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Abstract

In stochastic multi—-armed bandits the objective is to solve the exploration—
exploitation dilemma and ultimately maximize the expected reward. Nonetheless,
in many practical problems, maximizing the expected reward is not the most de-
sirable objective. In this paper, we introduce a novel setting based on the principle
of risk—aversion where the objective is to compete against the arm with the best
risk—return trade—off. This setting proves to be intrinsically more difficult than the
standard multi-arm bandit setting due in part to an exploration risk which intro-
duces a regret associated to the variability of an algorithm. Using variance as a
measure of risk, we introduce two new algorithms, we investigate their theoretical
guarantees, and we report preliminary empirical results.

1 Introduction

The multi—-armed bandit [11] is the most simple yet powerful model for formalizing the problem
of on-line learning with partial feedback, which encompasses a large number of real-world appli-
cations, such as clinical trials, online advertisements, adaptive routing, and cognitive radio. In the
stochastic multi-armed bandit model, a learner chooses among several arms (e.g., different treat-
ments), each of which is characterized by an independent reward distribution (e.g., the effectiveness
of the treatment). At each point in time, the learner selects one arm and receives a noisy reward
observation from that arm (e.g., the effect of the treatment on one patient). Given a finite number of
n rounds (e.g., patients involved in the clinical trial), the learner faces a dilemma between repeat-
edly exploring all the arms and collecting information about their rewards versus exploiting current
reward estimates and selecting the arm with the highest estimated reward. Roughly speaking, the
objective of the learner is to solve this exploration—exploitation dilemma and accumulate as much
reward as possible over n rounds. In particular, multi—arm bandit literature typically focuses on the
problem of finding a learning algorithm capable of maximizing the expected cumulative reward (i.e.,
the reward collected over n rounds averaged over all the possible realizations from the observations),
thus implying that the best arm returns the highest expected reward. Nonetheless, in many practical
problems, maximizing the expected reward is not always the most desirable objective. For instance,
in clinical trials, the treatment which works best on average might also have considerable variabil-
ity; resulting in adverse side effects for some patients. In this case, a treatment which is less effective
on average but consistently effective on different patients is preferable w.r.t. an effective but risky
treatment. More generally, some application objectives require an effective trade—off between risk
and reward.

A large part of decision—making theory focuses on the definition and management of risk (see e.g.,
[7] for an introduction to risk with an expected utility theory perspective) and has mostly been stud-
ied in on-line learning within the so—called expert advice setting (i.e., adversarial full-information
on-line learning). In particular, [6] showed that in general, although it is possible to achieve a small
regret w.r.t. to the best expert in expectation, it is not possible to compete against the expert which
best trades off between average return and risk. On the other hand, it is possible to define no—regret
algorithms for simplified measures of risk—return. [13] studied the case of pure risk minimization



(notably variance minimization) in an on-line setting where at each step the learner is given a covari-
ance matrix and it has to choose a vector of weights so as to minimize the variance. The regret is then
computed over horizon n and compared to the fixed weights minimizing the variance in hindsight.
In the multi—arm bandit domain, the most interesting results are by [3] and [12]. [3] introduced an
analysis of the expected regret and its distribution, revealing that an anytime version of UCB [5]
and UCB-V might have large regret with some non-negligible probability.! This analysis is further
extended by [12] who derived negative results showing that no anytime algorithm can achieve a
regret with both a small expected regret and exponential tails. Although these results represent an
important step towards the analysis of risk within bandit algorithms, they are limited to the case
where an algorithm’s cumulative reward is compared to the reward obtained by pulling the arm with
the highest expectation.

In this paper, we focus on the problem of competing against the arm with the best risk—return trade—
off. In particular, we refer to the first and most popular measure of risk—return, the mean—variance
model introduce by [8].

The rest of the paper is organized as follows. In Section 2 we introduce notation and define the
mean—variance bandit problem. In Section 3 we introduce a confidence—bound algorithm and study
its theoretical properties. In Section 5 we report a set of numerical simulations aiming at validating
the theoretical results. Finally, in Section 6 we conclude with a discussion on possible extensions.
The proofs are reported in the supplementary material.

2 Risk-averse Multi-arm Bandit

In this section we introduce the main notation used throughout the paper and define the mean—
variance multi—arm bandit problem.

We consider the standard multi—arm bandit setting with K arms, each characterized by a distribution
v; bounded in the interval [0, 1]. Each distribution has a mean y; and a variance o?. The bandit
problem is defined over a finite horizon of n rounds. We denote by X; ; ~ v; the s-th random
sample drawn from the distribution of arm ¢. All arms and samples are independent. In the multi—
arm bandit protocol, at each round ¢, an algorithm selects arm [; and observes sample Xy, 7, ,,

where T ; is the number of samples observed from arm ¢ up to time ¢ (i.e., T; , = 22:1 {1, =i}).

