 3. Lower bound on β2S In order to apply Theorem 7, we now provide a lower bound on β2S .

Lemma 2 If
M > C � log 1/u, (6)

then with probability 1− u we have: β2S ≥ 1
2

�
maxk

�
C ϕ

2
k.

Proof: Let us define i = argmaxk
�
C ϕ

2
k(x)dx. Let us now consider the 1−sparse vector a such

that ai = 1 and ak = 0 otherwise. We have: (Aa)m =
�
C ϕi(x)dB

m(x). So each (Aa)m is a
sample drawn independently from N (0,

�
C ϕ

2
i (x)dx).

By applying Theorem 5, with S = K = 1 and δ = 1/2, when M > C � log 1/u, then with
probability 1− u,

1

2

��

C
ϕ2
i (x)dx�a�2 ≤ �Aa�2 ≤ 3

2

��

C
ϕ2
i (x)dx�a�2.

And since β2S is the minimal constant such that for every 2S−sparse vector x (in particular for a)
we have �Ax�2 ≤ β2S�x�2, we deduce that

β2S ≥ 1

2

��

C
ϕ2
i (x)dx =

1

2

�
max

k

�

C
ϕ2
k(x)dx.
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�

We now apply Theorem 7 and deduce that whenM satisfies (5) (which implies that (6) also holds)
using Lemma 2, with probability 1− p� − u,

��α− α�2 ≤ 2D2σ̃(N,M, p)
√
N
�

maxk
�
C ϕ

2
k

(7)

Thus from Proposition 2, with probability 1− p− p� − u,

��α− α�22 ≤
8D2

2

�
L2

N2β−1 l
2β + σ2

�
(1 + c(p,M))

N(maxk
�
C ϕ

2
k)

,

and from [12], we deduce that if we are able to recover 4S−sparse vectors, i.e., if M >
4C ��4Sr log K

4Sr + log 1/p�
�
then D2 ≤ Cκ2C where C can be loosely bounded by 90, see [12]

(note that this numerical constant can be greatly improved). The result follows with the choice
p = p� = u.
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