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Outline of Part 3

Exploration for sequential decision making:
Application to games, optimization, and planning
The stochastic bandit: UCB

The adversarial bandit: EXP3
Populations of bandits

e Computation of equilibrium in games. Application to Poker
e Hierarchical bandits. MCTS and application to Go.

Optimism for decision making
o Lipschitz optimization
e Lipschitz bandits
e Optimistic planning in MDPs
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The stochastic multi-armed bandit problem

Setting:

e Set of K arms, defined by distributions vy
(with support in [0,1]), whose law is
unknown,

e At each time t, choose an arm k; and
receive reward Xx; iid- V, -

e Goal: find an arm selection policy such as
to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:
e Explore: learn about the environment

e Exploit: act optimally according to our current beliefs
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The regret

Definitions:
o Let py = E[vk] be the expected value of arm k,
e Let u* = maxy uk the best expected value,

e The cumulative expected regret:

n K n K
R, Zu* — [y = Z(M*—Mk) Z ke = k} = ZAk”k’
=1 =1 k=1

k=1

where Ay def w* — g, and ng the number of times arm k has
been pulled up to time n.

Goal: Find an arm selection policy such as to minimize R,,.
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Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not
fully solved yet!
Many proposed strategies:

e-greedy exploration: choose apparent best action with
proba 1 — ¢, or random action with proba e,

Bayesian exploration: assign prior to the arm distributions
and select arm according to the posterior distributions (Gittins
index, Thompson strategy, ...)

Softmax exploration: choose arm k with proba o exp(B)A(k)
(ex: EXP3 algo)

Follow the perturbed leader: choose best perturbed arm

Optimistic exploration: select arm with highest upper bound
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The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi,
Fischer, 2002]: at each time n, select the arm k with highest
Bk, n,,n value:

def 1 3lo
knk,ni Z ks g( )7

2ny
H/—/ N——
< Cny ,n
) X k>
with: ko

e ny is the number of times arm k has been pulled up to time n
® Xy s is the s-th reward received when pulling arm k.

Note that
e Sum of an exploitation term and an exploration term.

® Cp,.n is a confidence interval term, so By ,, » is a UCB.
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Intuition of the UCB algorithm
Idea:

e ”Optimism in the face of uncertainty” principle

e Select the arm with highest upper bound (on the true value of
the arm, given what has been observed so far).

e The B-values By s are UCBs on pi. Indeed:

S 3log(t 1
P(Xk,s — pik > g()) <

2s t3’
< 3log(t) 1
P(Xy s — < —
( ks — Mk > 2% ) 3

Reminder of Chernoff-Hoeffding inequality:

P()?k,s — Uy > 6) < 672562

P(Xis — jik < —¢) < e 2
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Regret bound for UCB

Proposition 1.
Each sub-optimal arm k is visited in average, at most:
log n 2

1+ —
a3

Enk( ) 6

times (where Ak ,u — pg >0).
Thus the expected regret is bounded by:

log n 2
ER, =Y E[m]Ac<6 > Ag K1+ T
k k:A>0 k

3)'

Optimistic planning
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Intuition of the proof

Let k be a sub-optimal arm, and k* be an optimal arm. At time n,
if arm k is selected, this means that

S 3log(n) S 3log(n)
X > X
k,nk + 2nk - k SN 2nk*
31
k+2 ;iin) > u*, with high proba
6 log(n)
ng < Ai

Thus, if n > %87 then there is only a small probability that

arm k be seIected
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Proof of Proposition 1

Write u = GIOAgQ(") + 1. We have:
k

m(n) < u+ Y ke = kin(t) > u}
t=u+1
< u+ Z [ Z W Xis — i > Ct5}+ZI{Xk* st~ Ik < —Crr }}
t=u+1 s=u+1
Now, taking the expectation of both sides,
]E[nk(")]SU+Z [ Z P(Xis — pk > ce.s) +ZIP K- s — 1k < Ct,s*)}

t=u+1 s=u+l

u+z [Z Jth } Olog(n )+1+%2

t=u+1 s=u+1

IN
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Variants of UCB
[Audibert et al., 2008]
e UCB with variance estimate: Define the UCB:

~ Vi n, log(1.2n 3log(1.2n
Br,ni,n o Xt + \/2 ko 108 ) + 8 )
ng ng

Then the expected regret is bounded by:

2
9k
ER, < 10( ) At 2) log(n).
k:A>0

e PAC-UCB: Let 8 > 0. Define the UCB:
def o \/|0g(K”k(”k +1)871)

Bk,nk = Xk,nk +
ng

Then w.p. 1 — 3, the regret is bounded by a constant:

Rn < 6log(KB™") > !

