
ar
X

iv
:1

41
0.

59
20

v1
  [

st
at

.M
L]

  2
2 

O
ct

 2
01

4

Active Regression by Stratification

Sivan Sabato
Department of Computer Science

Ben Gurion University, Beer Sheva, Israel
sabatos@cs.bgu.ac.il

Remi Munos
INRIA

Lille, France
remi.munos@inria.fr

Abstract

We propose a new active learning algorithm for parametric linear regression with
random design. We provide finite sample convergence guarantees for general dis-
tributions in the misspecified model. This is the first activelearner for this setting
that provably can improve over passive learning. Unlike other learning settings
(such as classification), in regression the passive learning rate ofO(1/ǫ) cannot
in general be improved upon. Nonetheless, the so-called ‘constant’ in the rate
of convergence, which is characterized by a distribution-dependentrisk, can be
improved in many cases. For a given distribution, achievingthe optimal risk re-
quires prior knowledge of the distribution. Following the stratification technique
advocated in Monte-Carlo function integration, our activelearner approaches the
optimal risk using piecewise constant approximations.

1 Introduction

In linear regression, the goal is to predict the real-valuedlabels of data points in Euclidean space
using a linear function. The quality of the predictor is measured by the expected squared error of
its predictions. In the standard regression setting with random design, the input is a labeled sample
drawn i.i.d. from the joint distribution of data points and labels, and the cost of data is measured by
the size of the sample. This model, which we refer to here aspassive learning, is useful when both
data and labels are costly to obtain. However, in domains where raw data is very cheap to obtain, a
more suitable model is that ofactive learning(see, e.g., Cohn et al., 1994). In this model we assume
that random data points are essentially free to obtain, and the learner can choose, for any observed
data point, whether to ask also for its label. The cost of datahere is the total number of requested
labels.

In this work we propose a new active learning algorithm for linear regression. We provide finite
sample convergence guarantees for general distributions,under a possibly misspecified model. For
parametric linear regression, the sample complexity of passive learning as a function of the excess
error ǫ is of the orderO(1/ǫ). This rate cannot in general be improved by active learning,unlike
in the case of classification (Balcan et al., 2009). Nonetheless, the so-called ‘constant’ in this rate
of convergence depends on the distribution, and this is where the potential improvement by active
learning lies.

Finite sample convergence of parametric linear regressionin the passive setting has been studied
by several (see, e.g., Györfi et al., 2002; Hsu et al., 2012).The standard approach is Ordinary Least
Squares (OLS), where the output predictor is simply the minimizer of the mean squared error on the
sample. Recently, a new algorithm for linear regression hasbeen proposed (Hsu and Sabato, 2014).
This algorithm obtains an improved convergence guarantee under less restrictive assumptions. An
appealing property of this guarantee is that it provides a direct and tight relationship between the
point-wise error of the optimal predictor and the convergence rate of the predictor. We exploit this to
allow our active learner to adapt to the underlying distribution. Our approach employs a stratification
technique, common in Monte-Carlo function integration (see, e.g., Glasserman, 2004). For any finite

1

http://arxiv.org/abs/1410.5920v1


partition of the data domain, an optimal oracle risk can be defined, and the convergence rate of our
active learner approaches the rate defined by this risk. By constructing an infinite sequence of
partitions that become increasingly refined, one can approach the globally optimal oracle risk.

Active learning for parametric regression has been investigated in several works, some of them in
the context of statistical experimental design. One of the earliest works is Cohn et al. (1996), which
proposes an active learning algorithm for locally weightedregression, assuming a well-specified
model and an unbiased learning function. Wiens (1998, 2000)calculates a minimax optimal de-
sign for regression given the marginal data distribution, assuming that the model is approximately
well-specified. Kanamori (2002) and Kanamori and Shimodaira (2003) propose an active learning
algorithm that first calculates a maximum likelihood estimator and then uses this estimator to come
up with an optimal design. Asymptotic convergence rates areprovided under asymptotic normal-
ity assumptions. Sugiyama (2006) assumes an approximatelywell-specified model and i.i.d. label
noise, and selects a design from a finite set of possibilities. The approach is adapted to pool-based
active learning by Sugiyama and Nakajima (2009). Burbidge et al. (2007) propose an adaptation
of Query By Committee. Cai et al. (2013) propose guessing thepotential of an example to change
the current model. Ganti and Gray (2012) propose a consistent pool-based active learner for the
squared loss. A different line of research, which we do not discuss here, focuses on active learning
for non-parameteric regression, e.g. Efromovich (2007).

Outline In Section 2 the formal setting and preliminaries are introduced. In Section 3 the notion of
anoracle riskfor a given distribution is presented. The stratification technique is detailed in Section
4. The new active learner algorithm and its analysis are provided in Section 5, with the main result
stated in Theorem 5.1. In Section 6 we show via a simple example that in some cases the active
learner approaches the maximal possible improvement over passive learning.

