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Abstract. We consider the framework of stochastic multi-armed bandit prob-
lems and study the possibilities and limitations of strategies that perform an on-
line exploration of the arms. The strategies are assessed in terms of their simple
regret, a regret notion that captures the fact that exploration is only constrained by
the number of available rounds (not necessarily known in advance), in contrast to
the case when the cumulative regret is considered and when exploitation needs to
be performed at the same time. We believe that this performance criterion is suited
to situations when the cost of pulling an arm is expressed in terms of resources
rather than rewards. We discuss the links between the simple and the cumulative
regret. The main result is that the required exploration–exploitation trade-offs are
qualitatively different, in view of a general lower bound on the simple regret in
terms of the cumulative regret.

1 Introduction

Learning processes usually face an exploration versus exploitation dilemma, since they
have to get information on the environment (exploration) to be able to take good actions
(exploitation). A key example is the multi-armed bandit problem [Rob52], a sequential
decision problem where, at each stage, the forecaster has to pull one out of K given
stochastic arms and gets a reward drawn at random according to the distribution of
the chosen arm. The usual assessment criterion of a strategy is given by its cumulative
regret, the sum of differences between the expected reward of the best arm and the
obtained rewards. Typical good strategies, like the UCB strategies of [ACBF02], trade
off between exploration and exploitation.

Our setting is as follows. The forecaster may sample the arms a given number of
times n (not necessarily known in advance) and is then asked to output a recommenda-
tion, formed by a probability distribution over the arms. He is evaluated by his simple
regret, that is, the difference between the average payoff of the best arm and the average
payoff obtained by his recommendation. The distinguishing feature from the classical
multi-armed bandit problem is that the exploration phase and the evaluation phase are
separated. We now illustrate why this is a natural framework for numerous applications.

Historically, the first occurrence of multi-armed bandit problems was given by med-
ical trials. In the case of a severe disease, ill patients only are included in the trial and
the cost of picking the wrong treatment is high (the associated reward would equal a
large negative value). It is important to minimize the cumulative regret, since the test
and cure phases coincide. However, for cosmetic products, there exists a test phase
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separated from the commercialization phase, and one aims at minimizing the regret of
the commercialized product rather than the cumulative regret in the test phase, which
is irrelevant. (Here, several formulæ for a cream are considered and some quantitative
measurement, like skin moisturization, is performed.)

The pure exploration problem addresses the design of strategies making the best pos-
sible use of available numerical resources (e.g., as CPU time) in order to optimize the
performance of some decision-making task. That is, it occurs in situations with a prelim-
inary exploration phase in which costs are not measured in terms of rewards but rather in
terms of resources, that come in limited budget. A motivating example concerns recent
works on computer-go (e.g., the MoGo program of [GWMT06]). A given time, i.e., a
given amount of CPU times is given to the player to explore the possible outcome of
a sequences of plays and output a final decision. An efficient exploration of the search
space is obtained by considering a hierarchy of forecasters minimizing some cumulative
regret – see, for instance, the UCT strategy of [KS06] and the BAST strategy of [CM07].
However, the cumulative regret does not seem to be the right way to base the strategies
on, since the simulation costs are the same for exploring all options, bad and good ones.
This observation was actually the starting point of the notion of simple regret and of this
work. A final related example is the maximization of some function f , observed with
noise, see, e.g., [Kle04, BMSS09]. Whenever evaluating f at a point is costly (e.g., in
terms of numerical or financial costs), the issue is to choose as adequately as possible
where to query the value of this function in order to have a good approximation to the
maximum. The pure exploration problem considered here addresses exactly the design
of adaptive exploration strategies making the best use of available resources in order to
make the most precise prediction once all resources are consumed.

As a remark, it also turns out that in all examples considered above, we may impose
the further restriction that the forecaster ignores ahead of time the amount of available
resources (time, budget, or the number of patients to be included) – that is, we seek for
anytime performance. The problem of pure exploration presented above was referred
to as “budgeted multi-armed bandit problem” in [MLG04], where another notion of re-
gret than simple regret is considered. [Sch06] solves the pure exploration problem in a
minmax sense for the case of two arms only and rewards given by probability distribu-
tions over [0, 1]. [EDMM02] and [MT04] consider a related setting where forecasters

Parameters: K probability distributions for the rewards of the arms, ν1, . . . , νK

For each round t = 1, 2, . . . ,

(1) the forecaster chooses ϕt ∈ P{1, . . . , K} and pulls It at random according to ϕt;
(2) the environment draws the reward Yt for that action (also denoted by XIt,TIt

(t) with
the notation introduced in the text);

(3) the forecaster outputs a recommendation ψt ∈ P{1, . . . ,K};
(4) If the environment sends a stopping signal, then the game takes an end; otherwise, the

next round starts.

