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Abstract

This paper presents a reinforcement learning method for solving continuous opti-
mal control problems when the dynamics of the system is unknown. First, we use a
Finite Differences method for discretizing the Hamilton-Jacobi-Bellman equation and
obtain a finite Markovian Decision Process. This permits us to approximate the value
function of the continuous problem with piecewise constant functions defined on a
grid. Then we propose to solve this MDP on-line with the available knowledge using a
direct and convergent reinforcement learning algorithm, called the Finite-Differences
Reinforcement Learning.

1 INTRODUCTION

This paper proposes an adaptive method for solving optimal control problems, like target
or obstacle problems, viability or optimization problems when the time and the state space
are continuous variables. Reinforcement Learning (RL) techniques are kinds of Dynamic
Programming (DP) methods which generate an optimal feed-back control by computing the
value function (VE') defined as the best expected cumulative reinforcement for each state. A
local condition for the VF is given by the Hamilton-Jacobi-Bellman (IIJB) equation. Here
we use Finite-Differences (FD) methods for discretizing the HJB equation. We obtain a
DP equation for a finite Markovian Decision Process (MDP) whose solution generates a
piecewise constant function, defined on a regular grid, that approximates the VF.

Section 2 describes a formalism for optimal control problems in the continuous case. Section
3 defines the value function, presents the R approach and states the HJB equation. Section
4 describes the Finite-Differences approximation used here and states the associated DP
equation. Section 5 presents a direct learning algorithm for computing the approximated
value function: the Finite-Differences Reinforcement Learning (FDRL).
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2 OPTIMAL CONTROL PROBLEMS IN THE CON-
TINUOUS CASE

In this paper, we are interested in deterministic infinite time problems with discounted
reinforcement. We consider a controlled dynamical system whose state x(t) € O the state
space with O open subset of IR". Its evolution depends on a differential equation, called its
dynamics :

d
S 2() = [ (2(t), u(t)

where the control u(t) is a function with values in a finite set U. From any initial state z,
the choice of a control u(t) leads to a unique trajectory x(¢). Let 7 be the exit time of z(t)

from O (with the convention that if x(t) always stays in O, then 7 = o). Then, we define
the discounted reinforcement functional of state z, control w(.) :

Tiu() = [ o), u(®)dt + 97 Ra(r)

Where r : O x U — IR is the running reinforcement and R : 90 — IR the terminal
reinforcement. vy is the discount factor (0 <~y < 1).

The objective of the control problem is to find the optimal feed-back control u*(x),
i.e. the one that optimizes the reinforcement functional for initial state x.

3 THE REINFORCEMENT LEARNING APPROACH

RL techniques belongs to the class of DP methods which compute the optimal control by
the building of the wvalue function, defined here by :

V(z) = sup J(z;u(.))

In the RL approach, the system tries to approximate this function without knowing the dy-
namics f. Following the DP principle, the value function satisfies a local condition called the

Hamilton-Jacobi-Bellman equation. The following theorem comes from Bellman optimality
principle in the continuous case (See [4] for a proof):

Theorem 1 (Hamilton-Jacobi-Bellman) If the value function V' is differentiable at x,
let DV (x) be the gradient of V' at x, then the following HJB equation holds at x € O.

V(z)Iny +sup DV (z).f(z,v) + r(z,v)] =0

vel

The challenge of learning the VF is motivated by the fact that from the VF we can
deduce the optimal control :

u*(z) = argsup[DV (x). f(z,v) + r(z,v)]

vel



4 APPROXIMATION WITH FINITE-DIFFERENCES
METHODS

Let ey, €9, ...,e, be a basis for R". The dynamics is : f = (f1,..., fn). Let the positive and
negative parts of f; be : f;' = max(f;,0), f; = max(—f;,0). For any discretization step &,
let us consider the lattice : ¥4 = {8. 30, jses} N O where 7y, ..., J, are any integers. The
interior of 3¢ is the set of points £ € ¢ such that all nearest neighboor points £ 4= fe; are in
4. Let OX°, the frontier of ¥° denote the set of points of 3¢ which are not in the interior
of ¥*. We assume that 3° approximates O in the sense that : lims o dist(90,9%°) = 0.
By replacing the gradient DV (£) by the forward and backward difference quotients of V'

in £ :
AV = < [V(E+6be) = V(E)]

A V() = V(€= be) = V()]

N ==

we can approximate the HJB equation by the following equation :
- For £ interior to X2,

vel

VO +ap{ T [HEATVO 4 60 ATVE)] +ri6)f =0

- For &€ € 9%, Ve(&) = R(£)

