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Outline of Part 3

Exploration for sequential decision making:
Application to games, optimization, and planning

• The stochastic bandit: UCB

• The adversarial bandit: EXP3

• Populations of bandits
• Computation of equilibrium in games. Application to Poker
• Hierarchical bandits. MCTS and application to Go.

• Optimism for decision making
• Lipschitz optimization
• Lipschitz bandits
• Optimistic planning in MDPs
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The stochastic multi-armed bandit problem

Setting:

• Set of K arms, defined by distributions νk
(with support in [0, 1]), whose law is
unknown,

• At each time t, choose an arm kt and

receive reward xt
i .i .d .∼ νkt .

• Goal: find an arm selection policy such as
to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:

• Explore: learn about the environment

• Exploit: act optimally according to our current beliefs
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The regret

Definitions:

• Let µk = E[νk ] be the expected value of arm k,

• Let µ∗ = maxk µk the best expected value,

• The cumulative expected regret:

Rn
def
=

n∑
t=1

µ∗−µkt =
K∑

k=1

(µ∗−µk)
n∑

t=1

1{kt = k} =
K∑

k=1

∆knk ,

where ∆k
def
= µ∗ − µk , and nk the number of times arm k has

been pulled up to time n.

Goal: Find an arm selection policy such as to minimize Rn.
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Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not
fully solved yet!
Many proposed strategies:

• ε-greedy exploration: choose apparent best action with
proba 1− ε, or random action with proba ε,

• Bayesian exploration: assign prior to the arm distributions
and select arm according to the posterior distributions (Gittins
index, Thompson strategy, ...)

• Softmax exploration: choose arm k with proba ∝ exp(βX̂k)
(ex: EXP3 algo)

• Follow the perturbed leader: choose best perturbed arm

• Optimistic exploration: select arm with highest upper bound
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The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi,
Fischer, 2002]: at each time n, select the arm k with highest
Bk,nk ,n value:

Bk,nk ,n
def
=

1

nk

nk∑
s=1

xk,s︸ ︷︷ ︸
X̂k,nk

+

√
3 log(n)

2nk︸ ︷︷ ︸
cnk ,n

,

with:

• nk is the number of times arm k has been pulled up to time n

• xk,s is the s-th reward received when pulling arm k.

Note that

• Sum of an exploitation term and an exploration term.

• cnk ,n is a confidence interval term, so Bk,nk ,n is a UCB.
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Intuition of the UCB algorithm

Idea:

• ”Optimism in the face of uncertainty” principle

• Select the arm with highest upper bound (on the true value of
the arm, given what has been observed so far).

• The B-values Bk,s,t are UCBs on µk . Indeed:

P(X̂k,s − µk ≥
√

3 log(t)

2s
) ≤ 1

t3
,

P(X̂k,s − µk ≤ −
√

3 log(t)

2s
) ≤ 1

t3

Reminder of Chernoff-Hoeffding inequality:

P(X̂k,s − µk ≥ ε) ≤ e−2sε2

P(X̂k,s − µk ≤ −ε) ≤ e−2sε2
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Regret bound for UCB

Proposition 1.

Each sub-optimal arm k is visited in average, at most:

Enk(n) ≤ 6
log n

∆2
k

+ 1 +
π2

3

times (where ∆k
def
= µ∗ − µk > 0).

