
Bandit Theory meets Compressed Sensing
for high dimensional Stochastic Linear Bandit

Alexandra Carpentier Remi Munos
Sequel team, INRIA Lille - Nord Europe Sequel team, INRIA Lille - Nord Europe

Abstract

We consider a linear stochastic bandit prob-
lem where the dimension K of the unknown
parameter θ is larger than the sampling bud-
get n. In such cases, it is in general impos-
sible to derive sub-linear regret bounds since
usual linear bandit algorithms have a regret
in O(K

√
n). In this paper we assume that

θ is S−sparse, i.e. has at most S−non-zero
components, and that the space of arms is
the unit ball for the ||.||2 norm. We combine
ideas from Compressed Sensing and Bandit
Theory and derive an algorithm with a regret
bound in O(S

√
n). We detail an application

to the problem of optimizing a function that
depends on many variables but among which
only a small number of them (initially un-
known) are relevant.

Introduction

We consider a linear stochastic bandit problem in high
dimension K. At each round t, from 1 to n, the player
chooses xt in a fixed set of arms and receives a reward
rt = 〈xt, θ+ ηt〉, where θ ∈ RK is an unknown param-
eter and ηt is a noise term. Note that rt is a (noisy)
projection of θ on xt. The goal is to maximize the sum
of rewards.

We are interested in cases where the number of rounds
is much less than the dimension of the parameter,
i.e. n � K. This is new in bandit literature but useful
in practice, as illustrated by the problem of gradient
ascent for a high-dimensional function, described later.

As n � K, it is in general impossible to even estimate
θ in an accurate way. It is thus necessary to restrict
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the setting, and the assumption we consider here is
that θ is sparse. We assume also that the set of arms
to which xt belongs is the unit ball with respect to the
||.||2 norm, induced by the inner product.

Bandit Theory meets Compressed Sensing
Our problem asks in an urging way the fundamen-
tal question at the heart of bandit theory, namely the
exploration1 versus exploitation2 dilemma. More pre-
cisely, when the dimension of the space K is smaller
than the budget n, it is possible to project the pa-
rameter θ at least once on each directions of a basis
(e.g. the canonical basis): it is thus possible to explore
efficiently. In our setting we assume that K � n and
it is thus not possible anymore to project even once
on each directions of any basis of the space: we thus
require a cleverer exploration technique.

Compressed Sensing provides us with ideas on how to
explore, i.e. estimate θ, provided that it is sparse, with
few measurements: it is thus possible to roughly es-
timate its support without spending too much of the
budget. The idea is to project θ on random (isotropic)
directions such that each reward sample provides equal
information about all coordinates of θ. This is the rea-
son why we emphasized the fact that the set of arm
is the unit ball, as we need to be able to project θ
in each direction of the space. Then using regulariza-
tion (Hard Thresholding, Lasso, Dantzig selector...)
enables to recover the support of the parameter. For
some references on Compressed Sensing, see e.g. (Can-
des and Tao, 2007; Chen et al., 1999; Blumensath and
Davies, 2009). Note however that such a technique
allows only to retrieve a rough estimate of θ and is
not designed for the purpose of maximizing the sum
of rewards.

Bandit Theory is then a good tool to address this sec-
ond issue, namely maximizing the sum of rewards by
efficiently balancing between exploration and exploita-

1It is important to explore the space in order to build
a good estimate of all components of θ in order to know
which arms are the best ones.

2It is important to exploit, i.e. to pull the empirical best
arms in order to maximize the sum of rewards.
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tion. In our setting, once a rough estimate of the (re-
stricted) support of θ is available, we use a linear ban-
dit algorithm. References on linear stochastic bandits
include the works of Rusmevichientong and Tsitsiklis
(2008); Dani et al. (2008); Filippi et al. (2010) and the
recent work by Abbasi-yadkori et al. (2011).

Our contributions are the following.

• We provide an algorithm that mixes ideas of Com-
pressed Sensing and Bandit Theory for solving the
exposed problem. It has a regret3 which is of or-
der O(S

√
n)4.