While in the standard literature on multi—armed bandits the objective is to select the arm leading to
the highest reward in expectation (the arm with the largest expected value p;), here we focus on the
problem of finding the arm which effectively trades off between its expected reward (i.e., the return)
and its variability (i.e., the risk). Although a large number of models for risk-return trade—off have
been proposed, here we focus on the most popular and simple model: the mean—variance model
proposed by [8],2 where the return of an arm is measured by the expected reward and its risk by its
variance.

Definition 1. The mean—variance of an arm i with mean i;, variance o? and coefficient of absolute
risk tolerance p is defined as®* MV,; = 02 — pp,.

Thus it easily follows that the best arm minimizes the mean—variance, that is ¢* =
arg min;—1, . x MV;. We notice that we can obtain two extreme settings depending on the value of
risk tolerance p. As p — oo, the mean—variance of arm ¢ tends to the opposite of its expected value
1; and the problem reduces to the standard expected reward maximization traditionally considered
in multi—arm bandit problems. With p = 0, the mean—variance formulation reduces to the variance
o2 and the variance minimization problem.

Given {X; ;}._, i.i.d. samples from the distribution v;, we define the empirical mean—variance of
an arm ¢ with ¢ samples as MV, ; = &1'2,15 — piti+, where
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! Although the analysis is mostly directed to the pseudo—regret, as commented in Remark 2 at page 23 of
[3], it can be extended to the true regret.

2We discuss the limitations of this model and possible extensions to other models of risk in Section 6.

3The coefficient of risk tolerance is the inverse of the more popular coefficient of risk aversion A = 1 /p.



We now consider a learning algorithm .4 and its corresponding performance over n rounds. Similar
to a single arm 7 we define its empirical mean—variance as

where
1 n 1 n
in(A) = =37 G A == (2 w(A), 3)
t=1 t=1

with Z; = Xy, 7, ,, that is the reward collected by the algorithm at time ¢. This leads to a natural
definition of the (random) regret at each single run of the algorithm as the difference in the mean—
variance performance of the algorithm compared to the best arm.

Definition 2. The regret for a learning algorithm A over n rounds is defined as

Rn(A) = MV,,(A) — MV;- . (4)

Given this definition, the objective is to design an algorithm whose regret decreases as the number
of rounds increases (in high probability or in expectation).

We notice that the previous definition actually depends on unobserved samples. In fact, Wln is
computed on n samples * which are not actually observed when running .A. This matches the defi-
nition of true regret in standard bandits (see e.g., [3]). Thus, in order to clarify the main components
characterizing the regret, we introduce additional notation. Let

Xi= 1 ifi=1"
Yie = X« p witht' =T, + > Tj,+t otherwise
G<inj#it
be a renaming of the samples from the optimal arm, such that while the algorithm was pulling arm

1 for the ¢-th time, Y; ; is the unobserved sample from *. Then we define the corresponding mean
and variance as
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Given these additional definitions, we can rewrite the regret as (see Appendix A.1)
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Since the last term is always negative and small 4, our analysis focuses on the first two terms which
reveal two interesting characteristics of \A. First, an algorithm A suffers a regret whenever it chooses
a suboptimal arm 4 # ¢* and the regret corresponds to the difference in the empirical mean—variance
of ¢ w.r.t. the optimal arm ¢*. Such a definition has a strong similarity to the standard definition
of regret, where ¢* is the arm with highest expected value and the regret depends on the number of
times suboptimal arms are pulled and their respective gaps w.r.t. the optimal arm ¢*. In contrast to
the standard formulation of regret, A also suffers from an additional regret from the variance 62 (A)
which depends on the variability of pulls T ,, over different arms. Recalling the definition of the
mean /., (A) as the weighted mean of the empirical means /1; 7, , with weights T} ,, /n (see eq. 3), we
notice that this second term is a weighted variance of the means and illustrates the exploration risk
of the algorithm. In fact, if an algorithm simply selects and pulls a single arm from the beginning, it
would not suffer any exploration risk (secondary regret) since /i, (A) would coincide with /i; 7, ,, for
the chosen arm and all other components would have zero weight. On the other hand, an algorithm
accumulates exploration risk through this second term as the mean fi,, (A) deviates from any specific
arm, where the maximum exploration risk resulting from a mean fi,, (A) furthest from all arm means.

*More precisely, it can be shown that this term decreases with rate O(K log(1/8)/n) with probability 1 — &



The previous definition of regret can be further elaborated and obtain the upper bound (see App. A.1)

K
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where A; = (67r,, —0ir,,) — pliuT,, — fir,,)and ff] = (fui,1,,, — i1, )? Unlike the
definition in eq. 6, this upper bound explicitly illustrates the relationship between the regret and the
number of pulls T; ,,; suggesting that a bound on the pulls is sufficient to bound the regret.

Finally, we can also introduce a definition of the pseudo-regret.

Definition 3. The pseudo regret for a learning algorithm A over n rounds is defined as

. 1 2 &
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where Ay = MV; — MV« and I'; j = p; — .