Thus the expected regret is bounded by:

ERn =
∑
k

E[nk ]∆k ≤ 6
∑

k:∆k>0

log n

∆k
+ K (1 +

π2

3
).
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Intuition of the proof

Let k be a sub-optimal arm, and k∗ be an optimal arm. At time n,
if arm k is selected, this means that

Bk,nk ,n ≥ Bk∗,nk∗ ,n

X̂k,nk +

√
3 log(n)

2nk
≥ X̂k∗,nk∗ +

√
3 log(n)

2nk∗

µk + 2

√
3 log(n)

2nk
≥ µ∗, with high proba

nk ≤ 6 log(n)

∆2
k

Thus, if nk > 6 log(n)
∆2

k
, then there is only a small probability that

arm k be selected.
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Proof of Proposition 1

Write u = 6 log(n)
∆2

k
+ 1. We have:

nk(n) ≤ u +
n∑

t=u+1

1{kt = k; nk(t) > u}

≤ u +
n∑

t=u+1

[ t∑
s=u+1

1{X̂k,s − µk ≥ ct,s}+
t∑

s=1

1{X̂k∗,s∗ − µk ≤ −ct,s∗}
]

Now, taking the expectation of both sides,

E[nk(n)] ≤ u +
n∑

t=u+1

[ t∑
s=u+1

P
(
X̂k,s − µk ≥ ct,s

)
+

t∑
s=1

P
(
X̂k∗,s∗ − µk ≤ −ct,s∗

)]
≤ u +

n∑
t=u+1

[ t∑
s=u+1

t−3 +
t∑

s=1

t−3
]
≤ 6 log(n)

∆2
k

+ 1 +
π2

3
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Variants of UCB
[Audibert et al., 2008]

• UCB with variance estimate: Define the UCB:

Bk,nk ,n
def
= X̂k,t +

√
2
Vk,nk log(1.2n)

nk
+

3 log(1.2n)

nk
.

Then the expected regret is bounded by:

ERn ≤ 10
( ∑

k:∆k>0

σ2
k

∆k
+ 2

)
log(n).

• PAC-UCB: Let β > 0. Define the UCB:

Bk,nk
def
= X̂k,nk +

√
log(Knk(nk + 1)β−1)

nk
.

Then w.p. 1− β, the regret is bounded by a constant:

Rn ≤ 6 log(Kβ−1)
∑

k:∆k>0

1

∆k
.
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Upper and Lower bounds
UCB:

• Distribution-dependent: ERn = O
(∑

k:∆k>0
1
∆k

log n
)

• Distribution-independent: ERn = O(
√
Kn log n).

Lower-bounds:

• Distribution-dependent [Lai et Robbins, 1985]:

ERn = Ω
( ∑

k:∆k>0

∆k

KL(νk ||ν∗)
log n

)
• Distribution-independent [Cesa-Bianchi et Lugosi, 2006]:

inf
Algo

sup
Problem

Rn = Ω(
√
nK ).

Recent improvements in upper-bounds: optimal bounds!

• MOSS [Audibert & Bubeck, 2009]

• KL-UCB [Garivier & Cappé, 2011], [Maillard et al., 2011]
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The adversarial bandit
The rewards are no more i.i.d., but arbitrary!
At time t, simultaneously

• The adversary assigns a reward xk,t ∈ [0, 1] to each arm
k ∈ {1, . . . ,K}

• The player chooses an arm kt

The player receives the corresponding reward xkt . His goal is to
maximize the sum of rewards.

Can we expect to do almost as good as the best (constant) arm?

Time 1 2 3 4 5 6 7 8 ...

Arm pulled 1 2 1 1 2 1 1 1

Reward arm 1 1 0.7 0.9 1 1 1 0.8 1
Reward arm 2 0.9 0 1 0 0.4 0 0.6 0

Reward obtained: 6.1. Arm 1: 7.4, Arm 2: 2.9.
Regret w.r.t. best constant strategy: 7.4− 6.1 = 1.3.
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Notion of regret

Define the regret:

Rn = max
k∈{1,...,K}

n∑
t=1

xk,t −
n∑

t=1

xkt .

• Performance assessed in terms of the best constant strategy.

• Can we expect
sup

rewards
ERn/n → 0?

• If the policy of the player is deterministic, there exists a
reward sequence such that the performance is arbitrarily poor
−→ Need internal randomization.
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EXP3 algorithm

EXP3 algorithm (Explore-Exploit using Exponential weights)
[Auer et al, 2002]:

• η > 0 and β > 0 are two parameters of the algorithm.

