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Abstract

We consider multi-armed bandit problems where the number ofarms is larger
than the possible number of experiments. We make a stochastic assumption on
the mean-reward of a new selected arm which characterizes its probability of be-
ing a near-optimal arm. Our assumption is weaker than in previous works. We
describe algorithms based on upper-confidence-bounds applied to a restricted set
of randomly selected arms and provide upper-bounds on the resulting expected
regret. We also derive a lower-bound which matches (up to a logarithmic factor)
the upper-bound in some cases.

1 Introduction

Multi-armed bandit problems describe typical situations where learning and optimization should be
balanced in order to achieve good cumulative performances.Usual multi-armed bandit problems
(see e.g. [9]) consider a finite number of possible actions (or arms) from which the learner may
choose at each iteration. The number of arms is typically much smaller than the number of ex-
periments allowed, so exploration of all possible options is usually performed and combined with
exploitation of the apparently best ones.

In this paper, we investigate the case when the number of armsis infinite (or larger than the available
number of experiments), which makes the exploration of all the arms an impossible task to achieve:
if no additional assumption is made, it may be arbitrarily hard to find a near-optimal arm. Here we
consider a stochastic assumption on the mean-reward of any new selected arm. When a new armk
is pulled, its mean-rewardµk is assumed to be an independent sample of a fixed distribution. Our
assumption essentially characterizes the probability of pulling near-optimal arms. It depends on two
parametersβ ≥ 0 andµ∗ ∈ [0, 1], and writes: the probability that a new arm isǫ-optimal is of order
ǫβ for smallǫ, i.e. P(µk ≥ µ∗ − ǫ) = Θ(ǫβ) for ǫ → 01. Note that as a consequence,µ∗ is the best
possible mean-reward.

1We writef(ǫ) = Θ(g(ǫ)) for ǫ → 0 when∃c1, c2, ǫ0 > 0 such that∀ǫ ≤ ǫ0, c1g(ǫ) ≤ f(ǫ) ≤ c2g(ǫ).
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Like in multi-armed bandits, this setting exhibits a tradeoff between exploitation (selection of the
arms that are believed to perform well) and exploration. Theexploration takes two forms here:
discovery (pulling a new arm that has never been tried before) and sampling (pulling an arm already
discovered in order to gain information about its actual mean-reward).

Numerous applications can be found e.g. in [5]. It includes labor markets (a worker has many
opportunities for jobs), mining for valuable resources (such as gold or oil) when there are many
areas available for exploration (the miner can move to another location or continue in the same
location, depending on results), and path planning under uncertainty in which the path planner has
to decide among a route that has proven to be efficient in the past (exploitation), or a known route
that has not been explored many times (sampling), or a brand new route that has never been tried
before (discovery).

Let us writekt the arm selected by our algorithm at timet. We define the regret up to timen as
Rn = nµ∗ −

∑n
t=1 µkt . From the tower rule,ERn is the expectation of the difference between

the rewards we would have obtained by drawing an optimal arm (an arm having a mean-reward
equal toµ∗) and the rewards we did obtain during the time steps1, . . . , n. Our goal is to design an
arm-pulling strategy such as to minimize this regret.

Overview of our results: We writevn = Õ(un) when for somen0, C > 0, vn ≤ Cun(log(un))2,
for all n ≥ n0. We assume that the rewards of the arms lie in[0, 1]. Our regret bounds depend on
whetherµ∗ = 1 or µ∗ < 1. For µ∗ = 1, our algorithms are such thatERn = Õ(nβ/(1+β)). For
µ∗ < 1, we haveERn = Õ(nβ/(1+β)) if β > 1, and (only)ERn = Õ(n1/2) if β ≤ 1. Moreover
we derive the lower-bound: for anyβ > 0, µ∗ ≤ 1, any algorithm satisfiesERn ≥ Cnβ/(1+β) for
someC > 0. Finally we propose an algorithm having the anytime property, which is based on an
arm-increasing rule.

Our algorithms essentially consist in pullingK different arms randomly chosen, whereK is of order
nβ/2 if µ∗ < 1 andβ < 1, andnβ/(1+β) otherwise, and using a variant of the UCB algorithm on
this set ofK arms, which takes into account the empirical variance of therewards. This last point is
crucial to get the proposed rate forµ∗ = 1 andβ < 1, i.e. in cases where there are many arms with
small variance.

Previous works on many-armed bandits: In [5], a specific setting of an infinitely many-armed
bandit is considered, namely that the rewards are Bernoullirandom variables with parameterp,
wherep follows a uniform law over a given interval[0, µ∗]. All mean-rewards are therefore in
[0, µ∗]. They proposed three algorithms. (1) The1-failure strategywhere an arm is played as long
as1s are received. When a0 is received, a new arm is played and this strategy is repeatedforever.
(2) Them-run strategyuses the 1-failure strategy until eitherm continuous1s are received (from the
same arm) orm different arms have been played. In the first case, we continue to play forever the
current arm. In the second case, the arm that gave the most wins is chosen to play for the remaining
rounds. Finally, (3) them-learning strategyuses the 1-failure strategy during the firstm rounds, and
for the remaining rounds it chooses the arm that gave the most1s during the firstm rounds.