Fig. 1. The pure exploration problem for multi-armed bandits
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perform exploration during a random number of rounds T and aim at identifying an
ε–best arm. They study the possibilities and limitations of policies achieving this goal
with overwhelming 1− δ probability and indicate in particular upper and lower bounds
on (the expectation of) T . Another related problem in the statistical literature is the
identification of the best arm (with high probability). However, the binary assessment
criterion used there (the forecaster is either right or wrong in recommending an arm)
does not capture the possible closeness in performance of the recommended arm com-
pared to the optimal one, which the simple regret does. Unlike the latter, this criterion
is not suited for a distribution-free analysis.

2 Problem Setup, Notation

We consider a sequential decision problem given by stochastic multi-armed bandits.
K � 2 arms, denoted by j = 1, . . . ,K , are available and the j–th of them is param-
eterized by a fixed (unknown) probability distribution νj over [0, 1] with expectation
μj ; at those rounds when it is pulled, its associated reward is drawn at random accord-
ing to νj , independently of all previous rewards. For each arm j and all time rounds
n � 1, we denote by Tj(n) the number of times j was pulled from rounds 1 to n, and
by Xj,1, Xj,2, . . . , Xj,Tj(n) the sequence of associated rewards.

The forecaster has to deal simultaneously with two tasks, a primary one and an as-
sociated one. The associated task consists in exploration, i.e., the forecaster should in-
dicate at each round t the arm It to be pulled. He may resort to a randomized strategy,
which, based on past rewards, prescribes a probability distribution ϕt ∈ P{1, . . . ,K}
(where we denote by P{1, . . . ,K} the set of all probability distributions over the in-
dexes of the arms). In that case, It is drawn at random according to the probability
distribution ϕt and the forecaster gets to see the associated reward Yt, also denoted by
XIt,TIt(t)

with the notation above. The sequence (ϕt) is referred to as an allocation
strategy. The primary task is to output at the end of each round t a recommendation
ψt ∈ P{1, . . . ,K} to be used to form a randomized play in a one-shot instance if/when
the environment sends some stopping signal meaning that the exploration phase is over.
The sequence (ψt) is referred to as a recommendation strategy. Figure 1 summarizes
the description of the sequential game and points out that the information available to
the forecaster for choosing ϕt, respectively ψt, is formed by the Xj,s for j = 1, . . . ,K
and s = 1, . . . , Tj(t− 1), respectively, s = 1, . . . , Tj(t).

As we are only interested in the performances of the recommendation strategy (ψt),
we call this problem the pure exploration problem for multi-armed bandits and evaluate
the strategies through their simple regrets. The simple regret rt of a recommendation
ψt = (ψj,t)j=1,...,K is defined as the expected regret on a one-shot instance of the
game, if a random action is taken according to ψt. Formally,

rt = r
(
ψt
)

= μ∗ − μψt where μ∗ = μj∗ = max
j=1,...,K

μj

and μψt =
∑

j=1,...,K

ψj,t μj

denote respectively the expectations of the rewards of the best arm j∗ (a best arm, if
there are several of them with same maximal expectation) and of the recommendation
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ψt. A useful notation in the sequel is the gap Δj = μ∗ − μj between the maximal
expected reward and the one of the j–th arm ; as well as the minimal gap

Δ = min
j:Δj>0

Δj .

A quantity of related interest is the cumulative regret at round n, which is defined as
Rn =

∑n
t=1 μ

∗ − μIt . A popular treatment of the multi-armed bandit problems is to
construct forecasters ensuring that ERn = o(n), see, e.g., [LR85] or [ACBF02], and
even Rn = o(n) a.s., as follows, e.g., from [ACBFS02, Theorem 6.3] together with a
martingale argument. The quantities r′t = μ∗ − μIt are sometimes called instantaneous
regrets. They differ from the simple regrets rt and in particular, Rn = r′1 + . . .+ r′n is
in general not equal to r1 + . . .+ rn. Theorem 1, among others, will however indicate
some connections between rn and Rn.

Goal and structure of the paper: We study the links between simple and cumulative
regrets. Intuitively, an efficient allocation strategy for the simple regret should rely on
some exploration–exploitation trade-off. Our main contribution (Theorem 1, Section 3)
is a lower bound on the simple regret in terms of the cumulative regret suffered in the
exploration phase, showing that the trade-off involved in the minimization of the simple
regret is somewhat different from the one for the cumulative regret. It in particular
implies that the uniform allocation is a good benchmark when n is large. In Sections 4
and 5, we show how, despite all, one can fight against this negative result. For instance,
some strategies designed for the cumulative regret can outperform (for moderate values
of n) strategies with exponential rates of convergence for their simple regret.