2 Setting and Preliminaries

We assume a data space inRd and labels inR. For a distributionP over Rd × R, denote by
suppX(P ) the support of the marginal ofP overRd. Denote the strictly positive reals byR∗

+.
We assume that labeled examples are distributed according to a distributionD. A random labeled
example is(X, Y ) ∼ D, whereX ∈ R

d is the example andY ∈ R is the label. Throughout this
work, wheneverP[·] or E[·] appear without a subscript, they are taken with respect toD. DX is
the marginal distribution ofX in pairs draws fromD. The conditional distribution ofY when the
example isX = x is denotedDY |x. The functionx 7→ DY |x is denotedDY |X .

A predictor is a function fromRd to R that predicts a label for every possible example. Linear
predictors are functions of the formx 7→ x

⊤
w for somew ∈ R

d. The squared loss ofw ∈ R
d

for an examplex ∈ R
d with a true labely ∈ R is ℓ((x, y),w) = (x⊤

w − y)2. The expected
squared loss ofw with respect toD is L(w, D) = E(X,Y )∼D[(X⊤

w − Y )2]. The goal of the
learner is to find aw such thatL(w) is small. The optimal loss achievable by a linear predictor is
L⋆(D) = minw∈Rd L(w, D). We denote byw⋆(D) a minimizer ofL(w, D) such thatL⋆(D) =
L(w⋆(D), D). In all these notations the parameterD is dropped when clear from context.

In the passive learning setting, the learner draws random i.i.d. pairs(X, Y ) ∼ D. The sample
complexity of the learner is the number of drawn pairs. In theactive learning setting, the learner
draws i.i.d. examplesX ∼ DX . For any drawn example, the learner may draw a label according to
the distributionDY |X. The label complexity of the learner is the number of drawn labels. In this
setting it is easy to approximate various properties ofDX to any accuracy, with zero label cost. Thus
we assume for simplicity direct access to some properties ofDX , such as the covariance matrix of
DX , denotedΣD = EX∼DX

[XX
⊤], and expectations of some other functions ofX. We assume

w.l.o.g. thatΣD is not singular. For a matrixA ∈ R
d×d, andx ∈ R

d, denote‖x‖A =
√
x⊤Ax. Let

R2
D = maxx∈suppX (D) ‖x‖2Σ−1

D

. This is thecondition numberof the marginal distributionDX . We

have
E[‖X‖2

Σ−1
D

] = E[tr(X⊤Σ−1
D X)] = tr(Σ−1

D E[XX
⊤]) = d. (1)

Hsu and Sabato (2014) provide a passive learning algorithm for least squares linear regression with a
minimax optimal sample complexity (up to logarithmic factors). The algorithm is based on splitting
the labeled sample into several subsamples, performing OLSon each of the subsamples, and then
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choosing one of the resulting predictors via a generalized median procedure. We give here a useful
version of the result.1

Theorem 2.1(Hsu and Sabato, 2014). There are universal constantsC, c, c′, c′′ > 0 such that the
following holds. LetD be a distribution overRd×R. There exists an efficient algorithm that accepts
as input a confidenceδ ∈ (0, 1) and a labeled sample of sizen drawn i.i.d. fromD, and returns
ŵ ∈ R

d, such that ifn ≥ cR2
D log(c′n) log(c′′/δ), with probability1− δ,

L(ŵ, D)− L⋆(D) = ‖w⋆(D)− ŵ‖2ΣD
≤ C log(1/δ)

n
· ED[‖X‖2

Σ−1
D

(Y −X
⊤
w⋆(D))2]. (2)

This result is particularly useful in the context of active learning, since it provides an explicit de-
pendence on the point-wise errors of the labels, including in heteroscedastic settings, where this
error is not uniform. As we see below, in such cases active learning can potentially gain over passive
learning. We denote an execution of the algorithm on a labeled sampleS by ŵ← REG(S, δ). The al-
gorithm is used a black box, thus any other algorithm with similar guarantees could be used instead.
For instance, similar guarantees might hold for OLS for a more restricted class of distributions.

Throughout the analysis we omit for readability details of integer rounding, whenever the effects are
negligible. We use the notationO(exp), whereexp is a mathematical expression, as a short hand
for c̄ · exp + C̄ for some universal constantsc̄, C̄ ≥ 0, whose values can vary between statements.

3 An Oracle Bound for Active Regression

The bound in Theorem 2.1 crucially depends on the input distribution D. In an active learning
framework,rejection sampling(Von Neumann, 1951) can be used to simulate random draws of
labeled examples according to a different distribution, without additional label costs. By selecting a
suitable distribution, it might be possible to improve overEq. (2). Rejection sampling for regression
has been explored in Kanamori (2002); Kanamori and Shimodaira (2003); Sugiyama (2006) and
others, mostly in an asymptotic regime. Here we use the explicit bound in Eq. (2) to obtain new
finite sample guarantees that hold for general distributions.