In the following we will denote the two components of the pseudo-regret as

K
- 1 ~ 2
RA(A) = - Y TinAi, and RL(A) = = SN T Tial} )
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Where ﬁﬁ (A) constitutes the standard regret derived from the traditional formulation of the multi-

arm bandit problem and 7%5(./4) denotes the exploration risk. This regret can be shown to be close
to the true regret up to small terms with high probability.

Lemma 1. Given definitions 2 and 3,

~ 2K log6nK/§ KlogbnKk/o
Ro(A) < Ro(A) + (5 -+ )| LIS |y g K08 OnETG

with probability at least 1 — 0.

The previous lemma shows that any (high—probability) bound on the pseudo-regret immediately
translates into a bound on the true regret. Thus, in the following we will report most of the theoretical
analysis according to R, (A). Nonetheless, it is interesting to notice a major difference in the
relationship between the true and pseudo—regret here and in the standard bandit problem. In fact,
it is possible to show that, in this case, the pseudo—regret is not an unbiased estimator of the true
regret, i.e., E[R,] # E[R,]. Thus, in order to bound the expectation of R,, we need to build on the
high—probability result from Lemma 1.

3 The Mean—Variance Lower Confidence Bound Algorithm

In this section we introduce a novel risk—averse bandit algorithm whose objective is to identify the
arm which best trades off risk and return. The algorithm is a natural extension of UCBI [5] and we
report a theoretical performance analysis on how well it balances the exploration needed to identify
the best arm versus the risk of pulling arms with different means.

3.1 The Algorithm

We propose an index—based bandit algorithm which estimates the mean—variance of each arm and
selects the optimal arm according to the optimistic confidence—bounds on the current estimates. A
sketch of the algorithm is reported in Figure 1. For each arm, the algorithm keeps track of the
empirical mean—variance 1\/4\7” computed according to s samples. We can build high—probability
confidence bounds as an immediate application of the Chernoff-Hoeffding inequality (see e.g., [1]
for the bound on the variance) for terms /i and 62 in the empirical mean—variance.



Input: Confidence ¢
fort=1,...,ndo
fori=1,..., K do
Compute B 1, , , = I\//IVLTI.YF1 —5+p)
end for
Return Iy = argmin;=1,....x Bi1; ,_,
Update T;: = Tie—1 + 1
Observe X1,,1; , ~ vI,
Update Wzn ),/
end for

log1/é
2T ¢—1

Figure 1: Pseudo-code of the MV-LCB algorithm.

Lemma 2. Let {X; s} be i.i.d. random variables bounded in [0,1] from the distribution v; with
mean [; and variance 01.2, and fi; ;. and (31.2’ s be the empirical mean and variance computed as in
Equation 1, then

_ log 1/6
P 3@:1,...,1{,5:1,...,71,MV,L-,S—MV,L-z(5+p)\/°g28/] < 6nKs,

The algorithm in Figure 1 implements the principle of optimism in the face of uncertainty used in
some multi—arm bandit algorithms. On the basis of the previous confidence bounds, we define a
lower—confidence bound on the mean—variance of arm ¢ when it has been pulled s times as

_ log1/6
Biy=MV,, — (HM%, (10)

where § is an input parameter of the algorithm. Given the index of each arm at each round ¢, the al-
gorithm simply selects the arm with the smallest mean—variance index, i.e., [; = argmin; B; 1, ,_,.
We refer to this algorithm as the mean—variance lower—confidence bound (M V-LCB) algorithm.

Remark 1. We notice that the algorithm reduces to UCB1 whenever p — oo. This is coherent with
the fact that for p — oo the mean—variance problem reduces to the maximization of the cumulative
reward, for which UCBI1 is already known to be nearly-optimal. On the other hand, for p = 0, which
leads to the problem of cumulative reward variance minimization, the algorithm plays according to
a lower—confidence—bound on the variances.

Remark 2. The MV-LCB algorithm is parameterized by a parameter § which defines the confidence
level of the bounds employed in the definition of the index (10). In Theorem 1 we show how
to optimize the parameter when the horizon n is known in advance. On the other hand, if n is
not known, it is possible to design an anytime version of MV-LCB by defining a non-decreasing
exploration sequence (&), instead of the term log 1/0.

3.2 Theoretical Analysis

In this section we report the analysis of the regret R,,(A) of MV-LCB (Fig. 1). As highlighted in
eq. 7, it is enough to analyze the number of pulls for each of the arms to recover a bound on the
regret. Although the proofs are reported in the supplementary material, we notice here that they are
mostly based on similar arguments to the proof of UCB.

We derive the following regret bound in high probability and expectation.
Theorem 1. Let the optimal arm i* be unique and b = 2(5 + p), the MV-LCB algorithm achieves

a pseudo—regret bounded as
r?; N 5K
AZA? n’
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with probability at least 1 — 6nK 6. Similarly, if MV-LCB is run with § = 1/n? then
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Remark 1 (the bound). Let A i, = min;;+ A; and I'pax =
of the previous bound leads to
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First we notice that the regret decreases as O(log®n/n), implying that MV-LCB is a consistent
algorithm. As already highlighted in Definition 2, the regret is composed by two main terms. The
first term is due to the difference in the mean—variance of the best arm and the arms pulled by the
algorithm, while the second term denotes the additional variance introduced by the exploration risk
of pulling arms with different means. In particular, it is interesting to notice that this additional term
depends on the squared difference in the means of the arms I‘ .. Thus, if all the arms have the same
mean, this term would be zero.