3 The Smaller the Cumulative Regret, the Larger the Simple
Regret

It is immediate that for the recommendation formed by the empirical distribution of
plays of Figure 3, that is, ψn = (δI1 + . . . + δIn)/n, the regrets satisfy rn = Rn/n;
therefore, upper bounds on ERn lead to upper bounds on Ern. We show here that upper
bounds on ERn also lead to lower bounds on Ern: the smaller the guaranteed upper
bound on ERn, the larger the lower bound on Ern, no matter what the recommendation
strategies ψn are.

This is interpreted as a variation of the “classical” trade-off between exploration and
exploitation. Here, while the recommendation strategiesψn rely only on the exploitation
of the results of the preliminary exploration phase, the design of the allocation policies
ϕn consists in an efficient exploration of the arms. To guarantee this efficient explo-
ration, past payoffs of the arms have to be considered and thus, even in the exploration
phase, some exploitation is needed. Theorem 1 and its corollaries aim at quantifying
the needed respective amount of exploration and exploitation. In particular, to have an
asymptotic optimal rate of decrease for the simple regret, each arm should be sampled
a linear number of times, while for the cumulative regret, it is known that the forecaster
should not do so more than a logarithmic number of times on the suboptimal arms.

Formally, our main result is as follows. It is strong in the sense that we get lower
bounds for all possible sets of Bernoulli distributions {ν1, . . . , νK} over the rewards.
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Theorem 1 (Main result). For all allocation strategies (ϕt) and all functions ε :
{1, 2, . . .} → R such that

for all (Bernoulli) distributions ν1, . . . , νK on the rewards, there exists a constant
C � 0 with ERn � Cε(n),

the simple regret of all recommendation strategies (ψt) based on the allocation strate-
gies (ϕt) is such that

for all sets of K � 3 (distinct, Bernoulli) distributions on the rewards, all different from
a Dirac distribution at 1, there exists a constant D � 0 and an ordering ν1, . . . , νK of
the considered distributions with

Ern � Δ

2
e−Dε(n) .

Corollary 1. For allocation strategies (ϕt), all recommendation strategies (ψt), and
all sets of K � 3 (distinct, Bernoulli) distributions on the rewards, there exist two
constants β > 0 and γ � 0 such that, up to the choice of a good ordering of the
considered distributions,

Ern � β e−γn .

Theorem 1 is proved below and Corollary 1 follows from the fact that the cumulative
regrets are always bounded by n. To get further the point of the theorem, one should
keep in mind that the typical (distribution-dependent) rate of growth of the cumulative
regrets of good algorithms, e.g., UCB1 of [ACBF02], is ε(n) = lnn. This, as asserted in
[LR85], is the optimal rate. But the recommendation strategies based on such allocation
strategies are bound to suffer a simple regret that decreases at best polynomially fast.
We state this result for the slight modification UCB(p) of UCB1 stated in Figure 2; its
proof relies on noting that it achieves a cumulative regret bounded by a large enough
distribution-dependent constant times ε(n) = p lnn.

Corollary 2. The allocation strategy (ϕt) given by the forecaster UCB(p) of Figure 2
ensures that for all recommendation strategies (ψt) and all sets of K � 3 (distinct,
Bernoulli) distributions on the rewards, there exist two constants β > 0 and γ � 0
(independent of p) such that, up to the choice of a good ordering of the considered
distributions,

Ern � β n−γp .

Proof. The intuitive version of the proof of Theorem 1 is as follows. The basic idea
is to consider a tie case when the best and worst arms have zero empirical means; it
happens often enough (with a probability at least exponential in the number of times we
pulled these arms) and results in the forecaster basically having to pick another arm and
suffering some regret. Permutations are used to control the case of untypical or naive
forecasters that would despite all pull an arm with zero empirical mean, since they force
a situation when those forecasters choose the worst arm instead of the best one.