For µ∗ = 1, the authors of [5] have shown that 1-failure strategy,
√

n-run strategy, andlog(n)
√

n-
learning strategy have a regretERn ≤ 2

√
n. They also provided a lower bound on the regret of any

strategy:ERn ≥
√

2n. For µ∗ < 1, the corresponding optimal strategies are
√

nµ∗-run strategy
and

√
nµ∗ log(nµ∗)-learning strategy. All these algorithms require the knowledge of the horizonn

of the game. In many applications, it is important to design algorithms having the anytime property,
that is, the upper bounds on the expected regretERn have the similar order for alln. Under the
same Bernoulli assumption on the reward distributions, such algorithms has been obtained in [10].

In comparison to their setting (uniform distribution corresponds toβ = 1), our upper- and lower-
bounds are also of order

√
n up to a logarithmic factor, and we do not assume that we know exactly

the distribution of the mean-reward. However it is worth noting that the proposed algorithms in
[5, 10] heavily depend on the Bernoulli assumption of the rewards and are not easily transposable to
general distributions. Note also that the Bernoulli assumption does not work for the real problems
mentioned above, where the outcomes may take several possible values.

Thus an important aspect of our work, compared to previous many-armed bandits, is that our setting
allows general reward distributions for the arms, under a simple assumption on the mean-reward.
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2 Main results

In our framework, each arm of a bandit is characterized by thedistribution of the rewards (obtained
by drawing that arm). The essential parameter of the distribution of rewards is its expectation.
Another parameter of interest is the standard deviation. With low variance, poor arms will be easier
to spot while good arms will have higher probability of not being disregarded at the beginning due to
unlucky trials. To draw an arm is equivalent to draw a distributionν of rewards. Letµ =

∫

wν(dw)
andσ2 =

∫

(w − µ)2ν(dw) denote the expectation and variance ofν. The quantitiesµ andσ are
random variables. Our assumptions are the following:

(A) all rewards are uniformly bounded: without loss of generality, we may assume that the rewards
are in[0, 1] (more general distributions can be considered2)

(B) the expected reward of a randomly drawn arm satisfies: there existµ∗ ∈ (0, 1] andβ > 0 s.t.

P{µ > µ∗ − ǫ} = Θ(ǫβ), for ǫ → 0 (1)

(C) there is a functionV : [0, 1] → R such thatP{σ2 ≤ V (µ∗ − µ)} = 1.

The key assumption here is (B). It gives us (the order of) the number of arms that needs to be drawn
before finding an arm that isǫ-close to the optimum3 (i.e., an arm for whichµ ≥ µ∗−ǫ). Assumption
(B) implies that there exists positive constantsc1 andc2 such that for anyǫ ∈ [0, µ∗], we have4

c1ǫ
β ≤ P{µ > µ∗ − ǫ} ≤ P{µ ≥ µ∗ − ǫ} ≤ c2ǫ

β. (2)

Assumption (C) is weak to the extent that it always holds forV (u) = µ∗(1 − µ∗ + u) (here we use
VarW ≤ EW (1 − EW )), but it is convenient when one may want to deal with bandit problems
where near-optimal arms have low variance (for instance, this happens whenµ∗ = 1).

Let Xk,1, Xk,2, . . . denote the rewards obtained when pulling armk. These are i.i.d. random
variables with common expected value denotedµk. Let Xk,s , 1

s

∑s
j=1 Xk,j and Vk,s ,

1
s

∑s
j=1(Xk,j − Xk,s)

2 be the empirical mean and variance associated with the firsts draws of
armk. Let Tk(t) denote the number of times armk is chosen by the policy during the firstt plays.
We will use as a subroutine of our algorithms the following version of UCB as introduced in [2].
Let (Et)t≥0 be a nondecreasing sequence of nonnegative real numbers. Itwill be referred to as the
exploration sequence since the larger it is, the more UCB explores. For any armk and nonnegative
integerss, t, introduce

Bk,s,t , Xk,s +

√

2Vk,sEt

s
+

3Et

s
(3)

with the convention1/0 = +∞. Define the UCB-V (for Variance estimate) policy:

UCB-V policy for a setK of arms:
At time t, play an arm inK maximizingBk,Tk(t−1),t.