Ay’
k:A>0



Introduction to bandits

Upper and Lower bounds
UCB:
e Distribution-dependent: ER, = O(Zk:Ak>0 Aik log n)
e Distribution-independent: ER, = O(v/Knlog n).
Lower-bounds:
e Distribution-dependent [Lai et Robbins, 1985]:

Ay
ER :Q< E — )
’ po o KL v) 8"
A>0

e Distribution-independent [Cesa-Bianchi et Lugosi, 2006]:

inf  sup R, =Q(VnK).
Algo Problem
Recent improvements in upper-bounds: optimal bounds!
e MOSS [Audibert & Bubeck, 2009]
o KL-UCB [Garivier & Cappé, 2011], [Maillard et al., 2011]
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The rewards are no more i.i.d., but arbitrary!

At time t, simultaneously

The adversarial bandit

e The adversary assigns a reward x; ; € [0, 1] to each arm

ke{l,... K}

e The player chooses an arm k;

The player receives the corresponding reward x,. His goal is to
maximize the sum of rewards.

Can we expect to do almost as good as the best (constant) arm?

Time 1 2 3 14| 5 |6| 7 |8
Arm pulled 1 2 1 j1) 2 |11 ]1
Rewardarm1 | 1 (0709 1| 1 |1]08]|1
Reward arm 2 | 09 | O 1 /0/04]|0]|06]|0

Reward obtained: 6.1. Arm 1: 7.4, Arm 2: 2.9.

Regret w.r.t. best constant strategy: 7.4 — 6.1 = 1.3.
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Notion of regret

Define the regret:

n n
R, = max E Xie,t — Zxkt.
ke{l,...K} =1

t=1

e Performance assessed in terms of the best constant strategy.

e Can we expect
sup ER,/n— 07
rewards
e If the policy of the player is deterministic, there exists a
reward sequence such that the performance is arbitrarily poor
— Need internal randomization.
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EXP3 algorithm
EXP3 algorithm (Explore-Exploit using Exponential weights)
[Auer et al, 2002]:

e 17> 0and 8 > 0 are two parameters of the algorithm.
e Initialize wi(k) =1 forall k=1,... K.

e At each round t =1,...,n, player selects arm ki ~ p:(-),
where *) 5
Wi
pe(k)=(1-B) == + 3
S K
with

we(k) = et % (k)

where

o= 50
((k) = 2 Lk = K.
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Performance of EXP3

Proposition 2.
Letn <1and 8 =nK. We have ER, < 18K (e — 1)ynK. Thus,

by choosing n = 4 /%, it comes
sup ER, <2.63y/nKlog K.

rewards

Properties:

e If all rewards are provided to the learner, with a similar
algorithms we have [Lugosi and Cesa-Bianchi, 2006]

sup ER, = O(y/nlog K).

rewards
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Proof of Proposition 2 [part 1]
Write W; = Zszl wg(t). Notice that

K

. B ; Xs(k)
Eomp [%s(K)] = ;pS( )Ps(k)

1{i = k} = xs(k),

and Bromp (k)] = Y pe(1) 200 < K.

We thus have

W i Wk(t )ee(k) i - B/K onelk

W —~ 17

< Z %(1 +n%(k) + (e = 2)*%(k)?),

since N%(k) <nK/B =1, and e <1+ x+ (e —2)x? for x < 1.
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Proof of Proposition 2 [part 2]

Thus

)(n%e(K) + (e = 2)n*%e(K)?),

INA
Mx

k:

log .~ = 1i5 Zpk(t)(n?t(k) + (e = 2)n*%(k)?),

og 1L < ﬂzzpk(t (15%(K) + (& = 2025 (K)).

t=1 k=1

But we also have

K n
Wit S (k) <
log W |ogz; ' 2t=1 —log K > n;xt(k) —log K,

forany k=1,...,n
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Proof of Proposition 2 [part 3]

Take expectation w.r.t. internal randomization of the algo, thus for
all k,

E[(1-8) Y %K) - DY p(t)x()] < (- p)=EX

t=1 j=1 N

n K
+ (e —2mE[ Y] " pu(v)x(K)?]

t=1 k=1

E[th(k) - th(kt)] < Bn+ % + (e — 2)ynK
ERa(k)] < BK L (e_ 1)k

n
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In summary...