Remark 2 (worst—case analysis). We can further study the result of Theorem 1 by considering the
worst—case performance of MV-LCB, that is the performance when the distributions of the arms are
chosen so as to maximize the regret. In order to illustrate our argument we consider the simple case
of K = 2 arms, p = 0 (variance minimization), 111 # 2, and 07 = o2 = 0 (deterministic arms).
In this case we have a variance gap A = 0 and I'> > 0. According to the definition of MV-LCB,

log 1/6

the index B; ; would simply reduce to B; ; = , thus forcing the algorithm to pull both

arms uniformly (i.e., Ty, = 15, = n/2 up to roundmg effects). Since the arms have the same
variance, there is no direct regret in pulling either one or the other. Nonetheless, the algorithm has
an additional variance due to the difference in the samples drawn from distributions with different
means. In this case, the algorithm suffers a constant (true) regret

Tl nT2 n 1

i

independent from the number of rounds n. This argument can be generalized to multiple arms and
p # 0, since it is always possible to design an environment (i.e., a set of distributions) such that
Amin = 0 and Ty # 0. © This result is not surprising. In fact, two arms with the same mean—
variance are likely to produce similar observations, thus leading MV-LCB to pull the two arms
repeatedly over time, since the algorithm is designed to try to discriminate between similar arms.
Although this behavior does not suffer from any regret in pulling the “suboptimal” arm (the two
arms are equivalent), it does introduce an additional variance, due to the difference in the means of
the arms (I' # 0), which finally leads to a regret the algorithm is not “aware” of. This argument
suggests that, for any n, it is always possible to design an environment for which MV-LCB has a
constant regret. This finding will be further investigated in the numerical simulations in Section 5.
This result is particularly interesting since it reveals a huge gap between the mean—variance problem
and the standard expected regret minimization problem. In fact, in the latter case, UCB is known
to have a worst—case regret per round of ©(1/y/n) [4], while in the worst case, MV-LCB suffers a
constant regret. In the next section we introduce a simple algorithm able to deal with this problem
and achieve a vanishing worst—case regret.

Rn(MV-LCB) = 0 4 —"-="T? =

4 The Exploration-Exploitation Algorithm

Although for any fixed problem (with A,;, > 0) the MV-LCB algorithm introduced in the previous
section has a vanishing regret, for any value of n, it is always possible to find an environment for
which its regret is constant. In this section, we analyze a simple algorithm where exploration and
exploitation are two distinct phases. The ExpExp algorithm divides the time horizon n into two
distinct phases of length 7 and n — 7 respectively. During the first phase all the arms are explored

3Note that in this case (i.e., A = 0), Theorem 1 does not hold, since the optimal arm is not unique.
SNotice that this is always possible for a large majority of distributions for which the mean and variance are
independent or mildly correlated.
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Figure 2: Regret of MV-LCB and ExpExp in different scenarios.

uniformly, thus collecting 7/K samples each 7. Once the exploration phase is over, the mean—
variance of each arm is computed and the arm with the smallest estimated mean—variance MV; /g
is repeatedly pulled until the end of the experiment.

The MV-LCB is specifically designed to minimize the probability of pulling the wrong arms, so
whenever there are two equivalent arms (i.e., arms with the same mean—variance), the algorithm
tends to pull them the same number of times, at the cost of potentially introducing an additional
variance which might result in a constant regret. On the other hand, ExpExp stops exploring the
arms after 7 rounds and then elicits one arm as the best and keeps pulling it for the remaining n — 7
rounds. Intuitively, the parameter 7 should be tuned so as to meet different requirements. The
first part of the regret (i.e., the regret coming from pulling the suboptimal arms) suggests that the
exploration phase 7 should be long enough for the algorithm to select the empirically best arm i*
at 7 equivalent to the actual optimal arm ¢* with high probability; and at the same time, as short as
possible to reduce the number of times the suboptimal arms are explored. On the other hand, the
second part of the regret (i.e., the variance of pulling arms with different means) is minimized by
taking 7 as small as possible (e.g., 7 = 0 would guarantee a zero regret). The following theorem
illustrates the optimal trade-off between these contrasting needs.

Theorem 2. Let EXpExp be run with 7 = K (n/14)%/3, then for any choice of distributions {v;}
the expected regret is B[R, (A)] < 245

Remark 1 (the bound). We first notice that this bound suggests that ExpExp performs worse than
MV-LCB on easy problems. In fact, Theorem 1 demonstrates that MV-LCB has a regret decreasing
as O(K log(n)/n) whenever the gaps A are not small compared to n. Nonetheless, the previous
bound is distribution independent and indicates the worst performance possible with ExpExp. On
the other hand, in the remarks of Theorem 1 we highlighted the fact that for any value of n, it is
always possible to design an environment which leads MV-LCB to suffer a constant regret. This
opens the question whether it is possible to design an algorithm which works as well as MV-LCB
on easy problems and as robustly as ExpExp on difficult problems.