Let φ : Rd → R
∗
+ be a strictly positive weight function such thatE[φ(X)] = 1. We define the

distributionPφ overRd×R as follows: Forx ∈ R
d, y ∈ R, letΓφ(x, y) = {(x̃, ỹ) ∈ R

d×R | x =
x̃√
φ(x̃)

, y = ỹ√
φ(x̃)
}, and definePφ by

∀(X, Y ) ∈ R
d × R, Pφ(X, Y ) =

∫

(X̃,Ỹ )∈Γφ(X,Y )

φ(X̃)dD(X̃, Ỹ ).

A labeled i.i.d. sample drawn according toPφ can be simulated using rejection sampling without
additional label costs (see Alg. 2 in Appendix B). We denote drawingm random labeled examples
according toP by S ← SAMPLE(P,m). For the squared loss onPφ we have

L(w, Pφ) =

∫

(X,Y )∈Rd

ℓ((X, Y ),w) dPφ(X, Y )

(∗)
=

∫

(X,Y )∈Rd

ℓ((X, Y ),w)

∫

(X̃,Ỹ )∈Γφ(X,Y )

φ(X̃) dD(X̃, Ỹ )

=

∫

(X̃,Ỹ )∈Rd

ℓ((
X̃

√

φ(X̃)
,

Ỹ
√

φ(X̃)
),w)φ(X̃) dD(X̃, Ỹ )

=

∫

(X,Y )∈Rd

ℓ((X, Y ),w) dD(X, Y ) = L(w, D).

The equality(∗) can be rigorously derived from the definition of Lebesgue integration. It follows
that alsoL⋆(D) = L⋆(Pφ) and thatw⋆(D) = w⋆(Pφ). We thus denote these byL⋆ andw⋆. In
a similar manner, we haveΣPφ

=
∫

XX
⊤ dPφ(X, Y ) =

∫

XX
⊤ dD(X, Y ) = ΣD. From now on

1This is a slight variation of the original result of Hsu and Sabato (2014), see Appendix A.
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we denote this matrix simplyΣ. We denote‖ · ‖Σ by ‖ · ‖, and‖ · ‖Σ−1 by ‖ · ‖∗. The condition

number ofPφ isR2
Pφ

= maxx∈suppX (D)
‖x‖2

∗

φ(x) .

If the regression algorithm is applied ton labeled examples drawn from the simulatedPφ, then by
Eq. (2) and the equalities above, with probability1− δ, if n ≥ cR2

Pφ
log(c′n) log(c′′/δ)),

L(ŵ)− L⋆ ≤
C · log(1/δ)

n
· EPφ

[‖X‖2∗(X⊤
w⋆ − Y )2]

=
C · log(1/δ)

n
· ED[‖X‖2∗(X⊤

w⋆ − Y )2/φ(X)].

Denoteψ2(x) := ‖x‖2∗ · ED[(X⊤
w⋆ − Y )2 | X = x]. Further denoteρ(φ) := ED[ψ2(X)/φ(X)],

which we term therisk of φ. Then, ifn ≥ cR2
Pφ

log(c′n) log(c′′/δ), with probability1− δ,

L(ŵ)− L⋆ ≤
C · ρ(φ) log(1/δ)

n
. (3)

A passive learner essentially uses the defaultφ, which is constantly1, for a risk ofρ(1) = E[ψ2(X)].
But theφ that minimizes the bound is the solution to the following minimization problem:

Minimizeφ E[ψ2(X)/φ(X)]

subject to E[φ(X)] = 1, (4)

φ(x) ≥ c log(c′n) log(c′′/δ)

n
‖x‖2∗, ∀x ∈ suppX(D).

The second constraint is due to the requirementn ≥ cR2
Pφ

log(c′n) log(c′′/δ). The following lemma
bounds the risk of the optimalφ. Its proof is provided in Appendix C.

Lemma 3.1. Let φ⋆ be the solution to the minimization problem in Eq. (4). Then for n ≥
O(d log(d) log(1/δ)), E2[ψ(X)] ≤ ρ(φ⋆) ≤ E

2[ψ(X)](1 +O(d log(n) log(1/δ)/n)).

The ratio between the risk ofφ⋆ and the risk of the defaultφ thus approachesE[ψ2(X)]/E2[ψ(X)],
and this is also the optimal factor of label complexity reduction. The ratio is1 for highly symmetric
distributions, where the support ofDX is on a sphere and all the noise variances are identical. In
these cases, active learning is not helpful, even asymptotically. However, in the general case, this
ratio is unbounded, and so is the potential for improvement from using active learning. The crucial
challenge is that without access to the conditional distribution DY |X , Eq. (4) cannot be solved
directly. We consider theoraclerisk ρ⋆ = E

2[ψ(X)], which can be approached if an oracle divulges
the optimalφ andn→∞. The goal of the active learner is to approach the oracle guaranteewithout
prior knowledge ofDY |X .