• Initialize w1(k) = 1 for all k = 1, . . . ,K .

• At each round t = 1, . . . , n, player selects arm kt ∼ pt(·),
where

pt(k) = (1− β)
wt(k)∑K
i=1 wt(i)

+
β

K
,

with
wt(k) = eη

∑t−1
s=1 x̃s(k),

where

x̃s(k) =
xs(k)

ps(k)
1{ks = k}.
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Performance of EXP3

Proposition 2.

Let η ≤ 1 and β = ηK. We have ERn ≤ logK
η + (e − 1)ηnK . Thus,

by choosing η =
√

logK
(e−1)nK , it comes

sup
rewards

ERn ≤ 2.63
√

nK logK .

Properties:

• If all rewards are provided to the learner, with a similar
algorithms we have [Lugosi and Cesa-Bianchi, 2006]

sup
rewards

ERn = O(
√

n logK ).
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Proof of Proposition 2 [part 1]

Write Wt =
∑K

k=1 wk(t). Notice that

Eks∼ps [x̃s(k)] =
K∑
i=1

ps(i)
xs(k)

ps(k)
1{i = k} = xs(k),

and Eks∼ps [x̃s(ks)] =
K∑
i=1

ps(i)
xs(i)

ps(i)
≤ K .

We thus have

Wt+1

Wt
=

K∑
k=1

wk(t)e
ηx̃t(k)

Wt
=

K∑
k=1

pk(t)− β/K

1− β
eηx̃t(k)

≤
K∑

k=1

pk(t)− β/K

1− β
(1 + ηx̃t(k) + (e − 2)η2x̃t(k)

2),

since ηx̃t(k) ≤ ηK/β = 1, and ex ≤ 1 + x + (e − 2)x2 for x ≤ 1.
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Proof of Proposition 2 [part 2]

Thus

Wt+1

Wt
≤ 1 +

1

1− β

K∑
k=1

pk(t)(ηx̃t(k) + (e − 2)η2x̃t(k)
2),

log
Wt+1

Wt
≤ 1

1− β

K∑
k=1

pk(t)(ηx̃t(k) + (e − 2)η2x̃t(k)
2),

log
Wn+1

W1
≤ 1

1− β

n∑
t=1

K∑
k=1

pk(t)(ηx̃t(k) + (e − 2)η2x̃t(k)
2).

But we also have

log
Wn+1

W1
= log

K∑
k=1

eη
∑n

t=1 x̃t(k) − logK ≥ η

n∑
t=1

x̃t(k)− logK ,

for any k = 1, . . . , n.
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Proof of Proposition 2 [part 3]

Take expectation w.r.t. internal randomization of the algo, thus for
all k,

E
[
(1− β)

n∑
t=1

x̃t(k)−
n∑

t=1

K∑
i=1

pi (t)x̃t(i)
]

≤ (1− β)
logK

η

+ (e − 2)ηE
[ n∑

t=1

K∑
k=1

pk(t)x̃t(k)
2
]

E
[ n∑

t=1

xt(k)−
n∑

t=1

xt(kt)
]

≤ βn +
logK

η
+ (e − 2)ηnK

E[Rn(k)] ≤ logK

η
+ (e − 1)ηnK
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In summary...

Distribution-dependent bounds:

UCB: ERn = O
(∑

k
1
∆k

log n
)

lower-bound: ERn = Ω
(
log n

)
Distribution-independent bounds:

UCB: sup
distributions

ERn = O
(√

Kn log n
)

EXP3: sup
rewards

ERn = O
(√

Kn logK
)

lower-bound: sup
rewards

ERn = Ω
(√

Kn
)

Remark: The optimal rate O
(√

Kn
)
is achieved by INF [Audibert

and Bubeck, 2010]
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Population of bandits

• Bandit (or regret minimization) algorithms = tool for rapidly
selecting the best action.