Distribution-dependent bounds:

UCB: ER, :o(zk&bgn)
lower-bound: ER, :Q<Iog n)

Distribution-independent bounds:

UCB: sup ER, = O(\/Knlogn)
distributions
EXP3:  sup  ER, = O(\/KnlogK)
rewards
lower-bound: sup ER, :Q(\/Kn>
rewards

Remark: The optimal rate O(\/Kn> is achieved by INF [Audibert
and Bubeck, 2010
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Population of bandits

e Bandit (or regret minimization) algorithms = tool for rapidly
selecting the best action.
e Basic building block for solving more complex problems

e We now consider a population of bandits:

Adversarial bandits Collaborative bandits
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Game between bandits

Consider a 2-players zero-sum repeated game:
A and B play actions: 1 or 2 simultaneously, and receive the
reward (for A):

A\B| 1|2
1 [2]0
2 |11

(A likes consensus, B likes conflicts)

Now, let A and B be bandit algorithms, aiming at minimizing their
regret, i.e. for player A:

n n

RnA = ,B - A,B .
(A) ag‘][%}t:lm(a t) ;fA( t, Bt)

What happens?
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Nash equilibrium

Nash equilibrium: (mixed) strategy for both players, such that no
player has incentive for changing unilaterally his own strategy.

A\B| 1|2
1 [2]0
11

B=2

Here: A plays 1 with probability ;
pa = 1/2, B plays 1 with proba- T ‘ S,

bility pg = 1/4.
B=1
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Regret minimization — Nash equilibrium

Define the regret of A:

n n

Ro(A)E max S ra(a,Be) = 3 ra(A:, Br).

ae{1,2} 1 1

and that of B accordingly.

Proposition 3.

If both players perform a (Hannan) consistent regret-minimization
strategy (i.e. Ro(A)/n — 0 and R,(B)/n — 0), then the empirical
frequencies of chosen actions of both players converge to a Nash

equilibrium.
(Remember that EXP3 is consistent!)

Note that in general, we have convergence towards correlated
equilibrium [Foster and Vohra, 1997].
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Sketch of proof:

. def 1 n def 1 n
Write p3 = +> {1 1a=12and pg = > {_;1p,—1 and

def
ra(p,q) = Era(A~p,B ~q).
Regret-minimization algorithm: R,(A)/n — 0 means that: Ve > 0,
for n large enough,

n n

1 1
m — g ,B:) — — g A:, B <
ae{?é}nt 1rA(a t) nt 1rA( t t) = ¢
n n n
_ <
aem{?,é} rA(a,pB) rA(pA,pB) €

ra(p; pg) — ra(pa; pB) < &,
for all p €[0,1]. Now, using R,(B)/n — 0 we deduce that:
ra(p, pg) — € < ra(pa, pg) < ra(pa, q) +&, ¥p.q < [0,1]

Thus the empirical frequencies of actions played by both players is
arbitrarily close to a Nash strategy.
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Texas Hold'em Poker

e In the 2-players Poker game, the
Nash equilibrium is interesting
(zero-sum game)

e A policy:
information set (my cards + board
+ pot) — probabilities over
decisions (check, raise, fold)

e Space of policies is huge!
Idea: Approximate the Nash equilibrium by using bandit
algorithms assigned to each information set.

e This provides the world best Texas Hold'em Poker program
for 2-player with pot-limit [Zinkevich et al., 2007]
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Hierarchy of bandits

We now consider another way of combining bandits:

Hierarchy of bandits: the reward obtained when pulling an arm is
itself the return of another bandit in a hierarchy.