• We give a detailed example of an application of
this setting to high dimensional gradient ascent
when the gradient is sparse. We first explain why
the setting of gradient ascent can be seen as a ban-
dit problem. We then display numerical experi-
ments supporting our belief that our algorithm
provides an efficient way for solving the problem
of high dimensional gradient ascent on functions
that depend only on a small number of relevant
variables.

A similar setting is also studied in the paper (Abbasi-
yadkori et al., 2012), published simultaneously. Their
assumption on the noise is however radically different:
unlike in our setting they consider a noise to signal ra-
tio that is different depending on whether the direction
where they sample is flat or not. It is thus difficult to
compare the results.

We formalize the setting in Section 1, and recall briefly
what linear bandits can achieve when the dimension K
is low. We then describe the algorithm we propose for
this problem, and give the main results in Section 2.
We detail in Section 3 the application to gradient as-
cent and provide numerical experiments.

1 Setting and a useful existing result

1.1 Description of the problem

We consider a linear bandit problem in dimension K.
An algorithm (or strategy) Alg is given a budget of
n pulls. At each round 1 ≤ t ≤ n it selects an arm
xt in the set of arms BK , which is the unit ball for
the ||.||2-norm induced by the inner product. It then
receives a reward

rt = 〈xt, θ + ηt〉,

where ηt ∈ RK is an i.i.d. white noise5 that is indepen-

dent from the past actions, i.e. from
{
(xt′)t′≤t

}
and

3We define the notion of regret in Section 1.
4We use the conventional notation: f(n) = Ω(g(n))

means that ∃c/∀n, f(n) ≥ cg(n).
5This means that Eηt(ηk,t) = 0 for every (k, t), that the

(ηk,t)k are independent and that the (ηk,t)t are i.i.d..

θ ∈ RK is an unknown parameter.

We define the performance of algorithm Alg as

Ln(Alg) =
n∑

t=1

〈θ, xt〉. (1)

Note that Ln(Alg) differs from the sum of rewards∑n
t=1 rt but is close in high probability. For exam-

ple if we assume that each ηk,t is bounded by 1
2σk,

we know by Azuma inequality (because xt depends
only of (ηk,s)s≤t) that with probability 1 − δ, we
have

∑n
t=1 rt = Ln(Alg) +

∑n
t=1〈ηt, xt〉 ≤ Ln(Alg) +√

2 log(1/δ)||σ||2
√
n. Note that this result can be ex-

tended to sub-gaussian random variables ηk,t.

If the parameter θ was known, we could define an
optimal fixed strategy Alg∗ that always picks x∗ =
argmaxx∈BK

〈θ, x〉 in order to maximize the perfor-
mance. Here, x∗ = θ

||θ||2 . The performance of Alg∗

is given by

Ln(Alg∗) = n||θ||2. (2)

We define the regret of an algorithm Alg with respect
to this optimal strategy as

Rn(Alg) = Ln(Alg∗)− Ln(Alg). (3)

We consider the class of algorithms that do not
know the parameter θ. Our objective is to find
an adaptive strategy Alg, i.e. using the history
{(x1, r1), . . . , (xt−1, rt−1)} at time t to choose the next
state xt, in order to minimize the regret.

For a given t, we write Xt = (x1; . . . ;xt) the matrix
in RK×t of all chosen arms, and Rt = (r1, . . . , rt)

T the
vector in Rt of all rewards, until time t.

In this paper, we consider the case where the dimen-
sion K is much larger than the budget, i.e. n � K.
As already mentioned, it is impossible in general to
estimate accurately the parameter and thus achieve a
sub-linear regret. This is the reason why we make the
assumption that θ is S−sparse (i.e. there are at most
S components of θ which are not 0) with S < n.

1.2 A useful algorithm for Linear Bandits

In this paper we will use the algorithm
ConfidenceBall2 that is described in the article
of Dani et al. (2008), and which we abbreviate by
CB2. We recall here briefly the algorithm and the
corresponding regret bound.