• Basic building block for solving more complex problems

• We now consider a population of bandits:

Adversarial bandits Collaborative bandits
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Game between bandits

Consider a 2-players zero-sum repeated game:
A and B play actions: 1 or 2 simultaneously, and receive the
reward (for A):

A \ B 1 2

1 2 0

2 -1 1
(A likes consensus, B likes conflicts)

Now, let A and B be bandit algorithms, aiming at minimizing their
regret, i.e. for player A:

Rn(A)
def
= max

a∈{1,2}

n∑
t=1

rA(a,Bt)−
n∑

t=1

rA(At ,Bt).

What happens?
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Nash equilibrium

Nash equilibrium: (mixed) strategy for both players, such that no
player has incentive for changing unilaterally his own strategy.

A \ B 1 2

1 2 0

2 -1 1

Here: A plays 1 with probability
pA = 1/2, B plays 1 with proba-
bility pB = 1/4.

1 A

B=1

B=2

2

Ar
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Regret minimization → Nash equilibrium

Define the regret of A:

Rn(A)
def
= max

a∈{1,2}

n∑
t=1

rA(a,Bt)−
n∑

t=1

rA(At ,Bt).

and that of B accordingly.

Proposition 3.

If both players perform a (Hannan) consistent regret-minimization
strategy (i.e. Rn(A)/n → 0 and Rn(B)/n → 0), then the empirical
frequencies of chosen actions of both players converge to a Nash
equilibrium.

(Remember that EXP3 is consistent!)
Note that in general, we have convergence towards correlated
equilibrium [Foster and Vohra, 1997].
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Sketch of proof:
Write pnA

def
= 1

n

∑n
t=1 1At=1 and pnB

def
= 1

n

∑n
t=1 1Bt=1 and

rA(p, q)
def
= ErA(A ∼ p,B ∼ q).

Regret-minimization algorithm: Rn(A)/n → 0 means that: ∀ε > 0,
for n large enough,

max
a∈{1,2}

1

n

n∑
t=1

rA(a,Bt)−
1

n

n∑
t=1

rA(At ,Bt) ≤ ε

max
a∈{1,2}

rA(a, p
n
B)− rA(p

n
A, p

n
B) ≤ ε

rA(p, p
n
B)− rA(p

n
A, p

n
B) ≤ ε,

for all p ∈ [0, 1]. Now, using Rn(B)/n → 0 we deduce that:

rA(p, p
n
B)− ε ≤ rA(p

n
A, p

n
B) ≤ rA(p

n
A, q) + ε, ∀p, q ∈ [0, 1]

Thus the empirical frequencies of actions played by both players is
arbitrarily close to a Nash strategy.
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Texas Hold’em Poker

• In the 2-players Poker game, the
Nash equilibrium is interesting
(zero-sum game)

• A policy:
information set (my cards + board
+ pot) → probabilities over
decisions (check, raise, fold)

• Space of policies is huge!

Idea: Approximate the Nash equilibrium by using bandit
algorithms assigned to each information set.

• This provides the world best Texas Hold’em Poker program
for 2-player with pot-limit [Zinkevich et al., 2007]
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Hierarchy of bandits

We now consider another way of combining bandits:
Hierarchy of bandits: the reward obtained when pulling an arm is
itself the return of another bandit in a hierarchy.
Applications to

• tree search,

• optimization,

• planning
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Historical motivation for this problem

MCTS in Crazy-Stone (Rémi Coulom, 2005)

Idea: use bandits at each node.
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Hierarchical bandit algorithm

Upper Confidence Bound
(UCB) algo at each node

Bj
def
= Xj ,nj +

√
2 log(ni )

nj
.