From [2, Theorem 1], the main property ofBk,s,t is that with probability at least1−5(log t)e−Et/2,
for anys ∈ [0, t] we haveµk ≤ Bk,s,t. So provided thatEt is large,Bk,Tk(t−1),t is an observable
quantity at timet which upper boundsµk with high probability. We consider nondecreasing se-
quence(Et) in order that these bounds hold with probability increasingwith time. This ensures that
the low probability event, that the algorithm might concentrate the draws on suboptimal arms, has a
decreasing probability with time.

2This is done in [7, see p.49 and Chap.4] where it is assumed that the distributions have uniformly bounded
exponential moments.

3Precise computations lead to a number which is of orderǫ−β up to possibly a logarithmic factor.
4Indeed, (1) implies that for some0 < c′1 < c′2, there exists0 < ǫ0 < µ∗ such that for anyǫ ≤ ǫ0,

c′1ǫ
β ≤ P{µ > µ∗ − ǫ} ≤ P{µ ≥ µ∗ − ǫ} ≤ c′2ǫ

β . Straightforward computations show that one may take
c1 = c′1ǫ

β
0

andc2 = max(ǫ−β
0

, c′2).

3



2.1 UCB revisited for the infinitely many-armed bandit

When the number of arms of the bandit is greater than the totalnumber of plays, it makes no sense
to apply UCB-V algorithm (or other variants of UCB [3]) sinceits first step is to draw each arm once
(to haveBk,Tk(t−1),t finite). A more meaningful and natural approach is to decide at the beginning
that onlyK arms will be investigated in the entire experiment. TheK should be sufficiently small
with respect ton (the total number of plays), as in this way we have fewer playson bad arms and
most of the plays will be on the best ofK arms. The numberK should not be too small either, since
we want that the best of theK arms has an expected reward close to the best possible arm.

It is shown in [2, Theorem 4] that in the multi-armed bandit, taking a too small exploration se-
quence (e.g. such asEt ≤ 1

2 log t) might lead to polynomial regret (instead of logarithmic for e.g.
Et = 2 log t) in a simple 2-armed bandit problem. However, we will show that this is not the case
in the infinitely many-armed bandit, where one may (and should) take much smaller exploration
sequences (typically of orderlog log t). The reason for this phenomenon is that in this setting, there
are typically many near-optimal arms so that the subroutineUCB-V may miss some good arms (by
unlucky trials) without being hurt: there are many other near-optimal arms to discover! This illus-
trates a tradeoff between the two aspects of exploration: sample the current, not well-known, arms
or discover new arms.

We will start our analysis by considering the following UCB-V(∞) algorithm:

UCB-V(∞) algorithm : Given parametersK and the exploration sequence(Et)

• Randomly chooseK arms,

• Run the UCB-V policy on the set of theK selected arms.

Theorem 1 If the exploration sequence satisfies2 log(10 log t) ≤ Et ≤ log t, then forn ≥ 2 and
K ≥ 2 the expected regret of the UCB-V(∞) algorithm satisfies:

ERn ≤ C
{

(log K)nK−1/β + K(log n)E
[

(V (∆)
∆ + 1

)

∧ (n∆)
]}

, (4)

where∆ = µ∗ − µ with µ the random variable corresponding to the expected reward ofa sampled
arm from the pool, and whereC is a positive constant depending only onc1 andβ (see(2)).

Proof: The UCB-V(∞) algorithm has two steps: randomly chooseK arms and run a UCB sub-
routine on the selected arms. The first part of the proof studies what happens during the UCB
subroutine, that is, conditionally to the arms that have been randomly chosen during the first step
of the algorithm. In particular we consider in the followingthat µ1, . . . , µK are fixed. From the
equality (obtained using Wald’s theorem):

ERn =
∑K

k=1 E{Tk(n)}∆k (5)

with ∆k = µ∗ − µk, it suffices to boundETk(n). The proof is inspired from the ones of Theorems
2 and 3 in [2]. The novelty of the following lemma is to make appear the product of probabilities in
the last term of the right-hand-side. This enables us to incorporate the idea that if there are a lot of
near-optimal arms, it is very unlikely that suboptimal armsare often drawn.

Lemma 1 For any real numberτ and any positive integeru, we have

ETk(n) ≤ u +
∑n

t=u+1

∑t
s=u P

(

Bk,s,t > τ
)

+
∑n

t=u+1

∏

k′ 6=k P(∃s′ ∈ [0, t], Bk′,s′,t ≤ τ
)

(6)
where the expectations and probabilities are conditionally to the set of selected arms.