4 Approaching the Oracle Bound with Strata

To approximate the oracle guarantee, we borrow the stratification approach used in Monte-Carlo
function integration (e.g., Glasserman, 2004). PartitionsuppX(D) into K disjoint subsetsA =
{A1, . . . , AK}, and consider forφ only functions that are constant on eachAi and such that
E[φ(X)] = 1. Each of the functions in this class can be described by a vector a = (a1, . . . , aK) ∈
(R∗

+)
K . The value of the function onx ∈ Ai is ai∑

j∈[K] pjaj
, wherepj := P[X ∈ Aj ]. Letφa denote

a function defined bya, leaving the dependence on the partitionA implicit. To calculate the risk of
φa, denoteµi := E[‖X‖2∗(X⊤

w⋆ − Y )2 | X ∈ Ai]. From the definition ofρ(φ),

ρ(φa) =
∑

j∈[K]

pjaj
∑

i∈[K]

pi
ai
µi. (5)

It is easy to verify thata⋆ such thata⋆i =
√
µi minimizesρ(φa), and

ρ⋆A := inf
a∈R

K
+

ρ(φa) = ρ(φa⋆) = (
∑

i∈[K]

pi
√
µi)

2. (6)

ρ⋆A is the oracle risk for the fixed partitionA. In comparison, the standard passive learner has risk
ρ(φ1) =

∑

i∈[K] piµi. Thus, the ratio between the optimal risk and the default risk can be as large as
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1/mini pi. Note that here, as in the definition ofρ⋆ above,ρ⋆A might not be achievable for samples
up to a certain size, because of the additional requirement that φ not be too small (see Eq. (4)).
Nonetheless, this optimistic value is useful as a comparison.

Consider an infinite sequence of partitions: forj ∈ N, Aj = {Aj
1, . . . , A

j
Kj
}, with Kj → ∞.

Similarly to Carpentier and Munos (2012), under mild regularity assumptions, if the partitions have
diameters and probabilities that approach zero, thenρ⋆Aj → ρ(φ⋆), achieving the optimal upper
bound for Eq. (3). For a fixed partitionA, the challenge is then to approachρ∗A without prior
knowledge of the trueµi’s, using relatively few extra labeled examples. In the nextsection we
describe our active learning algorithm that does just that.

5 Active Learning for Regression

To approach the optimal riskρ∗A, we need a good estimate ofµi for i ∈ [K]. Note thatµi depends on
the optimal predictorw⋆, therefore its value depends on the entire distribution. Weassume that the
error of the label relative to the optimal predictor is bounded as follows: There exists ab ≥ 0 such
that(x⊤

w⋆− y)2 ≤ b2‖x‖2∗ for all (x, y) in the support ofD. This boundedness assumption can be
replaced by an assumption on sub-Gaussian tails with similar results. Our assumption implies also
L⋆ = E[(x⊤

w⋆ − y)2] ≤ b2E[‖X‖2∗] = b2d, where the last equality follows from Eq. (1).

Algorithm 1 Active Regression

input Confidenceδ ∈ (0, 1), label budgetm, partitionA.
output ŵ ∈ R

d

1: m1 ← m4/5/2,m2 ← m4/5/2,m3 ← m− (m1 +m2).
2: δ1 ← δ/4, δ2 ← δ/4, δ3 ← δ/2.
3: S1 ← SAMPLE(Pφ[Σ],m1)
4: v̂← REG(S1, δ1)

5: ∆←
√

Cd2b2 log(1/δ1)
m1

; γ ← (b + 2∆)2
√

K log(2K/δ2)/m2; t← m2/K.
6: for i = 1 toK do
7: Ti ← SAMPLE(Qi, t).

8: µ̃i ← Θi ·
(

1
t

∑

(x,y)∈Ti
(|x⊤

v̂ − y|+∆)2 + γ
)

.

9: âi ←
√
µ̃i.

10: end for
11: ξ ← c log(c′m3) log(c

′′/δ3)
m3

12: Setφ̂ such that forx ∈ Ai, φ̂(x) := ‖x‖2∗ · ξ + (1− dξ) âi∑
j
pj âj

.

13: S3 ← SAMPLE(Pφ̂,m3).
14: ŵ← REG(S3, δ3).

Our active regression algorithm, listed in Alg. 1, operatesin three stages. In the first stage, the goal is
to find a crude loss optimizer̂v, so as to later estimateµi. To find this optimizer, the algorithm draws
a labeled sample of sizem1 from the distributionPφ[Σ], whereφ[Σ](x) := 1

dx
⊤Σ−1

x = 1
d‖x‖2∗.