Formally, we fix the allocation strategies (ϕt) and a corresponding function ε such
that the assumption of the theorem is satisfied. We consider below a set of K � 3
(distinct) Bernoulli distributions; actually, we only use below that their parameters are
(up to a first ordering) such that 1 > μ1 > μ2 � μ3 � . . . � μK � 0 and μ2 > μK
(thus, μ2 > 0).
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Another layer of notation is needed. It depends on permutationsσ of {1, . . . , K}. To
have a gentle start, we first describe the notation when the permutation is the identity,
σ = id. We denote by P and E the probability and expectation with respect to the
K-tuple of distributions overs the arms ν1, . . . , νK . For i = 1 (respectively, i = K),
we denote by Pi,id and Ei,id the probability and expectation with respect to the K-
tuples formed by δ0, ν2, . . . , νK (respectively, δ0, ν2, . . . , νK−1, δ0), where δ0 denotes
the Dirac measure on 0. For a given permutation σ, we consider similar notation up
to a reordering. Pσ and Eσ refer to the probability and expectation with respect to the
K-tuple of distributions over the arms formed by the νσ−1(1), . . . , νσ−1(K). Note in
particular that the j–th best arm is located in the σ(j)–th position. Now, we denote
for i = 1 (respectively, i = K) by Pi,σ and Ei,σ the probability and expectation with
respect to the K-tuple formed by the νσ−1(j), except that we replaced the best of them,
located in the σ(1)–th position, by a Dirac measure on 0 (respectively, the best and
worst of them, located in the σ(1)–th and σ(K)–th positions, by Dirac measures on 0).
We provide a proof in six steps.

Step 1. Lower bounds by an average the maximum of the simple regrets obtained by
reordering,

max
σ

Eσrn � 1
K!

∑

σ

Eσrn � μ1 − μ2

K!

∑

σ

Eσ

[
1 − ψσ(1),n

]
,

where we used that under Pσ, the index of the best arm is σ(1) and the minimal regret
for playing any other arm is at least μ1 − μ2.

Step 2. Rewrites each term of the sum over σ as the product of three simple terms. We
use first that P1,σ is the same as Pσ, except that it ensures that arm σ(1) has zero reward
throughout. Denoting by

Cj,n =
Tj(n)∑

t=1

Xj,t

the cumulative reward of the j–th till round n, one then gets

Eσ

[
1 − ψσ(1),n

]
� Eσ

[(
1 − ψσ(1),n

)
I{Cσ(1),n=0}

]

= Eσ

[(
1 − ψσ(1),n

) ∣∣ Cσ(1),n = 0
]
× Pσ

{
Cσ(1),n = 0

}

= E1,σ

[(
1 − ψσ(1),n

) ]
Pσ

{
Cσ(1),n = 0

}
.

Second, iterating the argument from P1,σ to PK,σ,

E1,σ

[(
1 − ψσ(1),n

) ]
� E1,σ

[(
1 − ψσ(1),n

) ∣∣ Cσ(K),n = 0
]

P1,σ

{
Cσ(K),n = 0

}

= EK,σ

[(
1 − ψσ(1),n

) ]
P1,σ

{
Cσ(K),n = 0

}

and therefore,
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Eσ

[
1 − ψσ(1),n

]
� EK,σ

[(
1 − ψσ(1),n

) ]
P1,σ

{
Cσ(K),n = 0

}
Pσ

{
Cσ(1),n = 0

}
.

(1)
Step 3. Deals with the second term in the right-hand side of (1),

P1,σ

{
Cσ(K),n = 0

}
= E1,σ

[
(1 − μK)Tσ(K)(n)

]
� (1 − μK)E1,σTσ(K)(n)

,

where the equality can be seen by conditioning on I1, . . . , In and then taking the ex-
pectation, whereas the inequality is a consequence of Jensen’s inequality. Now, the ex-
pected number of times the sub-optimal arm σ(K) is pulled under P1,σ is bounded by
the regret, by the very definition of the latter: (μ2 − μK) E1,σTσ(K)(n) � E1,σRn.
Since by hypothesis (and by taking the maximum of K! values), there exists a constant
C such that for all σ, E1,σRn � C ε(n), we finally get

P1,σ

{
Cσ(K),n = 0

}
� (1 − μK)Cε(n)/(μ2−μK) .

Step 4. Lower bounds the third term in the right-hand side of (1) as

Pσ

{
Cσ(1),n = 0

}
� (1 − μ1)

Cε(n)/μ2 .