Proof: We haveTk(n) − u ≤ ∑n
t=u+1 Zk(u, t) whereZk(u, t) = 1It=k;Tk(t)>u. We have

Zk(u, t) ≤ 1∀k′ 6=k Bk,Tk(t−1),t≥Bk′,T
k′ (t−1),t;Tk(t−1)≥u

≤ 1∃s∈[u,t] Bk,s,t>τ + 1∀k′ 6=k ∃s′∈[0,t] Bk′,s′,t≤τ

where the last inequality holds since if the two terms in the last sum are equal to zero, then it implies
that there existsk′ 6= k such that for anys′ ∈ [0, t] and anys ∈ [u, t], Bk′,s′,t > τ ≥ Bk,s,t. Taking
the expectation of both sides, using a union bound and the independence between rewards obtained
from different arms, we obtain Lemma 1.�
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Now we use Inequality (6) withτ = µ∗+µk

2 = µk + ∆k

2 = µ∗ − ∆k

2 , andu the smallest integer

larger than32
(

σ2
k

∆2
k

+ 1
∆k

)

log n. These choices are made to ensure that the probabilities in the r.h.s.

of (6) are small. Precisely, for anys ≥ u andt ≤ n, we have
√

2[σ2
k + ∆k/4]Et

s
+ 3

Et

s
≤

√

[2σ2
k + ∆k/2] logn

u
+ 3

log n

u

≤
√

[2σ2
k+∆k/2]∆2

k

32[σ2
k+∆k]

+
3∆2

k

32[σ2
k+∆k]

= ∆k

4

[
√

σ2
k+∆k/4

σ2
k+∆k

+ 3
8

∆k

σ2
k+∆k

]

≤ ∆k

4 ,

where the last inequality holds since it is equivalent to(x − 1)2 ≥ 0 for x =

√

σ2
k+∆k/4

σ2
k+∆k

. Thus:

P(Bk,s,t > τ) ≤ P
(

Xk,s +

√

2Vk,sEt

s + 3
Et

s
> µk + ∆k/2

)

≤ P
(

Xk,s +

√

2[σ2
k+∆k/4]Et

s + 3Et

s > µk + ∆k/2
)

+ P
(

Vk,s ≥ σ2
k + ∆k/4

)

≤ P
(

Xk,s − µk > ∆k/4
)

+ P

(
Ps

j=1(Xk,j−µk)2

s − σ2
k ≥ ∆k/4

)

≤ 2e−s∆2
k/(32σ2

k+8∆k/3),

(7)

where in the last step we used Bernstein’s inequality twice.

Summing up these probabilities we obtain

t
∑

s=u

P(Bk,s,t > τ) ≤ 2

∞
∑

s=u

e−s∆2
k/(32σ2

k+8∆k/3) = 2
e−u∆2

k/(32σ2
k+8∆k/3)

1 − e−∆2
k/(32σ2

k+8∆k/3)

≤
(

80σ2
k

∆2
k

+ 7
∆k

)

e−u∆2
k/(32σ2

k+8∆k/3) ≤
(

80σ2
k

∆2
k

+ 7
∆k

)

n−1, (8)

where we have used that1 − e−x ≥ 4x/5 for 0 ≤ x ≤ 3/8. Now let us bound the product of
probabilities in (6). Sinceτ = µ∗ − ∆k/2, we have

∏

k′ 6=k

P(∃s ∈ [0, t], Bk′,s,t ≤ τ
)

≤
∏

k′:µk′>µ∗−∆k/2

P(∃s ∈ [0, t], Bk′,s,t < µ′
k

)

.

Now from [2, Theorem 1], with probability at least1 − 5(log t)e−Et/2, for anys ∈ [0, t] we have
µk ≤ Bk,s,t. ForEt ≥ 2 log(10 log t), this givesP(∃s ∈ [0, t], Bk′,s,t < µ′

k

)

≤ 1/2. Putting all
the bounds of the different terms of (6) leads to

ETk(n) ≤ 1 + 32
( σ2

k

∆2
k

+
1

∆k

)

log n +

(

80σ2
k

∆2
k

+
7

∆k

)

+ n2−N∆k ,

with N∆k
the cardinal of

{

k′ ∈ {1, . . . , K} : µk′ > a − ∆k/2
}

. Since∆k ≤ µ∗ ≤ 1 and
Tk(n) ≤ n, the previous inequality can be simplified into

ETk(n) ≤
{[

50
(

σ2
k

∆2
k

+ 1
∆k

)

log n
]

∧ n
}

+ n2−N∆k , (9)

Here, for sake of simplicity, we are not interested in havingtight constants. From now and on, we
will take the expectations with respect to all sources of randomness, that is including the one coming
from the first step of UCB-V(∞). The quantities∆1, . . . , ∆K are i.i.d. random variables satisfying
0 ≤ ∆k ≤ µ∗ andP(∆k ≤ ǫ) = Θ(ǫβ). The quantitiesσ1, . . . , σk are i.i.d. random variables
satisfying almost surelyσ2

k ≤ V (∆k). From (5) and (9), we have

ERn = KE
{

T1(n)∆1

}

≤ KE

{

[

50
(

V (∆1)
∆1

+ 1
)

log n
]

∧ (n∆1) + n∆12
−N∆1

}

(10)