Intuition:
- Explore first the most
promising branches
- Average converges to max

Node i: Bi

Bj

• Adaptive Multistage Sampling (AMS) algorithm [Chang, Fu,
Hu, Marcus, 2005]

• UCB applied to Trees (UCT) [Kocsis and Szepesvári, 2006]
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The MoGo program

[Gelly et al., 2006] + collaborative work with many others.

Features:

• Explore-Exploit with UCT

• Monte-Carlo evaluation

• Asymmetric tree
expansion

• Anytime algo

• Use of features

Among world best programs!
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No finite-time guarantee for UCT

Problem: at each node, the rewards are not i.i.d.
Consider the tree:

The left branches seem better
than right branches, thus are ex-
plored for a very long time be-
fore the optimal leaf is eventually
reached.
The expected regret is disastrous:

ERn = Ω(exp(exp(. . . exp(︸ ︷︷ ︸
D times

1) . . . )))+O(log(n)).

See [Coquelin and Munos, 2007]

D−1

D

D−2

D

D−3

D

1

D

10
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Optimism for decision making

Outline:

• Optimization of deterministic Lipschitz functions

• Lipschitz bandits in general spaces: HOO

• Application to planning
• Deterministic environments
• Open-loop planning in stochastic environments
• Closed-loop planning in sparse stochastic environements
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Online optimization of a deterministic Lipschitz function

Problem: Find online the maximum of f : X → IR, assumed to be
Lipschitz: |f (x)− f (y)| ≤ `(x , y).

• At each time step t, select xt ∈ X

• Observe f (xt)

• Goal: find an exploration policy such as to maximize the sum
of rewards.

Define the cumulative regret

Rn =
n∑

t=1

f ∗ − f (xt),

where f ∗ = supx∈X f (x)
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Example in 1d

f(x )t

xt

f

f *

Lipschitz property → the evaluation of f at xt provides a first
upper-bound on f .
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Example in 1d (continued)

New point → refined upper-bound on f .
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Example in 1d (continued)

Question: where should one sample the next point?
Answer: select the point with highest upper bound!
“Optimism in the face of (partial observation) uncertainty”
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Lipschitz optimization with noisy evaluations

f is still Lipschitz, but now, the evaluation of f at xt returns a
noisy evaluation rt of f (xt), i.e. such that E[rt |xt ] = f (xt).
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Where should one sample next?

x

How to define a high probability upper bound at any state x?
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UCB in a given domain

xt

f(xt)

rt

x

Xi

For a fixed domain Xi 3 x containing ni points {xt} ∈ Xi , we have
that

∑ni
t=1 rt − f (xt) is a Martingale. Thus by Azuma’s inequality,

1

ni

ni∑
t=1

rt +

√
log 1/δ

2ni
≥ 1

ni

ni∑
t=1

f (xt) ≥ f (x)− diam(Xi ),

since f is Lipschitz (where diam(Xi ) = supx ,y∈Xi
`(x , y)).
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High probability upper bound

1

ni

∑ni

t=1 rt

diam(Xi)
√

log 1/δ
2ni

Upper-bound

Xi

w.p. 1− δ,
1

ni

ni∑
t=1

rt +

√
log 1/δ

2ni
+ diam(Xi ) ≥ sup

x∈Xi

f (x).

Tradeoff between size of the confidence interval and diameter.

By considering several domains we can derive a tighter upper bound.
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A hierarchical decomposition
Use a tree of partitions at all scales:

Bi (t)
def
= min

µ̂i (t) +

√
2 log(t)

ti
+ diam(i), max

j∈C(i)
Bj(t)


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Multi-armed bandits in a semi-metric space

More generally:
Let X be space equipped with a semi-metric `(x , y). Let f (x) be a
function such that:

f (x∗)− f (x) ≤ `(x , x∗),

where f (x∗) = supx∈X f (x).