Applications to

e tree search,
e optimization,

e planning



Optimistic planning

Lipschitz optimization Lipschitz bandits

Games Hierarchical bandits

Historical motivation for this problem

Introduction to bandits

P m
h AN ..
T Root Position

no

) I

o
e
9/10 3/10 4/10

MCTS in Crazy-Stone (Rémi Coulom, 2005)

Idea: use bandits at each node.
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Hierarchical bandit algorithm

Upper Confidence Bound
(UCB) algo at each node

Bj déf ijj_’_ M_
nj

Intuition:

- Explore first the most

promising branches

- Average converges to max

e Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu,
Hu, Marcus, 2005]

e UCB applied to Trees (UCT) [Kocsis and Szepesvari, 2006]
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The MoGo program

[Gelly et al., 2006] + collaborative work with many others.

Features:
Explore-Exploit with UCT . . - -

e Monte-Carlo evaluation o~
e Asymmetric tree .
expansion .
e Anytime algo
o Use of features -

Among world best programs!
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No finite-time guarantee for UCT

Problem: at each node, the rewards are not i.i.d.
Consider the tree:

The left branches seem better
than right branches, thus are ex-
plored for a very long time be-
fore the optimal leaf is eventually
reached.

The expected regret is disastrous:

ER, = Q(exp(exp(...exp(1)...)))+O0(log(n)).

D times

UM—\

See [Coquelin and Munos, 2007] o 1
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Optimism for decision making

Outline:
e Optimization of deterministic Lipschitz functions
e Lipschitz bandits in general spaces: HOO
e Application to planning
e Deterministic environments

e Open-loop planning in stochastic environments
e Closed-loop planning in sparse stochastic environements
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Online optimization of a deterministic Lipschitz function

Problem: Find online the maximum of f : X — R, assumed to be
Lipschitz: |f(x) — f(y)| < 4(x,y).

e At each time step t, select x; € X

e Observe f(xt)

e Goal: find an exploration policy such as to maximize the sum
of rewards.

Define the cumulative regret
n
Ro= ) f*—f(x),
t=1

where f* = sup,cx f(x)
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Games Hierarchical bandits Lipschitz optimization Lipschitz bandits
Example in 1d
*
£ -
/ \
N / \
// \\ // \\
’ Y B ! \
i N L . K \
// ! N !
| \ N ,
\ PN ’ \ . '
OO E— X
[
1
Xt
upper-bound on f.

Lipschitz property — the evaluation of f at x; provides a first

Optimistic planning
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Games

Hierarchical bandits

Lipschitz optimization

Lipschitz bandits
Example in 1d (continued)

L
L
! v
! \
! v
! v
! \
! \
/I |
\
\ ’ N
! i\ s ’
q \ X\\ o ,
\ N N Lo
1 1
I I

New point — refined upper-bound on f.

Optimistic planning
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Example in 1d (continued)

X
o i
- v// .
TN i :
PR X D
\ E f v
! v St &
; \ - : X
' Y Lo 4
! VX X X
N \ i
L ~_ N L
1 1 1 1 11 1
1 I ] ] LI I

Question: where should one sample the next point?
Answer: select the point with highest upper bound!
“Optimism in the face of (partial observation) uncertainty”
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Lipschitz optimization with noisy evaluations

f is still Lipschitz, but now, the evaluation of f at x; returns a
noisy evaluation ry of f(x;), i.e. such that E[r¢|x;] = f(x¢).
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Games

Hierarchical bandits Lipschitz optimization

Lipschitz bandits
Where should one sample next?

.
LAY
X L
X
.
\
SN
X,/ N
oy | A}
Y v
CX sOX o
S \
X
X
X ,
\ N 7
. A X
Y FOY ’
W X X

How to define a high probability upper bound at any state x?