Let p denote the probability that the expected rewardµ of a randomly drawn arm satisfiesµ >
µ∗ − δ/2 for a givenδ. Conditioning on∆1 = δ, the quantityN∆1 follows a binomial distribution
with parametersK − 1 andp, henceE(2−N∆1 |∆1 = δ) = (1− p+ p/2)K−1. By using (2), we get:

E
{

∆12
−N∆1

}

= E
{

∆1(1 − P(µ > µ∗ − ∆1/2)/2)K−1
}

≤ Eχ(∆1),
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with χ(u) = u(1− c3u
β)K−1 andc3 = c1/2β. We haveχ′(u) = (1− c3u

β)K−2
[

1− c3(1+ (K −
1)β)uβ

]

so thatχ(u) ≤ χ(u0) with u0 = 1
[c3(1+(K−1)β)]1/β andχ(u0) =

(1− 1
1+(K−1)β

)K−1

[c3(1+(K−1)β)]1/β ≤
C′K−1/β for C′ a positive constant depending onlyc1 andβ. For anyu1 ∈ [u0, µ

∗], we have

Eχ(∆1) ≤ χ(u0)P(∆1 ≤ u1) + χ(u1)P(∆1 > u1) ≤ χ(u0)P(∆1 ≤ u1) + χ(u1) .

Let us takeu1 = C′′
(

log K
K

)1/β
for C′′ a positive constant depending onc1 andβ sufficiently large

to ensureu1 ≥ u0 andχ(u1) ≤ K−1−1/β. We obtainEχ(∆1) ≤ CK−1/β log K
K for an appropriate

constantC depending onc1 andβ. Putting this into (10), we obtain the result of Theorem 1.�

The r.h.s. of Inequality (4) contains two terms. The first term is the bias: when we randomly drawK
arms, the expected reward of the best drawn arm isÕ(K−1/β)-optimal. So the best algorithm, once
theK arms are fixed, will lead to a regret̃O(nK−1/β). The second term is the estimation term. It
indicates to what extent the UCB subroutine performs almostas well as the best arm among theK
selected ones.

2.2 Strategy for fixed play number

Consider that we know in advance the total number of playsn and the value ofβ. In this case,
one can use the UCB-V(∞) algorithm with parameterK of order of the minimizer of the r.h.s. of
Inequality (4). This leads to the following UCB-F (for Fixedhorizon) algorithm.

UCB-F (fixed horizon): given total number of playsn, and parametersµ∗ andβ of (1)

• ChooseK arms withK of order

{

n
β
2 if β < 1, µ∗ < 1

n
β

β+1 otherwise, i.e. ifµ∗ = 1 or β ≥ 1

• Run the UCB-V algorithm with theK chosen arms and an exploration sequence
satisfying

2 log(10 log t) ≤ Et ≤ log t (11)

Theorem 2 For anyn ≥ 2, the expected regret of the UCB-F algorithm satisfies

ERn ≤







C(log n)
√

n if β < 1 andµ∗ < 1
C(log n)2

√
n if β = 1 andµ∗ < 1

C(log n)n
β

1+β otherwise, i.e. ifµ∗ = 1 or β > 1

(12)

with C a constant depending only onc1, c2 andβ (see(2)).

Proof: The result comes from Theorem 1 by bounding the expectationE = E
[(V (∆)

∆ +1
)

∧(n∆)
]

.
First, as mentioned before, Assumption (C) is satisfied forV (∆) = µ∗(1−µ∗ + ∆). So forµ∗ = 1
and this choice of functionV , we haveE ≤ 2. Forµ∗ < 1, since∆ ≤ µ∗, we haveE ≤ EΨ(∆)

with Ψ(t) = 2µ∗

t ∧ (nt). The functionΨ is continuous and differentiable by parts. Using Fubini’s
theorem and Inequality (2), we have

EΨ(∆) = Ψ(µ∗) − E
∫ µ∗

∆ Ψ′(t)dt = Ψ(µ∗) −
∫ µ∗

0 Ψ′(t)P(∆ ≤ t)dt

≤ 2 +
∫ 1√

2/n
2
t2 c2t

βdt ≤











2 + 2(1+β)/2c2

1−β n
1−β

2 if β < 1

2 + c2 log(n/2) if β = 1
2 + 2c2

β−1 if β > 1

.