X -armed bandit problem: At each round t, choose a point (arm)
xt ∈ X , receive reward rt independent sample drawn from a
distribution ν(xt) with mean f (xt).
Goal: minimize regret:

Rn
def
=

n∑
t=1

f (x∗)− rt
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Hierarchical Optimistic Optimization (HOO)

[Bubeck et al., 2011]: Consider a tree of partitions of X , where
each node i corresponds to a subdomain Xi .

HOO Algorithm:
Let Tt denote the set of ex-
panded nodes at round t.
- T1 = {root} (space X )
- At t, select a leaf it of Tt by
maximizing the B-values,
- Tt+1 = Tt ∪ {it}
- Select xt ∈ Xit (arbitrarily)
- Observe reward rt ∼ ν(xt) and
update the B-values:

h,i
B

B
h+1,2i−1

B
h+1,2i

Xt

Turned−on
nodes

Followed path

Selected node

Pulled point

Bi
def
= min

[
X̂i ,ni +

√
2 log(n)

ni
+ diam(i),maxj∈C(i) Bj

]
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Properties of HOO

Properties:

• For any domain Xi 3 x∗, the corresponding Bi values is a
(high probability) upper bound on f (x∗).

• We don’t really care if for sub-optimal domains Xi , the Bi

values is an upper bound on supx∈Xi
f (x) or not.

• The tree grows in an asymmetric way, leaving mainly
unexplored the sub-optimal branches,

• Only the optimal branch is essentially explored.
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Example in 1d

rt ∼ B(f (xt)) a Bernoulli distribution with parameter f (xt)

Resulting tree at time n = 1000 and at n = 10000.
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Analysis of HOO

Let d be the near-optimality dimension of f in X : i.e. such that
the set of ε-optimal states

Xε
def
= {x ∈ X , f (x) ≥ f ∗ − ε}

can be covered by O(ε−d) balls of radius ε.
Then

ERn = Õ(n
d+1
d+2 ).

(Similar to Zooming algorithm of [Kleinberg, Slivkins, Upfall,
2008], but weaker assumption about f and `, and does not require
a sampling oracle)
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Example 1:

Assume the function is locally peaky around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||).

ε

ε

It takes O(ε0) balls of radius ε to cover Xε. Thus d = 0 and the
regret is

√
n.
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Example 2:
Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||α), with α = 2.

ε

ε

• For `(x , y) = ||x − y ||, it takes O(ε−D/2) balls of radius ε to
cover Xε (of size O(εD/2)). Thus d = D/2 and the regret is

n
D+2
D+4 .

• For `(x , y) = ||x − y ||2, it takes O(ε0) `-balls of radius ε to
cover Xε. Thus d = 0 and the regret is

√
n.
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Known smoothness around the maximum

Consider X = [0, 1]d . Assume that f has a finite number of global
maxima and is locally α-smooth around each maximum x∗, i.e.

f (x∗)− f (x) = Θ(||x∗ − x ||α).

Then, by choosing `(x , y) = ||x − y ||α, Xε is covered by O(1) balls
of “radius” ε. Thus the near-optimality dimension d = 0, and the
regret of HOO is:

ERn = Õ(
√
n),

i.e. the rate of growth is independent of the ambient
dimension.
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Conclusions on bandits in general spaces

The near-optimality dimension may be seen as an excess order of
smoothness of f (around its maxima) compared to what is known:

• If the smoothness order of the function is known then the
regret of HOO algorithm is Õ(

√
n)

• If the smoothness is underestimated, for example f is
α-smooth but we only use `(x , y) = ||x − y ||β, with β < α,
then the near-optimality dimension is d = D(1/β − 1/α) and
the regret is Õ(n(d+1)/(d+2))

• If the smoothness is overestimated, the weak-Lipschitz
assumption is violated, thus there is no guarantee (e.g., UCT)
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Applications

• Online supervized learning: At time t, HOO selects ht ∈ H.
The environment chooses (xt , yt) ∼ P . The resulting loss
`(ht(xt), yt) is a noisy evaluation of E(x ,y)∼P [`(h(x), y)].
HOO generates sequences of hypotheses (ht) whose
cumulated performances are close to that of the best
hypothesis h∗ ∈ H.