Optimistic planning
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UCB in a given domain

Games

Introduction to bandits

o X )

S \\‘>,<.’/X .
X
Xi

|
]
Ty

H

For a fixed domain X; © x containing n; points {x;} € X;, we have
that > /", re — f(x¢) is a Martingale. Thus by Azuma's inequality,

I (xt) > f(x) — diam(X;),

1 4
r,
t 2/7,'

=
since f is Lipschitz (where diam(X;) = sup, ,ex, (x,y))-
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High probability upper bound

Upper-bound A
I

log 1/5
2n;

1 i
1 zn

=17t

Iog /

*Z

w.p. 1 -9,

+ diam(

X;i) > sup f(x).
x€Xi

Tradeoff between size of the confidence interval and diameter.
By considering several domains we can derive a tighter upper bound



Introduction to bandits Games Hierarchical bandits Lipschitz optimization Lipschitz bandits

A hierarchical decomposition
Use a tree of partitions at all scales:

def A

B(t) < min { fu(t) + | 28

t; JEeC(i)

+ diam(i), max B;(t)

Optimistic planning
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Multi-armed bandits in a semi-metric space

More generally:
Let X be space equipped with a semi-metric ¢(x, y). Let f(x) be a
function such that:

f(x*) = f(x) < l(x,x%),
where f(x*) = sup,cx f(x).

X-armed bandit problem: At each round t, choose a point (arm)
x¢ € X, receive reward r; independent sample drawn from a
distribution v/(x;) with mean f(x).

Goal: minimize regret:

n
Rn d:ef Zf(x*) — It
t=1
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Hierarchical Optimistic Optimization (HOO)

[Bubeck et al., 2011]: Consider a tree of partitions of X, where
each node i corresponds to a subdomain X;.

Followed path

HOO Algorithm:
Let 7; denote the set of ex- Tumed-on
panded nodes at round t.

- T1 = {root} (space X)

- At t, select a leaf iy of T; by
maximizing the B-values,

- Ter1 = Te U {ie}

- Select x; € X;, (arbitrarily)

- Observe reward r; ~ v(x;) and
update the B-values: X ulled pointX

B; % min [5\(,-,,7,. + 4/ 2|°g( )+ diam(i), maxjcc(j) B

q’l+l,2i

elected node
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Properties of HOO

Properties:
e For any domain X; 3 x*, the corresponding B; values is a
(high probability) upper bound on f(x*).
e We don't really care if for sub-optimal domains X;, the B;
values is an upper bound on sup,cx, f(x) or not.

e The tree grows in an asymmetric way, leaving mainly
unexplored the sub-optimal branches,

e Only the optimal branch is essentially explored.
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Example in 1d

re ~ B(f(x¢)) a Bernoulli distribution with parameter f(x;)

AN TR

mew 'u' I "'v i "‘;v 'ug‘“‘;' T x‘y

Resulting tree at time n = 1000 and at n = 10000.

N
" u ‘
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Analysis of HOO

Let d be the near-optimality dimension of f in X: i.e. such that
the set of e-optimal states

X. Y ixe X f(x) > —c}
can be covered by O(¢~%) balls of radius ¢.
Then Cun
ER, = O(nd+2).
(Similar to Zooming algorithm of [Kleinberg, Slivkins, Upfall,

2008], but weaker assumption about f and ¢, and does not require
a sampling oracle)
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Example 1:

Assume the function is locally peaky around its maximum:

F(x*) = £(x) = O(|Ix" — x]|)-

It takes O(€®) balls of radius ¢ to cover X.. Thus d = 0 and the
regret is \/n.
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Example 2:

Assume the function is locally quadratic around its maximum:
f(x*) — f(x) = O(||x* — x||%), with a = 2.

1\/?1

o For (x,y) = ||x — y||, it takes O(e~P/2) balls of radius € to
cover X, (of size O(¢P/?)). Thus d = D/2 and the regret is

D+2
nbD+4

e For {(x,y) = ||x — y||?, it takes O(€®) ¢-balls of radius € to
cover X.. Thus d =0 and the regret is \/n.
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Known smoothness around the maximum

Consider X = [0,1]9. Assume that f has a finite number of global
maxima and is locally a-smooth around each maximum x*, i.e.

F(x™) = F(x) = O(IIx" — x[).