Note thatρ(φ[Σ]) = d ·E[(Xw⋆ − Y )2] = dL⋆. In addition,R2
Pφ[Σ]

= d. Consequently, by Eq. (3),
applyingREG tom1 ≥ O(d log(d) log(1/δ1)) random draws fromPφ[Σ] gets, with probability1−δ1

L(v̂)− L⋆ = ‖v̂−w⋆‖2 ≤
CdL⋆ log(1/δ1)

m1
≤ Cd2b2 log(1/δ1)

m1
. (7)

In Needell et al. (2013) a similar distribution is used to speed up gradient descent for convex losses.
Here, we make use ofφ[Σ] as a stepping stone in order to approach the optimalφ at a rate that does
not depend on the condition number ofD. Denote byE the event that Eq. (7) holds.

In the second stage, estimates forµi, denoted̃µi, are calculated from labeled samples that are drawn
from another set of probability distributions,Qi for i ∈ [K]. These distributions are defined as
follows. DenoteΘi = E[‖X‖4∗ | X ∈ Ai]. For x ∈ R

d, y ∈ R, let Γi(x, y) = {(x̃, ỹ) ∈ Ai ×
R | x = x̃

‖x̃‖∗
, y = ỹ

‖x̃‖∗
}, and defineQi by dQi(X, Y ) = 1

Θi

∫

(X̃,Ỹ )∈Γi(X,Y ) ‖X̃‖4∗ dD(X̃, Ỹ ).
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Clearly, for allx ∈ suppX(Qi), ‖x‖∗ = 1. Drawing labeled examples fromQi can be done using
rejection sampling, similarly toPφ. The use of theQi distributions in the second stage again helps
avoid a dependence on the condition number ofD in the convergence rates.

In the last stage, a weight function̂φ is determined based on the estimatedµ̃i. A labeled sample is
drawn fromPφ̂, and the algorithm returns the predictor resulting from running REG on this sample.
The following theorem gives our main result, a finite sample convergence rate guarantee.

Theorem 5.1. Let b ≥ 0 such that(x⊤
w⋆ − y)2 ≤ b2‖x‖2∗ for all (x, y) in the support ofD. Let

ΛD = E[‖X‖4∗]. If Alg. 1 is executed withδ andm such thatm ≥ O(d log(d) log(1/δ))5/4, then it
drawsm labels, and with probability1− δ,

L(ŵ)− L⋆ ≤
Cρ⋆A log(3/δ)

m
+

O

(

log(1/δ)

m6/5
ρ⋆A +

d1/2Λ
1/4
D log5/4(1/δ)

m6/5
b1/2ρ⋆A

3/4 +
dΛ

1/2
D K1/4 log1/4(K/δ) log(1/δ)

m6/5
bρ⋆A

1/2

)

.

The theorem shows that the learning rate of the active learner approaches the oracle rate for the given
partition. With an infinite sequence of partitions withK an increasing function ofm, the optimal
oracle risk can also be approached. The rate of convergence to the oracle rate does not depend on the
condition number ofD, unlike the passive learning rate. In addition,m = O(d log(d) log(1/δ))5/4

suffices to approach the optimal rate, whereasm = Ω(d) is obviously necessary for any learner. It
is interesting that also in active learning for classification, it has been observed that active learning
in a non-realizable setting requires a super-linear dependence ond (See, e.g., Dasgupta et al., 2008).
Whether this dependence is unavoidable for active regression is an open question. Theorem 5.1 is
be proved via a series of lemmas. First, we show that ifµ̃i is a good approximation ofµi thenρA(φ̂)
can be bounded as a function of the oracle risk forA.

Lemma 5.2. Supposem3 ≥ O(d log(d) log(1/δ3)), and letφ̂ as in Alg. 1. If, for someα, β ≥ 0,

µi ≤ µ̃i ≤ µi + αi
√
µi + βi, (8)

then

ρA(φ̂) ≤ (1 +O(d log(m3) log(1/δ3)/m3))(ρ
⋆
A + (

∑

i

piαi)
1/2ρ⋆A

3/4 + (
∑

i

piβi)
1/2ρ⋆A

1/2).

Proof. We have∀x ∈ Ai, φ̂(x) ≥ (1− dξ) âi∑
j pj âj

, whereξ = c log(c′m3) log(c
′′/δ)

m3
. Therefore

ρ(φ̂) ≡ E[ψ2(X)/φ̂(X)] ≤ 1

1− dξ
∑

j

pj âj
∑

i

pi · E[ψ2(X)/âi | X ∈ Ai]

=
1

1− dξ
∑

j

pj âj
∑

i

piµi/âi = (1 +
dξ

1− dξ )ρ(φâ).