We denote by Wn = (I1, Y1, . . . , In, Yn) the history of actions pulled and obtained
payoffs up to time n. What follows is reminiscent of the techniques used in [MT04]. We
are interested in realizationswn = (i1, y1, . . . , in, yn) of the history such that whenever
σ(1) was played, it got a null reward. (We denote above by tj(t) is the realization of
Tj(t) corresponding to wn, for all j and t.) The likelihood of such a wn under Pσ is
(1 − μ1)tσ(1)(n) times the one under P1,σ. Thus,

Pσ

{
Cσ(1),n = 0

}
=
∑

Pσ {Wn = wn}
=
∑

(1 − μ1)
tσ(1)(n)

P1,σ {Wn = wn} = E1,σ

[
(1 − μ1)

Tσ(1)(n)
]

where the sums are over those histories wn such that the realizations of the payoffs
obtained by the arm σ(1) equal xσ(1),s = 0 for all s = 1, . . . , tσ(1)(n). The ar-
gument is concluded as before, first by Jensen’s inequality and then, by using that
μ2 E1,σTσ(1)(n) � E1,σRn � C ε(n) by definition of the regret and the hypothesis
put on its control.

Step 5. Resorts to a symmetry argument to show that as far as the first term of the
right-hand side of (1) is concerned,

∑

σ

EK,σ

[
1 − ψσ(1),n

]
� K!

2
.

Since PK,σ only depends on σ(2), . . . , σ(K − 1), we denote by P
σ(2),...,σ(K−1) the

common value of these probability distributions when σ(1) and σ(K) vary (and a sim-
ilar notation for the associated expectation). We can thus group the permutations σ two
by two according to these (K−2)–tuples, one of the two permutations being defined by
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σ(1) equal to one of the two elements of {1, . . . ,K} not present in the (K − 2)–tuple,
and the other one being such that σ(1) equals the other such element. Formally,

∑

σ

EK,σψσ(1),n =
∑

j2,...,jK−1

E
j2,...,jK−1

⎡

⎣
∑

j∈{1,...,K}\{j2,...,jK−1}
ψj,n

⎤

⎦

�
∑

j2,...,jK−1

E
j2,...,jK−1

[
1
]

=
K!
2
,

where the summations over j2, . . . , jK−1 are over all possible (K−2)–tuples of distinct
elements in {1, . . . ,K}.

Step 6. Simply puts all pieces together and lower bounds max
σ

Eσrn by

μ1 − μ2

K!

∑

σ

EK,σ

[(
1 − ψσ(1),n

) ]
Pσ

{
Cσ(1),n = 0

}
P1,σ

{
Cσ(K),n = 0

}

� μ1 − μ2

2

(
(1 − μK)C/(μ2−μK) (1 − μ1)

C/μ2
)ε(n)

.

4 Upper Bounds on the Simple Regret

In this section, we aim at qualifying the implications of Theorem 1 by pointing out that
is should be interpreted as a result for large n only. For moderate values of n, strate-
gies not pulling each arm a linear number of the times in the exploration phase can
have interesting simple regrets. To do so, we consider only two natural and well-used
allocation strategies. The first one is the uniform allocation, which we use as a sim-
ple benchmark; it pulls each arm a linear number of times. The second one is UCB(p)
(a variant of UCB1 where the quantile factor may be a parameter); it is designed for
the classical exploration–exploitation dilemma (i.e., its minimizes the cumulative re-
gret) and pulls suboptimal arms a logarithmic number of times only. Of course, fancier
allocation strategies should also be considered in a second time but since the aim of
this paper is to study the links between cumulative and simple regrets, we restrict our
attention to the two discussed above.

In addition to these allocation strategies we consider three recommendation strate-
gies, the ones that recommend respectively the empirical distribution of plays, the em-
pirical best arm, or the most played arm). They are formally defined in Figures 2 and 3.

Table 1 summarizes the distribution-dependentand distribution-free bounds we could
prove so far (the difference between the two families of bounds is whether the constants
can depend or not on the unknown distributions νj). It shows that two interesting cou-
ple of strategies are, on one hand, the uniform allocation together with the choice of
the empirical best arm, and on the other hand, UCB(p) together with the choice of the
most played arm. The first pair was perhaps expected, the second one might be consid-
ered more surprising. We only state here upper bounds on the simple regrets of these
two pairs and omit the other ones. The distribution-dependent lower bound is stated in
Corollary 1 and the distribution-free lower bound follows from a straightforward adap-
tation of the proof of the lower bound on the cumulative regret in [ACBFS02].
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Parameters: K arms

Uniform allocation — Plays all arms one after the other

For each round t = 1, 2, . . . ,

use ϕt = δ[t mod K], where [t mod K] denotes the value of t modulo K.