Then, by choosing ¢(x,y) = ||x — y||%, Xc is covered by O(1) balls
of “radius” €. Thus the near-optimality dimension d = 0, and the
regret of HOO is: B

ER, = O(ﬁ)?

i.e. the rate of growth is independent of the ambient
dimension.
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Conclusions on bandits in general spaces

The near-optimality dimension may be seen as an excess order of
smoothness of f (around its maxima) compared to what is known:

e If the smoothness order of the function is known then the
regret of HOO algorithm is O(v/n)

¢ If the smoothness is underestimated, for example f is
a-smooth but we only use £(x,y) = ||x — y||?, with 8 < a,
then the near-optimality dimension is d = D(1/8 — 1/a) and
the regret is O(n(d+1)/(d+2))

¢ If the smoothness is overestimated, the weak-Lipschitz
assumption is violated, thus there is no guarantee (e.g., UCT)
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Applications

e Online supervized learning: At time t, HOO selects h; € H.
The environment chooses (x¢, yt) ~ P. The resulting loss
£(he(xt), yt) is a noisy evaluation of E(, ,y.p[¢(h(x),y)].
HOO generates sequences of hypotheses (h;) whose
cumulated performances are close to that of the best
hypothesis h* € H.

¢ Policy optimization for MDPs or POMDPs: Consider a
class of parameterized policies 7,. At time t, HOO algo
selects oy and a trajectory is generated using 7, .

The sum of rewards obtained is a noisy evaluation of the value
function Ve,

Thus HOO performs almost as well as if using the best
parameter o*.
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Application to planning in MDPs

Setting:

Assume we have a generative model of an MDP.

The state space is large: no way to represent the value
function

Search for the best policy, given a computational budget (e.g.,
number of calls to the model).

Ex: from current state s;, search for the best possible
immediate action a¢, play this action, observe next state s;1,
and repeat

Works:

Optimistic planning in deterministic systems

Open-Loop optimistic planning
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Planning in deterministic systems

Controlled deterministic system with discounted rewards:
St+1 = f(st, at), where a; € A.

Goal is to maximize <Y r(se, ar).
Online planning:
e From the current state s;, return the best possible immediate
action a;, computed by using a given computational budget
(eg, CPU time, number of calls to the model).

e Play a; in the real world, and repeat from next state s;;1.

Given n calls to a generative model, return actions a;(n).

Simple regret:  r, o max Q" (st,a) — Q(st, ar(n)).
ac
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Look-ahead tree for planning in deterministic systems

From the current state, build the look-ahead tree:

Root of the tree = current state s;

Search space X = set of paths
(infinite sequence of actions)

Value of any path x:

F(x) = 2e0're

Metric: ¢ _ Ahboy)
etric: {(x,y) = 41—

Prop: f is Lipschitz w.r.t. ¢

Use optimistic search to explore
the tree with budget n resources

Initial state

action 1 action 2
Path
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Optimistic exploration

(HOO algo in deterministic setting)
e For any node i of depth d,

define the B-values:

Optimal path

dof d—1 ’}/d
B, = § e + 1 > v
t=0 -

e At each round n, expand the

node with highest B-value

e Observe reward, update
B-values,

e Repeat until no more
available resources

e Return maximizing action
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Analysis of the regret

[Hren and Munos, 2008] Define (3 such that the proportion of
e-optimal paths is O(€?) (this is related to the near-optimal
dimension). Let

k< KyP e 1, K]

_logl/y
rh=0{(n Tes |,

_log1/
(whereas for uniform planning R, = O(n @,ﬁ)_)

e If kK > 1, then

e If Kk =1, then we obtain the exponential rate

(1-)"” : :
rh = O(v 3 ”), where c is such that the proportion of
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Open Loop Optimistic Planning
Setting:
¢ Rewards are stochastic but depend on sequence of actions
(and not resulting states)
e Goal : find the sequence of actions that maximizes the
expected discounted sum of rewards
e Search space: open-loop policies (sequences of actions)
[Bubeck et Munos, 2010] OLOP algorithm has expected regret
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Remarks:
e For vy/k > 1, this is the same rate as for deterministic
systems!

e This is not a consequence of HOO
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Possible extensions

Applications of hierarchical bandits:
e Planning in MDPs when the number of next states is finite
[Busoniu et al., 2011]
e Planning in POMDPs when the number of observations is
finite
e Combine planning with function approximation: local ADP
methods.

e Many applications in MCTS (Monte-Carlo Tree Search): See
Teytaud, Chaslot, Bouzy, Cazenave, and many others.
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