Remark 2 (exploration phase). The previous result can be improved by changing the exploration
strategy used in the first 7 rounds. Instead of a pure uniform exploration of all the arms, we could
adopt a best—arm identification algorithms such as Successive Reject and UCB-E which maximize
the probability of returning the best arm given a fixed budget of rounds 7 (see e.g., [2]).

5 Numerical Simulations

In this section we report numerical simulations aimed at validating the main theoretical findings re-
ported in the previous sections. In all the following graphs we study the true regret R, (A) averaged
over 500 runs. We first consider the variance minimization problem (p = 0) for K = 2 Gaussian
arms with g7 = 1.0, o = 0.5, 07 = 0.05, and 03 = 0.25 and we run MV-LCB. ® In Figure 2 we

report the true regret R, (as in the original definition in eq. 4) and its two components RA and RF

(these two values are defined as in eq. 9 with AandT replacmg A and T"). As expected (see e.g.,
Theorem 1), the regret tends to zero as n increases and it is obtained as the composition of the regret

"In the definition and in the following analysis we ignore rounding effects
8Notice that although in the paper we assumed the distributions to be bounded in [0, 1] all the results can be
extended to sub-Gaussian distributions.



from pulling suboptimal arms and the regret of pulling arms with different means. Indeed, if we con-

sidered two distributions with y1; = jo, the average regret would coincide with R%. Furthermore,
as shown in Theorem 1 the two regret terms decrease with the same rate O(logn/n).

A detailed analysis of the impact of A and I' on the performance of MV-LCB is reported in the
supplementary material (Appendix D). Here we only report the study of the worst—case performance
of MV-LCB and and we compare it to ExpExp (see Figure 2). In order to have a fair comparison,
for any value of n and for each of the two algorithms, we select the pair A,,, I, which corresponds
to the largest regret (we search in a grid of values with p; = 1.5, s € [0.4;1.5], 02 € [0.0;0.25],
and 03 = 0.25, so that A € [0.0;0.25] and T € [0.0;1.1]). As discussed in Section 4, while the
worst—case regret of ExpExp keeps decreasing over n, it is always possible to find a problem for
which regret of MV-LCB stabilizes to a constant.

While in the previous experiments we considered the case of variance minimization, in Figure 2

we report results for a wide range of risk tolerance p € [0.0;10.0] and K = 15 arms. We choose

the means and variances so that a set of arms is always dominated (i.e., for any p, MV? > MV?’.),
b

while the optimal arm i7; changes depending on the value of p. In Figure 2 we arranged the arms
and the algorithms performance in a standard deviation—mean plot. While the red line connects the
arms that are optimal for some value of p, the green and blue lines show the standard deviations and
means of ExpExp and MV-LCB for n = 25,000. Each point on the two lines corresponds to the
performance of different values of p. We notice that in this problem, where a lot of arms have big
gaps (e.g., all the dominated arms have a large gap for any value of p), MV-LCB tends to perform
better than ExpExp. In Appendix D we report additional results.

6 Conclusions

Large part of the literature in multi—armed bandit focuses on the problem of minimizing the regret
w.r.t. the arm with the highest return. Nonetheless, this is not always the best option, since the
optimal arm in expectation may have a large risk. In this paper, we introduced a novel multi—armed
setting where the objective is to perform as well as the arm with the best risk—return trade—off. In
particular, we relied on the mean—variance model introduced in [8] to measure the performance of
the arms and we defined the regret of a learning algorithm. We proposed two novel algorithms to
solve the mean—variance bandit problem and we reported their corresponding theoretical analysis.
While MV-LCB shows a small regret of order O(logn/n) on “easy” problems (i.e., where the
mean-variance gaps A are big w.r.t. n), we showed that it has a constant worst—case regret. On
the other hand, we proved that ExpExp have a vanishing worst—case regret at the cost of a worse
performance on the “easy” problems. To the best of our knowledge this is the first work introducing
risk—aversion in the multi—armed setting and it opens a series of interesting questions.

Lower bound. In this paper we introduced two algorithms, MV-LCB and ExpExp. As discussed in
remarks of Theorem 1 and of Theorem 2, MV-LCB has a regret of order O(y/ K /n) on easy prob-
lems and O(1) on difficult problems, while ExpExp achieves the same regret O(K /n'/3) over all
the problems. The main open question is whether O (K /n'/3) is actually the best possible achiev-
able rate (in the worst—case) for this problem or a better rate is possible. This question is of particular
interest since the standard reward expectation maximization problem has a known lower—bound of
Q(+y/1/n) and minimax rate of Q(1/n'/?) for the mean—variance problem; implying that the risk—
averse bandit problem is intrinsically more difficult than standard bandit problems.