UCB(p) — Plays each arm once and then the one with the best upper confidence bound

Parameter: quantile factor p

For rounds t = 1, . . . ,K, play ϕt = δt

For each round t = K + 1,K + 2, . . . ,

(1) compute, for all j = 1, . . . ,K, the quantities μ̂j,t−1 =
1

Tj(t− 1)

Tj(t−1)∑

s=1

Xj,s ;

(2) use ϕt = δj∗t−1
, where j∗t−1 ∈ argmax

j=1,...,K
μ̂j,t−1 +

√
p ln(t− 1)

Tj(t− 1)

(ties broken by choosing, for instance, the arm with smallest index).

Fig. 2. Two allocation strategies

Table 1. Distribution-dependent (top) and distribution-free (bottom) bounds on the expected sim-
ple regret of the considered pairs of allocation (lines) and recommendation (columns) strategies.
Lower bounds are also indicated. The � symbols denote the universal constants, whereas the ©
are distribution-dependent constants.

Distribution-dependent Distribution-free

EDP EBA MPA EDP EBA MPA

Uniform © e−©n �
√
K lnK

n

UCB(p) ©(p lnn)/n ©n−© ©n2(1−p) �
√
pK lnn

n

�√
p lnn

�
√
pK lnn

n

Lower bound © e−©n �
√
K

n

Table 1 indicates that while for distribution-dependent bounds, the asymptotic op-
timal rate of decrease in the number n of rounds for simple regrets is exponential, for
distribution-free bounds, the rate worsens to 1/

√
n. A similar situation arises for the cu-

mulative regret, see [LR85] (optimal lnn rate for distribution-dependent bounds) versus
[ACBFS02] (optimal

√
n rate for distribution-free bounds).
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Parameters: the history I1, . . . , In of played actions and of their associated rewards
Y1, . . . , Yn, grouped according to the arms as Xj,1, . . . ,Xj,Tj (n), for j = 1, . . . , n

Empirical distribution of plays (EDP)

Draws a recommendation using the probability distribution ψn =
1

n

n∑

t=1

δIt .

Empirical best arm (EBA)
Only considers arms j with Tj(n) � 1, computes their associated empirical means

μ̂j,n =
1

Tj(n)

Tj(n)∑

s=1

Xj,s ,

and forms a deterministic recommendation (conditionally to the history),

ψn = δJ∗
n

where J∗
n ∈ argmax

j
μ̂j,n

(ties broken in some way).

Most played arm (MPA)
Forms a deterministic recommendation (conditionally to the history),

ψn = δJ∗
n

where J∗
n ∈ argmax

j=1,...,N
Tj(n) .

(ties broken in some way).

Fig. 3. Three recommendation strategies

4.1 A Simple Benchmark: The Uniform Allocation Strategy

As explained above, the combination of the uniform allocation with the recommen-
dation indicating the empirical best arm, forms an important theoretical benchmark.
This section states its theoretical properties: the rate of decrease of its simple regret
is exponential in a distribution-dependent sense and equals the optimal (up to a log-
arithmic term) 1/

√
n rate in the distribution-free case. In Proposition 1, we propose

two distribution-dependent bounds, the first one is sharper in the case when there are
few arms, while the second one is suited for large n. Their simple proof is omitted; it
relies on concentration inequalities, namely, Hoeffding’s inequality and McDiarmid’s
inequality. The distribution-free bound of Corollary 3 is obtained not as a corollary of
Proposition 1, but as a consequence of its proof. Its simple proof is also omitted.

Proposition 1. The uniform allocation strategy associated to the recommendation given
by the empirical best arm ensures that the simple regrets are bounded as follows:

Ern �
∑

j:Δj>0

Δj e
−Δ2

j�n/K�/2 for all n � K ;
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Ern �
(

max
j=1,...,K

Δj

)
exp

(
−1

8

⌊ n
K

⌋
Δ2

)
for all n �

(
1 +

8 lnK
Δ2

)
K .

Corollary 3. The uniform allocation strategy associated to the recommendation given
by the empirical best arm (at roundK�n/K�) ensures that the simple regrets are boun-
ded in a distribution-free sense, for n � K , as

sup
ν1,...,νK

Ern � 2

√
2K lnK

n
.

4.2 Analysis of UCB(p) Combined with MPA

A first (distribution-dependent) bound is stated in Theorem 2; the bound does not in-
volve any quantity depending on the Δj , but it only holds for rounds n large enough,
a statement that does involve the Δj . Its interest is first that it is simple to read, and
second, that the techniques used to prove it imply easily a second (distribution-free)
bound, stated in Theorem 3 and which is comparable to Corollary 3.

Theorem 2. For p > 1, the allocation strategy given by UCB(p) associated to the rec-
ommendation given by the most played arm ensures that the simple regrets are bounded
in a distribution-dependent sense by

Ern � K2p−1

p− 1
n2(1−p)

for all n sufficiently large, e.g., such that n � K +
4Kp lnn
Δ2

and n � K(K + 2).