Form3 ≥ O(d log(d) log(1/δ3)), dξ ≤ 1
2 ,2 therefore dξ

1−dξ ≤ 2dξ. It follows

ρ(φ̂) ≤ (1 +O(d log(m3) log(1/δ3)/m3))ρ(φâ). (9)

By Eq. (8),

ρA(φâ) =
∑

j

pj
√

µ̃j

∑

i

piµi/
√

µ̃i

≤
∑

j

pj(
√
µj +

√
αjµ

1/4
j +

√

βj)
∑

i

pi
√
µi

= (
∑

i

pi
√
µi)

2 + (
∑

j

pj
√
αjµ

1/4
j )(

∑

i

pi
√
µi) + (

∑

j

pj
√

βj)(
∑

i

pi
√
µi).

= ρ⋆A + (
∑

j

pj
√
αjµ

1/4
j )ρ⋆A

1/2 + (
∑

j

pj
√

βj)ρ
⋆
A
1/2.

2Using the fact thatm ≥ O(d log(d) log(1/δ3)) impliesm ≥ O(d log(m) log(1/δ3)).
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The last equality is sinceρ⋆A = (
∑

i pi
√
µi)

2. By Cauchy-Schwartz,(
∑

j pj
√
αjµ

1/4
j ) ≤

(
∑

i piαi)
1/2ρ⋆A

3/4. By Jensen’s inequality,
∑

j pj
√

βj ≤ (
∑

j pjβj)
1/2. Combined with Eq. (6)

and Eq. (9), the lemma directly follows.

We now show that Eq. (8) holds and provide explicit values forα andβ. Define

νi := Θi · EQi
[(|X⊤

ŵ− Y |+∆)2], and ν̂i :=
Θi

t

∑

(x,y)∈Ti

(|x⊤
ŵ − y|+∆)2.

Note thatµ̃i = ν̂i + Θiγ. We will relateν̂i to νi, and thenνi to µi, to conclude a bound of the
form in Eq. (8) forµ̃i. First, note that ifm1 ≥ O(d log(d) log(1/δ1) andE holds, then for any
x ∈ ∪i∈[K]suppX(Qi),

|x⊤
v̂ − x

⊤
w⋆| ≤ ‖x‖∗‖v̂ −w⋆‖ ≤

√

Cd2b2 log(1/δ1)

m1
≡ ∆. (10)

The second inequality stems from‖x‖∗ = 1 for x ∈ ∪i∈[K]suppX(Qi), and Eq. (7). This is useful
in the following lemma, which relateŝνi with νi.

Lemma 5.3. Suppose thatm1 ≥ O(d log(d) log(1/δ1)) andE holds. Then with probability1− δ2
over the draw ofT1, . . . , TK , for all i ∈ [K], |ν̂i−νi| ≤ Θi(b+2∆)2

√

K log(2K/δ2)/m2 ≡ Θiγ.

Proof. For a fixedv̂, ν̂i/Θi is the empirical average of i.i.d. samples of the random variableZ =
(|X⊤

v̂ − Y | + ∆)2, where(X, Y ) is drawn according toQi. We now give an upper bound forZ
with probability1. Let (X̃, Ỹ ) in the support ofD such thatX = X̃/‖X̃‖∗ andY = Ỹ /‖X̃‖∗.
Then|X⊤

w⋆ − Y | = |X̃⊤
w⋆ − Ỹ |/‖X̃‖∗ ≤ b. If E holds andm1 ≥ O(d log(d) log(1/δ1)),

Z ≤ (|X⊤
v̂ −X

⊤
w⋆|+ |X⊤

w⋆ − Y |+∆)2 ≤ (b + 2∆)2,

where the last inequality follows from Eq. (10). By Hoeffding’s inequality, for everyi, with proba-
bility 1 − δ2, |ν̂i − νi| ≤ Θi(b + 2∆)2

√

log(2/δ2)/t. The statement of the lemma follows from a
union bound overi ∈ [K] andt = m2/K.

The following lemma, proved in Appendix D, provides the desired relationship betweenνi andµi.

Lemma 5.4. If m1 ≥ O(d log(d) log(1/δ1)) andE holds, thenµi ≤ νi ≤ µi+4∆
√
Θiµi+4∆2Θi.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1.From the condition onm and the definition ofm1,m3 in Alg. 1 we have
m1 ≥ O(d log(d/δ1)) andm3 ≥ O(d log(d/δ3)). Therefore the inequalities in Lemma 5.4, Lemma
5.3 and Eq. (3) (withn, δ, φ substituted withm3, δ3, φ̂) hold simultaneously with probability1 −
δ1 − δ2 − δ3. For Eq. (3), note that‖x‖∗

φ̂(x)
≥ ξ, thusm3 ≥ cR2

P
φ̂
log(c′n) log(c′′/δ3) as required.

Combining Lemma 5.4 and Lemma 5.3, and noting thatµ̃i = ν̂i +Θiγ, we conclude that

µi ≤ µ̃i ≤ µi + 4∆
√

Θiµi +Θi(4∆
2 + 2γ).