This algorithm is designed for stochastic linear bandit
in dimension d, i.e. the bandit parameter θ is in Rd,
and d is smaller than the budget n. This is the reason
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Input: Bd, δ
Initialization:
A1 = Id, θ̂1 = 0, βt = 128d(log(n2/δ))2.
for t = 1, . . . , n do

Define Bt = {ν : ||ν − θ̂t||2,At ≤
√
βt}

Play xt = argmaxx∈Bd maxν∈Bt〈ν, x〉.
Observe rt = 〈xt, θ + ηt〉.
Set At+1 = At + xtx

′
t, θ̂t+1 = A−1

t+1XtRt.
end for

Figure 1: Algorithm ConfidenceBall2 (CB2) adapted for an action set of the form Bd (Left), and illustration
of the maximization problem that defines xt (Right).

why we can not immediately apply this algorithm to
the problem described in the previous subsection.

The pseudo-code of the algorithm is presented in Fig-
ure 1. The idea is to build an ellipsoid of confi-
dence for the parameter θ, namely Bt = {ν : ||ν −
θ̂t||2,A ≤

√
βt} where ||u||2,At = uTAu and θ̂t+1 =

A−1
t+1XtRt, and to pull the arm with largest inner

product with a vector in Bt, i.e. the arm such that
xt = argmaxx∈Bd

maxν∈Bt〈ν, x〉.

Note that this algorithm is intended for general shapes
of the set of arms. We can thus apply it in the par-
ticular case where the set of arms is the unit ball for
the ||.||2 norm in Rd, i.e. Bd and this case is simpler.
At first, it is easier to find a span in the set of arms:
we can just take the canonical basis of Rd. Then we
need to find the point of the confidence ellipsoid Bt

with largest norm in order to compute the upper con-
fidence bound. Note also that we present here a sim-
plified variant where the temporal horizon n is known:
the original version of the algorithm in (Dani et al.,
2008) is anytime.

We recall here Theorem 2 of (Dani et al., 2008).

Theorem 1 (ConfidenceBall2) Assume that the ηt
is an i.i.d. white noise, independent of the (xt′)t′≤t

and that for all k = {1, . . . , d}, ∃σk such that for all
t, |ηt,k| ≤ 1

2σk. If n is large enough, we have with
probability 1 − δ the following bound for the regret of
ConfidenceBall2(B2,d, δ):

Rn(AlgCB2) ≤ 64d
(
||θ||2 + ||σ||2

)
(log(n2/δ))2

√
n.

2 The algorithm SL-UCB

Now we come back to our setting where n � K. We
present here an algorithm, called Sparse Linear Upper
Confidence Bound (SL-UCB).

2.1 Presentation of the algorithm

SL-UCB is divided in two main parts, (i) a first un-
adaptive phase, that uses compressed sensing ideas
and which is referred to as support exploration phase
where we project θ on isotropic random vectors in or-
der to select the arms that belong to what we call the
active set A and (ii) a phase that we call restricted
linear bandit phase where we apply a linear bandit al-
gorithm to the active set A in order to balance explo-
ration and exploitation and further minimize the re-
gret. Note that the length of the support exploration
phase is problem dependent.

This algorithm takes as parameters: σ̄2 and θ̄2 which
are upper bounds respectively on ||σ||2 and ||θ||2, and
δ which is a (small) probability.

First, we define an exploring set as

Exploring =
1√
K

{−1,+1}K . (4)

Note that Exploring ⊂ BK . We sample this set uni-
formly during the support exploration phase. This
gives us some insight about the directions on which
the parameter θ is sparse, using very simple concen-
tration tools6: at the end of this phase, the algorithm
selects a set of coordinates A, named active set, which

6Note that this idea is very similar to the one of com-
pressed sensing.
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are the directions where θ is likely to be non-zero. The
length of this phase is problem dependent and is built

to be of order
√
n

||θ||2 : if the problem is difficult, i.e. ||θ||2
is small, we need a longer support exploration phase
than if the problem is simple, i.e. ||θ||2 big. Note that
the algorithm automatically adapts the length of this
phase and that no lower bound on ||θ||2 is needed.
The Support Exploration Phase stops at the first time
t such that (i) maxk |θ̂k,t| − 2b√

t
> 0 for a well-defined

b and (ii) t ≥
√
n

maxk |θ̂k,t|− b√
t

.