Different measures of return-risk. Considering alternative notions of risk is a natural extension
to the previous setting. In fact, over the years the mean—variance model has often been criticized.
From a point of view of the expected utility theory, the mean—variance model is justified only under a
Gaussianity assumption on the arm distributions. Furthermore, the variance is a symmetric measure
of risk, while it is often the case that only one—sided deviations from the mean are not desirable
(e.g., in finance only losses w.r.t. to the expected return are considered as a risk, while any positive
deviation is not considered as a real risk). A popular measure of risk—return is the o value—at—risk
(i.e., the quantile). The main challenge in this case is the estimation of the value—at-risk for each
arm. In fact, while the cumulative distribution of a random variable can be reliably estimated (see
e.g., [9]), the quantile is much more difficult, in particular when the « level corresponds to values
where the probability density is close to zero (e.g., a 0.95 quantile for a Gaussian distribution). Thus,
unlike the standard case where we consider either a bounded or sub-Gaussian distribution, it would
be preferable to deal with distributions with fat tails.
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A The Regret
A.1 The True Regret
We recall the definition of the (empirical) regret as

Ru(A) = MV, (A)

MV

Given the definitions reported in the main paper, we first elaborate on the two mean terms in the

regret as
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Putting together these terms, we obtain the regret (see eq. 4)
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If we further elaborate the second term, we obtain

1 - 2 1 ad 1 K 9
ﬁ ; n,n (ﬂi,TL’,n - ﬂn(»A)) ﬁ lz:; Ti,n (ﬂi,Ti,n - E ; ijnﬂj,Tj,n)

i=1 ]:1
K K
1 Tin, .
S ﬁ Z Tz,n Z j,;n (/’I”L,Tl n g T; n)2
i=1 j=1
1 K
= I TnTjmicr,, — i, )
i=1 j£i

Using the definitions A; = (62,, — 625, ) = plitir,, — fir,,) and T2 = (i, — i, ,)?
we finally obtain an upper—bound on the regret of the form

1 PO s 5
Rn(A) < -~ Z TinA; + 3 Z ZTHLTJRF?J
iti* i=1 j#i

In the following we refer to the two terms as R4 and RY.

A.2 The Pseudo-Regret

Similar to what is done in the standard bandit problem, we can introduce a different notion of regret.
Starting from the last equation in the previous section, we define the pseudo-regret

~ 1 2 K
Rn(A) = - ; TinA; + o) ; ; Ti,nTj,anz,j’

where the empirical values 31 and fl ; are substituted by their corresponding exact values % In the
following we show that the true and pseudo regrets different for values that tend to zero with high
probability.

Proof. (Lemma 1)

We define a high—probability event in which the empirical values and the true values only differ for

small quantities
log1/é log1/é
£ = {vim o Ko =t i =] < (/5 ana o2, - 2] <5510
s ,

Using Chernoff-Hoeffding inequality and a union bound over arms and rounds, we have that
P[£C] < 6nK . Under this event we rewrite the empirical A; as

A=A —(0f — o)+ plps — pir) + (77, — 00, ) — PR, — fi,)

log1/é
< A +2(5+p) ‘;%_F/

~

Similarly, I'; ; is upper—bounded as

T gl = Tij — pi + pj + i, — g1, 1
log1/6 log1/6
< Ty .
<| ,JW 51l W il

Notice that the factor 2 in front of the second term is due to a rough upper bounding used in the proof of
Lemma 1.
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Thus the regret can be written as

Rn(A)giZTi,n(AiH(Hp)\/m) nQZZTmTM(m”H\/lOgW \/lngjf)Z

iFEL* i=1 j#i
<= ZTMA +2F 5+p > V2Tialog1/6 + fZZT,nTj,nrij

z;éz* iF£T* =1 j#1

2v2 3 log1/§ Tinlogl/é
+ n2 < -~ j,n 10g / +7ZZ i,n 108 /

i=1 j#i i=1 j#i
K

1 2 2Klogl/é Klogl/o
< IS A 2SS T, (54 p)y LBy a0
= " " "

where in the next to last passage we used Jensen’s inequality for concave functions and rough upper
bounds on other terms (K — 1 < K, >, 2~ Tin < ). By recalling the definition of R, (A) we
finally obtain

~ 2Klogl/d Klogl/d
Ru(A) < Ru(A) + 5+ )y LTI 4 40810

with probability 1 — 6nK . Thus we can conclude that any upper bound on the pseudo-regret
R, (A) is a valid upper bound for the true regret R,,(A) as well, up to a decreasing term of order

O(/E/n).

O
B MYV-LCB Theoretical Analysis
In order to simplify the notation in the following we use b = 2(5 + p).
Proof. (Theorem 1)
We begin by defining a high—probability event £ as
&= {w Lo K Vs =1,m, | — ] < ,/% and |62, — 02| < 5 logQi/é}

Using Chernoff-Hoeffding inequality and a union bound over arms and rounds, we have that
P[EC] < 6nK§.