By Lemma 5.2, it follows that

ρA(φ̂) ≤ ρ⋆A + 2
√
∆(
∑

i∈[K]

pi
√

Θi)
1/2ρ⋆A

3/4 +
√

4∆2 + 2γ · (
∑

i∈[K]

piΘi)
1/2ρ⋆A

1/2 + Ō(
log(m3)

m3
)

≤ ρ⋆A + 2∆1/2Λ
1/4
D ρ⋆A

3/4 +
√

4∆2 + 2γ · Λ1/2
D ρ⋆A

1/2 + Ō(log(m3)/m3).

The last inequality follows since
∑

i∈[K] piΘi = ΛD. We useŌ to absorb parameters that already
appear in the other terms of the bound. Combining this with Eq. (3),

L(ŵ)− L⋆ ≤
Cρ⋆A log(1/δ3)

m3
+

C log(1/δ3)

m3

(

2∆1/2Λ
1/4
D ρ⋆A

3/4 + (2∆+
√

2γ) · Λ1/2
D ρ⋆A

1/2
)

+ Ō(
log(m3)

m2
3

).
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We haveγ = (b+2∆)2
√

K log(2K/δ2)/m2, and∆ =
√

Cd2b2 log(1/δ1)
m1

. Form1 ≥ Cd log(1/δ1),
∆ ≤ b

√
d, thusγ ≤ b2(2

√
d+ 1)2

√

K log(2K/δ2)/m2. Substituting for∆ andγ, we have

L(ŵ)− L⋆ ≤
Cρ⋆A log(1/δ3)

m3
+
C log(1/δ3)

m3

(

16Cd2b2 log(1/δ1)

m1

)1/4

Λ
1/4
D ρ⋆A

3/4

+
C log(1/δ3)

m3

(

(

4Cd2b2 log(1/δ1)

m1

)1/2

+
√
2b(2
√
d+ 1)

(

K log(2K/δ2)

m2

)1/4
)

· Λ1/2
D ρ⋆A

1/2 + Ō(
log(m3)

m2
3

).

To get the theorem, setm3 = m−m4/5,m2 = m1 = m4/5/2, δ1 = δ2 = δ/4, andδ3 = δ/2.

6 Improvement over Passive Learning

Theorem 5.1 shows that our active learner approaches the oracle rate, which can be strictly faster than
the rate implied by Theorem 2.1 for passive learning. To complete the picture, observe that this better
rate cannot be achieved byany passive learner. This can be seen by the following1-dimensional
example. Letσ > 0, α > 1√

2
, p = 1

2α2 , andη ∈ R such that|η| ≤ σ
α . LetDη overR × R such

that with probabilityp, X = α andY = αη + ǫ, whereǫ ∼ N(0, σ2), and with probability1 − p,
X = β :=

√

1−pα2

1−p andY = 0. ThenE[X2] = 1 andw⋆ = pα2η. Consider a partition ofR such

thatα ∈ A1 andβ ∈ A2. Thenp1 = p, µ1 = Eǫ[α
2(ǫ+αη−αw⋆)

2] = α2(σ2+α2η2(1−pα2)) ≤
3
2α

2σ2. In addition,p2 = 1− p andµ2 = β4w2
⋆ = (1−pα2

1−p )2p2α4η2 ≤ p2α2σ2

4(1−p)2 . The oracle risk is

ρ⋆A = (p1
√
µ1 + p2

√
µ2)

2 ≤ (p

√

3

2
ασ + (1− p) pασ

2(1− p) )
2 = p2α2σ2(

√

3

2
+

1

2
)2 ≤ 2pσ2.

Therefore, for the active learner, with probability1− δ,

L(ŵ)− L⋆ ≤
2Cpσ2 log(1/δ)

m
+ o(

1

m
). (11)

In contrast, consider any passive learner that receivesm labeled examples and outputs a predictor
ŵ. Consider the estimator forη defined bŷη = ŵ

pα2 . η̂ estimates the mean of a Gaussian distribution

with varianceσ2/α2. The minimax optimal rate for such an estimator isσ2

α2n , wheren is the number
of examples withX = α.3 With probability at least1/2, n ≤ 2mp. Therefore,EDm [(η̂ − η)2] ≥

σ2

4α2mp . It follows thatEDm [L(ŵ)− L⋆] = EDm [(ŵ −w)2] = p2α4 ·E[(η̂ − η)2] ≥ pα2σ2

4m = σ2

4m .

Comparing this to Eq. (11), one can see that the ratio betweenthe rate of the best passive learner
and the rate of the active learner approachesO(1/p) for largem.