We then exploit the information collected in the first
phase, i.e. the active set A, by doing a linear ban-
dit algorithm on the intersection of the unit ball BK

and the vector subspace spanned by the active set A,
i.e. V ec(A). Here we choose to use the algorithm CB2

described in (Dani et al., 2008). See Subsection 1.2 for
an adaptation of this algorithm to our specific case:
the set of arms is indeed the unit ball for the ||.||2
norm in the vector subspace V ec(A).

The algorithm is described in Figure 2.

Input: parameters σ̄2, θ̄2,δ.
Initialize: Set b = (θ̄2 + σ̄2)

√
2 log(2K/δ).

Pull randomly an arm x1 in Exploring (defined in
Equation 4) and observe r1
Support Exploration Phase:

while (i) maxk |θ̂k,t| − 2b√
t

< 0 or (ii) t <
√

n

maxk |θ̂k,t|− b√
t

do

Pull randomly an arm xt in Exploring (defined in
Equation 4) and observe rt
Compute θ̂t using Equation 5
t← t+ 1

end while
Call T the length of the Support Exploration Phase

Set A =
{
k : θ̂k,T ≥ 2b√

T

}
Restricted Linear Bandit Phase:
For t = T +1, . . . , n, apply CB2(BK∩V ec(A), δ) and
collect the rt.

Figure 2: The pseudo-code of the SL-UCB algorithm.

Note that the algorithm computes θ̂k,
√
n, as well as

θ̂k,n2/3 , using

θ̂k,t =
K

t

( t∑
i=1

xk,iri

)
=

(K
t
XtRt

)
k
. (5)

2.2 Main Result

We first state an assumption on the noise.

Assumption 1 (ηk,t)k,t is an i.i.d. white noise and
∃σk s.t. |ηk,t| ≤ 1

2σk.

Note that this assumption is made for simplicity and
that it could easily be generalized to, for instance, sub-
Gaussian noise.

Under this assumption, we have the following bound
on the regret.

Theorem 2 Under Assumption 1, if we choose σ̄2 ≥
||σ||2, and θ̄2 ≥ ||θ||2, the regret of SL-UCB is bounded
with probability at least 1− 5δ, as

Rn(AlgSL−UCB) ≤ 118(θ̄2 + σ̄2)
2 log(2K/δ)S

√
n.

The proof of this result is available in Section 4.

The algorithm SL-UCB uses at first an idea of com-
pressed sensing: it explores by performing random pro-
jection and builds an estimate of θ. It then selects the
support as soon as the uncertainty is small enough,
and applies CB2 to the selected support. The par-
ticularity of this algorithm is that the length of the
support exploration phase adjusts to the difficulty of
finding the support: the length of this phase is of order

O(
√
n

||θ||2 ). More precisely, the smaller ||θ||2, the more

difficult the problem is (as it is difficult to find the
biggest components of the support), and the longer
the Support Exploration Phase. But note that the
regret does not deteriorate, as the smaller ||θ||2, the
smaller also the loss at each step.

3 The gradient ascent as a bandit
problem

The aim of this section is to propose a local optimiza-
tion technique to maximize a function f : RK → R
when the dimension K is very high and when we can
only sample n times this function with n � K. We as-
sume that the function f depends on a small number
of relevant variables: it corresponds to the assumption
that the gradient of f is sparse.

A well-known local optimization technique is gradient
ascent, where one computes the gradient ∇f(u) of f at
point u, move in the direction of the gradient, and then
iterate n times. See for instance the book of Bertsekas
(1999) for an exhaustive survey on gradient methods.

3.1 Formalization

The objective is to apply gradient ascent to a differ-
entiable function f . Assume that we are allowed to
do only n queries to the function. We call ut the
t−th point where we sample f , and choose it such
that ||ut+1 − ut||2 = ε, where ε is the gradient step.

Note that by the theorem of intermediate values
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f(un)− f(u0) =
n∑

t=1

f(ut)− f(ut−1)

=
n∑

t=1

〈(ut − ut−1),∇f(wt)〉,

where wt is an appropriate barycentre of ut and ut−1.