Putting these bounds in Theorem 1, we get

ERn ≤



















C
{

(log K)nK−1/β + (log n)Kn
1−β
2

}

if β < 1 andµ∗ < 1

C
{

(log K)nK−1/β + (log n)2K
}

if β = 1 andµ∗ < 1

C
{

(log K)nK−1/β + (log n)K
}

otherwise:µ∗ = 1 or β > 1

with C a constant only depending onc1, c2 andβ. The numberK of selected arms in UCB-F is
taken of the order of the minimizer of these bounds up to a logarithmic factor.�
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Theorem 2 makes no difference between a logarithmic exploration sequence and an iterated loga-
rithmic exploration sequence. However in practice, it is clearly better to take an iterated logarithmic
exploration sequence, for which the algorithm spends much less time on exploring all suboptimal
arms. For sake of simplicity, we have fixed the constants in (11). It is easy to check that for
Et = ζ logt andζ ≥ 1, Inequality (12) still holds but with a constantC depending linearly inζ.

Theorem 2 shows that whenµ∗ = 1 or β ≥ 1, the bandit subroutine takes no time in spotting near-
optimal arms (the use of UCB-V algorithm using variance estimate is crucial for this), whereas for
β < 1 andµ∗ < 1, which means a lot of near-optimal arms with possibly high variances, the bandit
subroutine has difficulties in achieving low regret.

The next theorem shows that our regret upper bounds are optimal up to logarithmic terms except for
the caseβ < 1 andµ∗ < 1 for which it remains an open problem.

Theorem 3 Any algorithm suffers a regret larger thancn
β

1+β for some small enough constantc
depending onc2 andβ.

Sketch of proof. (The full proof is provided in Appendix A) If we want to have a regret smaller
thancnβ/(1+β) we need that most draws are done on an arm having an individualregret smaller
than ǫ = cn−1/(1+β). To find such an arm, we need to try a number of arms larger than
C′ǫ−β = C′c−βnβ/(1+β) arms for someC′ > 0 depending onc2 andβ. Since these arms are
drawn at least once and since most of these arms give a constant regret, it leads to a regret larger
thanC′′c−βnβ/(1+β) with C′′ depending onc2 andβ. Forc small enough, this contradicts that the
regret is smaller thancnβ/(1+β). So it is not possible to improve on thenβ/(1+β) rate. We do not
know whether the ratenβ/2 for β < 1 andµ∗ < 1 is improvable.�

2.3 Strategy for unknown play number

To apply the UCB-F algorithm we need to know the total number of plays n and we choose the
correspondingK arms before starting. Whenn is unknown ahead of time, we propose here an
anytime algorithm with a simple and reasonable way of choosingK by adding a new arm from time
to time into the set of sampled arms. LetKn denote the number of arms played up to timen. We
setK0 = 0. We define the UCB-AIR (for Arm-Increasing Rule):

UCB-AIR (Arm-Increasing Rule): given parametersµ∗ andβ of (1),

• at timen, try a new arm if

Kn−1 <

{

n
β
2 if β < 1 andµ∗ < 1

n
β

β+1 otherwise:µ∗ = 1 or β ≥ 1

• otherwise apply the UCB-V policy on the already drawn arms with an exploration
sequence satisfying

2 log(10 log t) ≤ Et ≤ log t

This arm-increasing rule makes our algorithm applicable for the anytime problem. This is a more
reasonable approach in practice than restarting-based algorithms like the ones using the doubling
trick (see e.g. [4, Section 5.3]). Our second main result is to show that the UCB-AIR algorithm has
the same properties as the UCB-F algorithm (proof given in Appendix B).

Theorem 4 For any horizon timen ≥ 2, the expected regret of the UCB-AIR algorithm satisfies

ERn ≤
{

C(log n)2
√

n if β < 1 andµ∗ < 1

C(log n)2n
β

1+β otherwise, i.e. ifµ∗ = 1 or β ≥ 1
(13)

with C a constant depending only onc1, c2 andβ (see(2)).
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3 Comparison with continuum-armed bandits and conclusion

In continuum-armed bandits (see e.g. [1, 6, 4]), an infinity of arms is also considered. The arms
lie in some Euclidean (or metric) space and their mean-reward is a deterministic and smooth (e.g.
Lipschitz) function of the arms. This setting is different from ours since our assumption is stochastic
and does not consider regularities of the mean-reward w.r.t. the arms. However, if we choose an
arm-pulling strategy which consists in selecting randomlythe arms, then our setting encompasses
continuum-armed bandits. For example, consider the domain[0, 1]d and a mean-reward functionµ
assumed to be locally equivalent to a Hölder function (of orderα ∈ [0, +∞)) around any maximum
x∗ (the number of maxima is assumed to be finite), i.e.

µ(x∗) − µ(x) = Θ(||x∗ − x||α) whenx → x∗. (14)

Pulling randomly an armX according to the Lebesgue measure on[0, 1]d, we have:P(µ(X) >
µ∗ − ǫ) = Θ(P(||X − x∗||α < ǫ)) = Θ(ǫd/α), for ǫ → 0. Thus our assumption (1) holds with
β = d/α, and our results say that ifµ∗ = 1, we haveERn = Õ(nβ/(1+β)) = Õ(nd/(α+d)).