In the following of the paper, we use the norm : ||u||y = Y1 ; |u;]. Knowing that (Atln-y)
is an approximation of (y2! — 1) as At tends to 0, this equation can be written as a DP
equation for a finite MDP :

s 6
Vo(€) = sup {7““)1 P& 0. &)V () + (€ v)} (1)
2 &

whose stale space is ° and whose probabilities of transition from :
(state &, control v) to the possible next states £ are :
.. ) M€ v) .
If ¢ is interior to ¥°, p(&,v, &) = il =&+ ey
1€ 0]
fi (&v) o
= 2L if = — e
(€, 0)l

= 0 otherwise

If £ € 0%, p&,v,&) = 1ifE=¢

= 0 otherwise

Thanks to a contraction property due to the discount factor 7 (see [3]), DP theory insures
that there exists a unique solution V? to equation 1. The following theorem insures that
this solution V? is a good approximation of V.



Theorem 2 (Convergence of the Finite Differences scheme) Let us assume that some
smoothness assumptions described in [6] are satisfied, then the fived-point V? of the DP equa-
tion (1) converges to the VF as 6 tends to 0 :

lﬁi{% V(€)= V(x) for allz € O

E—x

The proof of this theorem uses the general convergence results of [2].

5 THE FINITE-DIFFERENCES REINFORCEMENT
LEARNING

Let us consider a grid G° composed of regular cells {X;} such that the center of the cells
are the previously defined vertices of the lattice. Let us denote f(X,v) the dynamics at the
center of cell X for control v (see figure 1).

In the direct RL approach, the system does not know the dynamics f, so we need to
approximate the probabilities of transition p(¢, v, ") with the available knowledge.

Figure 1: The grid G? is composed of regular cells X. The dynamics f(X,v) is approximated
by y% where x and y are the input and output points of a trajectory z(t) crossing the cell

X and Tx is the running time of the trajectory inside X.
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Let a trajectory (1) enters cell X at point x ; then a control v is chosen and kept until
the trajectory exits at some point y. Let r(X,v) be the cumulative current reinforcement
obtained inside cell X. Let X; be the next cell (for example cell X; in figure 1).

We use the value % for approximating f(X,v). Let 7x be the running time of the
trajectory inside X. The DP equation leads to the FDRI updating rules :

5n+1(X7U7Xi) = /yHnyHI.TX'M'W(X» (2>
|y — |

] 16

Tn+1(X7U7Xi) = M T(X,U) (3>

nlly —alli’



with the values : QX v) = > {QZ(X,U,XZ') + TZ(X,U,XZ-)}

i=1..n
VIX) = spQi(X,0)

velU
The algorithm is the following : when the system crosses cell X with a control v and enters
X; then update the Q° and r® values with rules (2) and (3). Then the current optimal control
v* in cell X is the one that optimizes Q° (X, v).
We have the following theorem that states that the values computed by the algorithm con-
verge to the VF of the continuous problem :

Theorem 3 (Convergence of the algorithm) When experimenting the FDRL, we con-
sider series of trajectories such that the algorithm leads to update every combination (X, v, X;)
of current cell X, control v and next cell X; infinitely often. Suppose that some smoothness
assumptions are satisfied (see [6]), then :

Ve >0, A s.t. V6 < A, for any grid G°, using the FDRL algorithm, IN,¥n > N,

sup |V2(X 3 2) — V(z)| <e.

xeO B

The proof of this theorem is very similar to the one given in [6] for the Finite-Element
method.

Remark: for a particular grid G?, the V?-values do not converge. The theorem states that
the convergence occurs as the number of iterations tends to infinity and the discretization
step ¢ tends to 0. Thus, for computational aspects, the learning process (which computes
iteratively the V,%-values with rules (2) and (3)) has to be combinate with a grid refinement
process.

6 CONCLUSION

This paper proposes an algorithm for solving optimal control problems in the continuous case
using RI techniques. We use Finite-Differences method for approximating the HJB equation
by a DP equation for a MDP. This equation is solved iteratively by a direct and convergent
RL algorithm. In practical use of this algorithm, we are faced to the combinatorial explosion
of the number of values to be estimated, in particular when the dimension of the state
space 1s high. Future work should consider adaptive multigrid methods (like the parti-game
algorithm of [5] or the multigrid methods of [1]) which use a local refinement process for the
grid. An other improvement should be the study of the stochastic case.
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