We now introduce the definition of the algorithm. Let consider any time ¢ when arm ¢ # i* is pulled
(i.e., I; = 7). By definition of the algorithm in Figure 1, ¢ is selected if its corresponding index
B 1, ,_, is bigger than for any other arm, notably the best arm :*. By recalling the definition of the
index and the empirical mean—variance at time ¢, we have

log1/6

&E»Ti,t,—l - pﬂini,t—l - (5 + ,0) 2T 11 = Bi,qu,t71 <
i, t—

log1/0
— 52 (i
< B’L* Tivt—1 — Ji*,Ti*,t—l T PR T oy T (5 " p)\/;

Over all the possible realizations, we now focus on the realizations in £. In this case, we can rewrite
the previous condition as

log1/6

it—1

o7 = pri —2(5+ p) < Bimyoy < Binmi o < 00— ppie.
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Let time ¢ be the last time when arm 4 is pulled until the final round n, then T}; ;1 = T; ,, — 1 and

26+p)% . 1

T% log g + 17

which suggests that the suboptimal arms are pulled only few times with high probability. Plugging
the bound in the regret in eq. 8 leads to the final statement

Ti n S

)

~ 1 b logl/s 1 4b? log1/5 2b*(log 1/6)? 5K
Rn(A)SEZ A; +EZ A? ZZZ A2A2 F’J+n’
iAi* iAL* g i£i* jAL
JFA*

with probability 1 — 6nKJ.

We now move from the previous high—probability bound to a bound in expectation. The pseudo—
regret is (roughly) bounded as R,,(A) < 2 + p (by bounding A; <1+ pandI' < 1), thus

E[Rn(A)] = E[Ru(A{E}] + B[R, (AHEY] < (2+ p)P[EC].

By taking u equal to the previous high—probability bound and recalling that P[£€] < 6nK§, we
have

~ 1 b logl/s 1 4b210g1/(5 2b*(log 1/6)?
e D VD DR P EDIDY —azar T
iF£i* g iFi* 4 i£i* jFAL
i

5K
+ 7 + (2 + /))6%[(6

The final statement of the lemma follows by tuning the parameter § = 1/n? so as to have a regret
bound decreasing with n. O

While a high—probability bound for R,, can be immediately obtained form Lemma 1, the expectation
of R,, is reported in the next corollary.

Proof. Since the mean—variance —p < MV < 1/4, the regret is bounded by —1 /4—p < R,(A) <
1/4 + p. Thus we have

u 1/4+p
E[R,(A)] = / L (t)dt + / " (0t < wB(R,(A) < ol + (5

e 1P PIRA(A) > u).

By taking u equal to the previous high—probability bound and recalling that P[E€] < 6nK§, we
have

1 b logl/s 1 4b210g1/5 2b*(log 1/6)?
e D D DR n? EDIDY TAIAT T
iA£i* v iAi* ? i£i* jFA0
i

K Klogl1/é Klogl1/é 1
i 0y R8I0 RISy (2 penics
n 2n n 4

The final statement of the lemma follows by tuning the parameter § = 1/n? so as to have a regret
bound decreasing with n. O

C Exp-Exp Theoretical Analysis

The length of the exploration phase is 7 and during the exploitation phase the algorithm keeps
pulling the arm ¢* with the smallest empirical variance estimated during the exploration phase. As a
result, the number of pulls of each arm is

T . ok
Tin = T +(n—7)I{i=14"} (11)
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We analyze the two terms of the regret separately.

ﬁﬁ:i;(;+(n—7)ﬂ{i=%*})Ai:7;(; = J
i#i ks 7 (c)

We notice that the only random variable in this formulation is the best arm i* at the end of the
exploration phase. We thus compute the expected value of R4

Rh= 33 (2 + =i = 3) (5 + = 1 = 0711,

K
=;%§: (;2+0r—ﬂﬂh—w}ﬂj—z}+ (n =) = "} + = (n = i = i} )T,

ZF ZZF I{i =%}
i=1 j#i i=1 j#i

;
e

Grouping all the terms, ExpExp has an expected regret bounded as

E[Rn(A)] < 27 +2 ; Avexp (- 1-A2)

We can now move to the worst—case analysis of the regret. Let f(A;) = A;exp ( - %Af) , the
“adversarial” choice of the gap is determined by maximizing the regret and it corresponds to

F(A;) =exp ( — %A?) + A < — 2%Ai exp ( — ;Af))
= (1 — Q%A?) exp ( — %A2> =

which leads a worst—case choice of the gap as

The worst—case regret is then
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E[Rn(A)] < 2% + (K - 1)@% exp(-05) <27 + Km%

We can now choose the parameter 7 minimizing the worst—case regret. Taking the derivative of the
regret w.r.t. 7 we obtain

dr n 2

dE[R.(A)] 2 1(K)3/2_0

thus leading to the optimal parameter 7 = (n,/4)?/3 K. The final regret is thus bounded as