7 Discussion

Many questions remain open for active regression. For instance, it is of particular interest whether
the convergence rates provided here are the best possible for this model. Second, we consider here
only the plain vanilla finite-dimensional regression, however we believe that the approach can be
extended to ridge regression in a general Hilbert space. Lastly, the algorithm uses static allocation
of samples to stages and to partitions. In Monte-Carlo estimation Carpentier and Munos (2012),
dynamic allocation has been used to provide convergence to apseudo-risk with better constants. It
is an open question whether this type of approach can be useful in the case of active regression.
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A On the Derivation of Theorem 2.1

Theorem 2.1 is a useful variation of the results in Hsu and Sabato (2014). It stems from a slight
change to Theorem 1 in Hsu and Sabato (2014), such that instead of requiring their ‘Condition 1’,
which leads to the requirement:n >= d log(1/δ), we require a bounded condition numberR, which
leads to the requirement:n >= cR2 log(c′R) log(1/δ)), similarly to the proof of Theorem 2 there.
We use the slightly stronger conditionn >= cR2 log(c′n) log(c′′/δ)), with n on both sides (and
different constantsc, c′, c′′), since it is more convenient in the derivations that follow. Note that both
conditions are equivalent up to constants.

B Sampling according toPφ

Samplingm labeled examples according toPφ can be done by actively queryingm, labels via
standard rejection sampling. The algorithm is brought herefor completeness.

Algorithm 2 Sampling according toPφ

input Sample sizem, φ : suppX(D)→ R
∗
+ such thatE[φ(x)] = 1.

output A labeled sampleS of sizem drawn according toPφ.
1: while |S| < m do
2: Drawx according toDX

3: Draw a uniform random variableu ∼ U [0, 1]
4: if u ≤ φ(x)/maxz∈suppX(D) φ(z) then
5: Drawy according toDY |x
6: S ← S ∪ {(x/

√

φ(x), y/
√

φ(x))}.
7: end if
8: end while

C Proof of Lemma 3.1

Proof of Lemma 3.1.Denoteξ := c log(c′n) log(1/δ)
n . Let β ≥ 0, andHβ = {x | ψ(x) ≤ β‖x‖2∗}.

There exists aβ ≥ 0 such that the solution for Eq. (4) has the following form.

φ⋆(x) = max{‖x‖2∗ξ,
ψ(x)(1 − E[‖X‖2∗ξ · I[X ∈ Hβ]])

E[ψ(X) · I[X /∈ Hβ ]]
}.

Thereforeφ⋆(x) ≥ ψ(x)(1 − E[‖X‖2∗] · ξ)/E[ψ(X)]. Plugging this into the definition ofρ, and
using Eq. (1),

ρ(φ⋆) = E[ψ2(x)/φ⋆(x)] ≤ E
2[ψ(x)]

1− dξ ≤ E
2[ψ(x)] +

dξ

1− dξ · E
2[ψ(x)].

Forn ≥ O(d log(d) log(1/δ)), dξ ≤ 1/2, hence dξ
1−dξ ≤ 2dξ ≤ O(d log(n) log(1/δ)/n). Therefore

ρ(φ⋆) ≤ E
2[ψ(x)](1 + O(d log(n) log(1/δ)/n)). To see thatρ(φ⋆) ≥ E

2[ψ(x)], consider Eq. (4)
for ξ = 0. In this case the optimal solution isφ⋆(x) = ψ(x)/E[ψ(x)].

D Proof of Lemma 5.4

Proof of Lemma 5.4.By the definition ofµi andQi,

µi =

∫

Ai×R

‖X‖2∗(X⊤
w⋆ − Y )2 dD(X, Y )

=

∫

Ai×R

(
X

⊤

‖X‖∗
w⋆ −

Y

‖X‖∗
)2‖X‖4∗ · dD(X, Y )

= Θi ·
∫

(X⊤
w⋆ − Y )2 · dQi(X, Y )

= Θi · EQi
[(X⊤

w⋆ − Y )2]. (12)
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Assume thatE holds. By Eq. (10), for allX ∈ suppX(Qi),

(X⊤
w⋆ − Y )2 ≤ (|X⊤

w⋆ −X
⊤
v̂|+ |X⊤

v̂ − Y |)2 ≤ (|X⊤
v̂ − Y |+∆)2.

From Eq. (12) and the definition ofνi, it follows thatµi ≤ νi. For the upper bound onνi,

(|X⊤
v̂ − Y |+∆)2 ≤ (|X⊤

w⋆ − Y |+ |X⊤
w⋆ −X

⊤
v̂|+∆)2

≤ (|X⊤
w⋆ − Y |+ 2∆)2 (13)

By Jensen’s inequality,EQi
[(|X⊤

w⋆ − Y |+ 2∆)2] ≤ (
√

EQi
[(X⊤w⋆ − Y )2] + 2∆)2. Therefore

νi ≡ Θi · EQi
[(|X⊤

ŵ− Y |+∆)2]

≤ Θi(
√

EQi
[(X⊤w⋆ − Y )2] + 2∆)2

= (
√
µi + 2∆

√

Θi)
2.
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