• Policy optimization for MDPs or POMDPs: Consider a
class of parameterized policies πα. At time t, HOO algo
selects αt and a trajectory is generated using παt .
The sum of rewards obtained is a noisy evaluation of the value
function V παt .
Thus HOO performs almost as well as if using the best
parameter α∗.
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Application to planning in MDPs

Setting:

• Assume we have a generative model of an MDP.

• The state space is large: no way to represent the value
function

• Search for the best policy, given a computational budget (e.g.,
number of calls to the model).

• Ex: from current state st , search for the best possible
immediate action at , play this action, observe next state st+1,
and repeat

Works:

• Optimistic planning in deterministic systems

• Open-Loop optimistic planning
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Planning in deterministic systems

Controlled deterministic system with discounted rewards:

st+1 = f (st , at), where at ∈ A.

Goal is to maximize
∑

t≥0 γ
tr(st , at).

Online planning:

• From the current state st , return the best possible immediate
action at , computed by using a given computational budget
(eg, CPU time, number of calls to the model).

• Play at in the real world, and repeat from next state st+1.

Given n calls to a generative model, return actions at(n).

Simple regret: rn
def
= max

a∈A
Q∗(st , a)− Q∗(st , at(n)).
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Look-ahead tree for planning in deterministic systems

From the current state, build the look-ahead tree:

• Root of the tree = current state st

• Search space X = set of paths
(infinite sequence of actions)

• Value of any path x :
f (x) =

∑
t≥0 γ

trt

• Metric: `(x , y) = γh(x,y)

1−γ

• Prop: f is Lipschitz w.r.t. `

• Use optimistic search to explore
the tree with budget n resources

Path

action 1 action 2

Initial state

xy
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Optimistic exploration

(HOO algo in deterministic setting)
• For any node i of depth d ,
define the B-values:

Bi
def
=

d−1∑
t=0

γtrt +
γd

1− γ
≥ vi

• At each round n, expand the
node with highest B-value

• Observe reward, update
B-values,

• Repeat until no more
available resources

• Return maximizing action

Optimal path

Expanded
nodes

Node i
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Analysis of the regret

[Hren and Munos, 2008] Define β such that the proportion of
ε-optimal paths is O(εβ) (this is related to the near-optimal
dimension). Let

κ
def
= Kγβ ∈ [1,K ].

• If κ > 1, then

rn = O

(
n−

log 1/γ
log κ

)
.

(whereas for uniform planning Rn = O
(
n−

log 1/γ
log K

)
.)

• If κ = 1, then we obtain the exponential rate

rn = O
(
γ

(1−γ)β

c
n
)
, where c is such that the proportion of

ε-path is bounded by cεβ.
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Open Loop Optimistic Planning
Setting:

• Rewards are stochastic but depend on sequence of actions
(and not resulting states)

• Goal : find the sequence of actions that maximizes the
expected discounted sum of rewards

• Search space: open-loop policies (sequences of actions)

[Bubeck et Munos, 2010] OLOP algorithm has expected regret

Ern =


Õ

(
n−

log 1/γ
log κ

)
if γ

√
κ > 1,

Õ

(
n−

1
2

)
if γ

√
κ ≤ 1.

Remarks:

• For γ
√
κ > 1, this is the same rate as for deterministic

systems!

• This is not a consequence of HOO
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Possible extensions

Applications of hierarchical bandits:

• Planning in MDPs when the number of next states is finite
[Buşoniu et al., 2011]

• Planning in POMDPs when the number of observations is
finite

• Combine planning with function approximation: local ADP
methods.

• Many applications in MCTS (Monte-Carlo Tree Search): See
Teytaud, Chaslot, Bouzy, Cazenave, and many others.
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