K

E[R(A)] < 37

D Additional Simulations

D.1 Comparison between MV-LCB and ExpExp with K = 2

We consider the variance minimization problem (p = 0) with K = 2 Gaussian arms with different
means and variances. In particular, we consider a grid of values with uqy = 1.5, o € [0.4;1.5],
o? € [0.0;0.25], and 03 = 0.25, so that A € [0.0;0.25] and I" € [0.0;1.1] and number of rounds
n € [50;2.5 x 10°]. Figures 3 and 4 report the mean regret for different values of n. The colors are
renormalized in each plot so that dark blue corresponds to the smallest regret and red to the largest
regret. The results confirm the theoretical findings of Theorem 1 and 2. In fact, for simple problems
(large gaps A) MV-LCB converges to a zero-regret faster than ExpExp, while for A close to zero
(i.e., equivalent arms), MV-LCB has a constant regret which does not decrease with n and the regret
of ExpExp slowly decreases to zero.

D.2 Risk tolerance sensitivity

In section we report numerical results for different values of the risk tolerance parameter p and
K = 15 arms. We consider the two settings reported in Figure 7.

As we notice, in both configurations the performance of MV-LCB and ExpExp approaches the one
of the optimal arm ¢, for each specific p as n increases. Nonetheless, in configuration 1 the large
number of suboptimal arms (e.g., arms with large gaps) allows MV-LCB to outperform ExpExp and
converge faster to the optimal arm (and thus zero regret). On the other hand, in configuration 2 there
are more arms with similar performance and for some values of p ExpExp eventually achieves a
better performance than MV-LCB.
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MV-LCB Regret, n = 50 MV-LCB Regtet, n = 100

LCB Regret, n = 250

Variance gap Variance gap Mean gap Variance gap Mean gap

MV-LCB Regeet, u = 500

CB Regret, n = 1000 MV-LCB Regeet, n = 2500

Variance gap Mean gap Variance gap Mean gap Variance gap Mean gap

MV-LCB Regret, n = 5000 MV-LCE Regeet, n = 10000 MV-LCB Regret, n = 23000

Variance gap Mean gap Variance gap Mean gap Variance gap Mean gap

MV-LCB Regret, n = 50000 MV-LCB Regret, u = 100000 MV-LCB Regret, n = 250000

Variance gap Mean gap Variance gap Mean gap Variance gap Mean gap

Figure 3: Regret R,, of MV-LCB.
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Exploration Exploitation Regret, n = 50 Exploration Exploitation Regret, n = 100 Exploration Exploitation Regret, n = 250

Variance gap Mean gap Variance gap Mean gap Variance gap Mean gap

Exploration Exploitation Regtet, n = 500 Exploration Exploitation Regret, n = 1000 Exploration Exploitation Regtet, n = 2500

Mean Regret

Variance gap Mean gap Variance gap Mean gap Variance gap Mean gap

Exploration Exploitation Regret, n = 5000 Exploration Exploitation Regret, n = 10000 Exploration Exploitation Regret, n = 25000

Variance gap Mean gap Variance gap Mean gap Variance gap Mean gap

Exploration Exploitation Regret, n = 50000 Exploration Exploitation Regtet, n = 100000 Exploration Exploitation Regret, n = 250000

Variance gap Mean gap Variance gap Mean gap Variance gap Mean gap

Figure 4: Regret R,, of ExpExp.

17



Efficient Frontier of Risk-Aversion, n = 50

Efficient Frontier of Risk-Aversion, n = 100

Efficient Frontier of Risk-Aversion, n = 250
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Figure 5: Risk tolerance sensitivity of MV-LCB and ExpExp for configuration 1.



Efficient Frontier of Risk-Aversion, n = 50

Efficient Frontier of Risk-Aversion, n = 100

Efficient Frontier of Risk-Aversion, n = 250
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Figure 6: Risk tolerance sensitivity of MV-LCB and ExpExp for configuration 2.
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Arm 1
Arm 2
Arm 3
Arm 4
Arm 5
Arm 6
Arm 7
Arm 8
Arm 9
Arm 10
Arm 11
Arm 12
Arm 13
Arm 14
Arm 15

0.10
0.20
0.23
0.27
0.32
0.32
0.34
0.41
0.43
0.54
0.55
0.56
0.67
0.71
0.79

0.85

0 o
Arm 1 0.1 0.05
Arm 2 0.2 0.0725
Arm 3 | 0.27 0.09
Arm4 | 0.32 0.11
Armb5 | 041 0.145
Arm6 | 0.49 0.19
Arm 7 | 0.55 0.24
Arm 8 | 0.59 0.28
Arm 9 | 0.645 0.36

Arm 10 | 0.678 | 0.413

Arm 11 | 0.69 0.445

Arm 12 | 0.71 0.498

Arm 13 | 0.72 0.53

Arm 14 | 0.765 0.72

Arm 15 | 0.79 0.854

Figure 7: Configuration 1 and configuration 2.
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