The polynomial rate in the upper bound above is not a coincidence according to the
lower bound exhibited in Corollary 2. Here, surprisingly enough, this polynomial rate
of decrease is distribution-free (but in compensation, the bound is only valid after a
distribution-dependent time). This rate illustrates Theorem 1: the larger p, the larger
the (theoretical bound on the) cumulative regret of UCB(p) but the smaller the simple
regret of UCB(p) associated to the recommendation given by the most played arm.

Theorem 3. For p > 1, the allocation strategy given by UCB(p) associated to the rec-
ommendation given by the most played arm ensures that the simple regrets are bounded
for all n � K(K + 2) in a distribution-free sense by

Ern �
√

4Kp lnn
n−K

+
K2p−1

p− 1
n2(1−p) = O

(√
Kp lnn

n

)

.

Remark 1. We can rephrase the results of [KS06] as using UCB1 as an allocation strat-
egy and forming a recommendation according to the empirical best arm. In particular,
[KS06, Theorem 5] provides a distribution-dependent bound on the probability of not
picking the best arm with this procedure and can be used to derive the following bound
on the simple regret:

Ern �
∑

j:Δj>0

4
Δj

(
1
n

)ρΔ2
j/2
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for all n � 1. The leading constants 1/Δj and the distribution-dependant exponent
make it not as useful as the one presented in Theorem 2. The best distribution-free
bound we could get from this bound was of the order of 1/

√
lnn, to be compared to the

asymptotic optimal 1/
√
n rate stated in Theorem 3.

Proofs of Theorems 2 and 3

Lemma 1. For p > 1, the allocation strategy given by UCB(p) associated to the recom-
mendation given by the most played arm ensures that the simple regrets are bounded in a
distribution-dependent sense as follows. For all a1, . . . , aK such that a1 + . . .+aK = 1
and aj � 0 for all j, with the additional property that for all suboptimal arms j and all
optimal arms j∗, one has aj � aj∗ , the following bound holds:

Ern � 1
p− 1

∑

j �=j∗
(ajn)2(1−p)

for all n sufficiently large, e.g., such that, for all suboptimal arms j,

ajn � 1 +
4p lnn
Δ2
j

and ajn � K + 2 .

Proof. We first prove that whenever the most played arm J∗
n is different from an optimal

arm j∗, then at least one of the suboptimal arms j is such that Tj(n) � ajn. To do so,
we prove the converse and assume that Tj(n) < ajn for all suboptimal arms. Then,

(
K∑

i=1

ai

)

n = n =
K∑

i=1

Ti(n) <
∑

j∗
Tj∗(n) +

∑

j

ajn

where, in the inequality, the first summation is over the optimal arms, the second one,
over the suboptimal ones. Therefore, we get

∑

j∗
aj∗n <

∑

j∗
Tj∗(n)

and there exists at least one optimal arm j∗ such that Tj∗(n) > aj∗n. Since by definition
of the vector (a1, . . . , aK), one has aj � aj∗ for all suboptimal arms, it comes that
Tj(n) < ajn < aj∗n < Tj∗(n) for all suboptimal arms, and the most played arm J∗

n is
thus an optimal arm. Thus, using that Δj � 1 for all j,

Ern = EΔJ∗
n

�
∑

j:Δj>0

P
{
Tj(n) � ajn

}
.

A side-result extracted from the proof of [ACBF02, Theorem 1] states that for all sub-
optimal arms j and all rounds t � K + 1,

P
{
It = j and Tj(t− 1) � �

}
� 2 t1−2p whenever � � 4p lnn

Δ2
j

. (2)

This yields that for a suboptimal arm j and since by the assumptions on n and the aj ,
the choice � = ajn− 1 satisfies � � K + 1 and � � (4p lnn)/Δ2

j ,



Pure Exploration in Multi-armed Bandits Problems 35

P
{
Tj(n) � ajn

}
�

n∑

t=ajn

P

{
Tj(t− 1) = ajn− 1 and It = j

}

�
n∑

t=ajn

2 t1−2p � 1
p− 1

(ajn)2(1−p) (3)

where we used a union bound for the second inequality and (2) for the third inequality.
A summation over all suboptimal arms j concludes the proof.

Proof (of Theorem 2). We apply Lemma 1 with the uniform choice aj = 1/K and
recall that Δ is the minimum of the Δj > 0.