Ford = 1, under the assumption thatµ is α-Hölder (i.e.|µ(x)−µ(y)| ≤ c||x−y||α for 0 < α ≤ 1),
[6] provides upper- and lower-bounds on the regretRn = Θ(n(α+1)/(2α+1)). Our results gives
ERn = Õ(n1/(α+1)) which is better for all values ofα. The reason for this apparent contradiction
is that the lower bound in [6] is obtained by the constructionof a function very irregular, which
actually does not satisfy our local assumption (14).

Now, under assumptions (14) for anyα > 0 (around a finite set of maxima), [4] provides the rate
ERn = Õ(

√
n). Our result gives the same rate whenµ∗ < 1 but in the caseµ∗ = 1 we obtain the

improved rateERn = Õ(n1/(α+1)) which is better wheneverα > 1 (because we are able to exploit
the low variance of the good arms). Note that like our algorithm, the algorithms in [4], as well as in
[6], do not make an explicit use (in the procedure) of the smoothness of the function. They just use
a ’uniform’ discretization of the domain.

On the opposite, the zooming algorithm of [8] adapts to the smoothness ofµ (more arms are sampled
at areas whereµ is high). For any dimensiond, they obtainERn = Õ(n(d′+1)/(d′+2)), where
d′ ≤ d is their ’zooming dimension’. Under assumptions (14) we deduced′ = α−1

α d using the

Euclidean distance as metric, thus their regret isERn = Õ(n
d(α−1)+α

d(α−1)+2α ). For locally quadratic
functions (i.e.α = 2), their rate isÕ(n(d+2)/(d+4)), whereas ours is̃O(nd/(2+d)). Again, we have
a smaller regret although we do not use the smoothness ofµ in our algorithm. Here the reason is
that the zooming algorithm does not make full use of the fact that the function is locally quadratic
(it considers a Lipschitz property only). However, in the caseα < 1, our rates are worse than
algorithms specifically designed for continuum armed bandits.

Hence, the comparison between the many-armed and continuum-armed bandits settings is not easy
because of the difference in nature of the basis assumptions. Our setting is an alternative to the
continuum-armed bandit setting which does not require thatthere exists an underlying metric space
in which the mean-reward function would be smooth. Our assumption (1) naturally deals with
possible very complicated functions where maxima may be located in any part of the space. Our
algorithm will be competitive when applied to (and comparedto algorithms specifically designed
for) the continuum-armed bandit problem when there are relatively many near-optimal arms, which
matches the intuition that in such cases, a random selectionstrategy will perform well.

To conclude, our contributions are: (i) Compared to previous many-armed bandits, our setting allows
general reward distributions for the arms, under a simple assumption on the probability of pulling
near-optimal arms. (ii) We show that, since there is an infinity of arms, we need much less explo-
ration of each arm than UCB variants applied to finite-armed bandits (the usuallog term may be
replaced bylog log). (iii) Our UCB variant, making use of the variance estimate, enables to obtain
higher rates in cases when the variance of the good arms is small. (iv) The UCB-AIR algorithm
is anytime, making use of an arm increasing rule (instead of adoubling trick). (v) We provide a
lower-bound matching the upper-bound (up to a logarithmic factor) in the caseβ ≥ 1 or µ∗ = 1.
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A Theorem 3

Proof of Theorem 3. An elementary event of the probability space is characterized by the infinite
sequenceI1, I2, . . . of arms and by the infinite sequences of rewards corresponding to each of the
arm: XI1,1, XI1,2, . . . , XI2,1, XI2,1, . . . , and so on. ArmI1 is the first arm drawn,I2 6= I1 is the
second one, and so on. Let0 < δ < δ′ < µ∗. Let K∗ denote the smallestℓ such thatµIℓ

> µ∗ − δ.
Let K̄ be the number of arms in{I1, . . . , IK∗−1} with expected reward smaller than or equal to
µ∗ − δ′. An algorithm will request a number of armsK, which is a random variable (possibly
depending on the obtained rewards). Letµ̂ be the expected reward of the best arm in{I1, . . . , IK}.
Let κ > 0 a parameter to be chosen. We have

Rn = Rn1µ̂≤µ∗−δ + Rn1µ̂>µ∗−δ

≥ nδ1µ̂≤µ∗−δ + K̄δ′1µ̂>µ∗−δ

≥ nδ1µ̂≤µ∗−δ + κδ′1µ̂>µ∗−δ;K̄≥κ,

where the first inequality uses thatµ̂ > µ∗ − δ implies that the armsI1, . . . , IK∗ have been at least
tried once. By taking expectations on both sides and takingκ = nδ/δ′, we get

ERn ≥ nδP(µ̂ ≤ µ∗ − δ) + κδ′
(

P(µ̂ > µ∗ − δ) − P(K̄ < κ)
)

= δ′κP(K̄ ≥ κ).