Proof (of Theorem 3). We start the proof by using that
∑
ψj,n = 1 and Δj � 1 for all

j, and can thus write

Ern = EΔJ∗
n

=
K∑

j=1

Δj Eψj,n � ε+
∑

j:Δj>ε

Δj Eψj,n .

Since J∗
n = j only if Tj(n) � n/K , that is, ψj,n = I{J∗

n=j} � I{Tj(n)�n/K}, we get

Ern � ε+
∑

j:Δj>ε

Δj P

{
Tj(n) � n

K

}
.

Applying (3) with aj = 1/K leads to Ern � ε+
∑

j:Δj>ε

Δj

p− 1
K2(p−1) n2(1−p)

where ε is chosen such that for all Δj > ε, the condition � = n/K − 1 � (4p lnn)/Δ2
j

is satisfied (n/K − 1 � K + 1 being satisfied by the assumption on n and K). The
conclusion thus follows from taking, for instance, ε =

√
(4pK lnn)/(n−K) and

upper bounding all remainingΔj by 1.

5 Conclusions: Comparison of the Bounds, Simulation Study

We now explain why, in some cases, the bound provided by our theoretical analysis
in Lemma 1 is better than the bound stated in Proposition 1. The central point in the
argument is that the bound of Lemma 1 is of the form ©n2(1−p), for some distribution-
dependent constant©, that is, it has a distribution-free convergence rate. In comparison,
the bound of Proposition 1 involves the gapsΔj in the rate of convergence. Some care is
needed in the comparison, since the bound for UCB(p) holds only for n large enough,
but it is easy to find situations where for moderate values of n, the bound exhibited
for the sampling with UCB(p) is better than the one for the uniform allocation. These
situations typically involve a rather large number K of arms; in the latter case, the
uniform allocation strategy only samples �n/K� each arm, whereas the UCB strategy
focuses rapidly its exploration on the best arms. A general argument is proposed in the
extended version [BMS09, Appendix B]. We only consider here one numerical example
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Fig. 4. Simple regret of different pairs of allocation and recommendation strategies, for K = 20
arms with Bernoulli distributions of parameters indicated on top of each graph; X–axis: number
of samples, Y –axis: expectation of the simple regret (the smaller, the better)

extracted from there, see the right part of Figure 4. For moderate values of n (at least
when n is about 6 000), the bounds associated to the sampling with UCB(p) are better
than the ones associated to the uniform sampling.

To make the story described in this paper short, we can distinguish three regimes:

– for large values of n, uniform exploration is better (as shown by a combination of
the lower bound of Corollary 2 and of the upper bound of Proposition 1);

– for moderate values of n, sampling with UCB(p) is preferable, as discussed just
above;

– for small values of n, the best bounds to use seem to be the distribution-free bounds,
which are of the same order of magnitude for the two strategies.

Of course, these statements involve distribution-dependent quantifications (to determine
which n are small, moderate, or large).

We propose two simple experiments to illustrate our theoretical analysis; each of
them was run on 104 instances of the problem and we plotted the average simple regrets.
(More experiments can be found in [BMS09].) The first one corresponds in some sense
to the worst case alluded at the beginning of Section 4. It shows that for small values
of n (e.g., n � 80 in the left plot of Figure 4), the uniform allocation strategy is very
competitive. Of course the range of these values of n can be made arbitrarily large by
decreasing the gaps. The second one corresponds to the numerical example described
earlier in this section.

We mostly illustrate here the small and moderaten regimes. (This is because for large
n, the simple regrets are usually very small, even below computer precision.) Because
of these chosen ranges, we do not see yet the uniform allocation strategy getting better
than UCB–based strategies. This has an important impact on the interpretation of the
lower bound of Theorem 1. While its statement is in finite time, it should be interpreted
as providing an asymptotic result only.
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6 Pure Exploration for Bandit Problems in Topological Spaces

These results are of theoretical interest. We summarize them very briefly; statements
and proofs can be found in the extended version [BMS09]. Therein, we consider the
X–armed bandit problem with bounded payoffs of, e.g., [Kle04, BMSS09] and (re-
)define the notions of cumulative and simple regrets. The topological set X is a large
possibly non-parametric space but the associated mean-payoff function is continuous.
We show that, without any assumption on X , there exists a strategy with cumulative re-
gret ERn = o(n) if and only if there exist an allocation and a recommendation strategy
with simple regret Ern = o(1). We then use this equivalence to characterize the metric
spaces X in which the cumulative regret ERn can always be made o(n): they are given
by the separable spaces. Thus, here, in addition to its natural interpretation, the simple
regret appears as a tool for proving results on the cumulative regret.
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