Now the random variablēK follows a geometric distribution with parameterp = P(µ>µ∗−δ)
P(µ/∈(µ∗−δ′,µ∗−δ]) .

So we haveERn ≥ δ′κ(1 − p)κ. Takingδ = δ′n−1/(β+1) andδ′ a constant value in(0, µ∗) (for

instance(2c2)
−1/β to ensurep ≤ 2c2δ

β), we haveκ = n
β

1+β andp is of order1/κ and obtain the
desired result.

B Theorem 4

Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We recallthat Kn

denote the number of arms played up to timen. Let I1, . . . ,IKn denote the selected arms:I1 is the
first arm drawn,I2 the second, and so on. LetSk denote the time armk being played for the first
time. 1 = SI1 < SI2 < · · · < SIKn

. Since armsI1, . . . , IKn progressively enter in competition,
Lemma 1 no longer holds but an easy adaptation of its proof shows that fork ∈ {I1, . . . , IKn},

E(Tk(n)|I1, . . . , IKn) ≤ u +
∑n

t=u+1

∑t
s=u P

(

Bk,s,t > τ
)

+ Ωk (15)

with

Ωk =

n
∑

t=u+1

∏

k′ 6=k ,Sk′≤t

P(∃s′ ∈ [0, t], Bk′,s′,t ≤ τ
)

.

As in the proof of Theorem 1, since the exploration sequence satisfiesEt ≥ 2 log(10 log t), we have
P(∃s′ ∈ [0, t], Bk′,s′,t ≤ τ

)

≤ 1/2 for armsk′ such thatµk′ ≥ τ . Consequently, lettingNτ,k,t

denote the cardinal of the set{k′ : k′ 6= k, µk′ ≥ τ, Sk′ ≤ t}, we have

Ωk ≤ ∑n
t=1 2−Nτ,k,t .

Let us first consider the caseµ∗ = 1 or β ≥ 1. In the case of UCB-AIR,SIj is the smallest integer
strictly larger than(j − 1)(β+1)/β. To shorten notation, let us writeSj for SIj . According to the
arm-increasing rule (try a new arm ifKt−1 < tβ/(β+1)), [Sj , Sj+1) is the time interval in which the
competing arms areI1, I2, . . . , Ij .

As in the proof of Theorem 1, we considerτ = µ∗ − ∆k/2. We have

E(ΩIℓ
|Iℓ = k) ≤ ∑Kn

j=1

∑Sj+1−1
t=Sj

E

(

2−Nτ,k,Sj |Iℓ = k
)

=
∑Kn

j=1(Sj+1 − Sj)E
(

2−Nτ,k,Sj |Iℓ = k
)

≤ ∑Kn

j=1(Sj+1 − Sj)E
(

2−Nτ,∞,Sj−1
)

.

(16)

SinceNτ,∞,Sj−1 follows a binomial distribution with parameterj − 1 andP(µ ≥ τ), we have

E

(

2−Nτ,∞,Sj−1

)

= (1 − P(µ ≥ τ)/2)j−1,
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and
∑Kn

j=1(Sj+1 − Sj)E
(

2−Nτ,∞,Sj−1

)

=
∑Kn

j=1

(

Sj+1 − Sj

)

(1 − P(µ ≥ τ)/2)j−1

≤ ∑Kn

j=1(1 + β+1
β j

1
β )(1 − c̃[2(µ∗ − τ)]β)j−1,

(17)

wherec̃ = c12
−1−β . Plugging (17) into (16), we obtain

E(∆Iℓ
ΩIℓ

) ≤ 2β+1
β

∑Kn

j=1 j
1
β E

(

∆Iℓ

[

1 − c̃∆β
Iℓ

]j−1)
.

Now this last expectation can be bounded by the same computations as forEχ(∆1) in the proof of
Theorem 1. We have, for appropriate positive constantsC1 andC2 depending onc1 andβ,

E(∆Iℓ
ΩIℓ

) ≤ C1

∑Kn

j=1 j
1
β j−

1
β log j

j ≤ C2(log Kn)2 . (18)

Using (15) andERn =
∑Kn

ℓ=1 E(∆Iℓ
ΩIℓ

), we obtain

ERn ≤ KnE

{

[

50
(V (∆1)

∆1
+ 1

)

log n
]

∧ (n∆1) + C2(log Kn)2
}

,

from which Theorem 4 follows for the caseµ∗ = 1 or β ≥ 1. For the caseβ < 1 andµ∗ < 1,
replacing β

β+1 by β
2 leads to a similar version of (18) as

E(∆Iℓ
ΩIℓ

) ≤ C1

∑Kn

j=1 j
2
β −1j−

1
β log j

j ≤ C2(log Kn)K
1−β

β
n ,

which gives the desired convergence rate sinceKn is of ordernβ/2.
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