We can thus model the problem of efficient gradient
ascent by a linear bandit problem where the reward is
what we gain/loose by going from point ut−1 to point
ut, i.e. f(ut) − f(ut−1). More precisely, if we want
to rewrite the problem with previous notations, we
would have θ+ ηt = ∇f(wt)

7, and xt = ut−ut−1. We
illustrate this model in Figure 3.

If we assume that the function f is (locally) linear and
that there are some i.i.d. measurement errors, we are
exactly in the setting of Section 1. The objective of
minimizing the regret, can then be rewritten

Rn(Alg) = max
x∈B2(u0,nε)

f(x)− f(un),

where un is the terminal point of algorithm Alg. The
regret is in O(Sε

√
n) for SL-UCB.

Remark on the noise: Assumption 1, which states
that the noise added to the function is of the form
〈ut − ut−1, ηt〉 is specially suitable for gradient ascent
because it corresponds to the cases where the noise is
an approximation error and depends on the gradient
step.

Remark on the linearity assumption: Matching
the stochastic bandit model in Section 1 to the problem
of gradient ascent corresponds to assuming that the
function is (locally) linear in a neighborhood of u0, and
that we have in this neighborhood f(ut+1) − f(ut) =
〈ut+1 − ut,∇f(u0) + ηt+1〉, where the noise ηt+1 is
i.i.d. This setting is very restrictive: we made it in
order to offer a first, simple solution for the problem.
When the function is not linear, there is an additional
approximation error.

3.2 Numerical experiment

In order to illustrate the mechanism of our algorithms,
we apply SL-UCB to a quadratic function in dimension
100 where only two dimensions are informative (we
represent in Figure 4 the projection of the function in
these two informative directions). Figure 4 shows the

7Note that in order for the model in Section 1 to hold,
we need to relax the assumption that η is i.i.d..

trajectory of the algorithm, projected in the subspace
of dimension 2 where the function is not constant.

Figure 4: Illustration of the trajectory of algorithm
SL-UCB with a budget n = 50, with a zoom at the
beginning of the trajectory to illustrate the support
exploration phase. The levels of gray correspond to
the contours of function.

Note that at the beginning of the ascent, the projec-
tion of the steps on relevant directions are very small
because we search for the good support and thus also
move in other directions of the space than the subspace
of dimension 2 where the gradient lies. However, the
algorithm quickly concentrates on the good support of
the gradient.

We now want to illustrate the performances of SL-
UCB. We fix the number of pulls to 100, and we try
different values of K, in order to have results for dif-
ferent values of K

n . The higher this quantity, the more
difficult the problem. We choose a quadratic function
varying in S = 10 directions8.

We compare our algorithm SL-UCB with two strate-
gies: the “oracle” gradient strategy (OGS), i.e. a
gradient algorithm with access to the full gradient of
the function9, and what we call random best direc-
tion (BRD), that is to say a strategy that, at a given
point, chooses a random direction, observes the value
of the function a step further in this direction, and
goes to that point if the value of the function at this

8We keep the same function when K varies. It is the
quadratic function f(x) =

∑10
k=1−20(xk − 25)2.

9Each of the 100 pulls corresponds to an access to the
full gradient of the function at a chosen point.
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Figure 3: The gradient ascent: the first picture illustrates the problem written as a linear bandit problem with
rewards and the second picture illustrates the regret.

point is better than what it was before. We report the
difference between the value at the final point of the
algorithm and the value at the beginning of the algo-
rithm, i.e. the regret of the algorithm. The results are
available in Figure 5.

K/n OGS SL-UCB BRD

2 1.875 105 1.723 105 2.934 104

10 1.875 105 1.657 105 1.335 104

100 1.875 105 1.552 105 5.675 103

Figure 5: We report, for different values of K
n and

different strategies, the value of f(un)− f(u0).

Note that the performances of our algorithm is worse
than the “oracle” gradient strategy. This is not sur-
prising because SL-UCB is only given partial informa-
tion on the gradient. However it performs much better
than the random best direction. Note that the bigger
K
n , the more impressive the improvements of SL-UCB
over the random best direction strategy. This can be
explained by the fact that the larger K

n , the less prob-
able it is that the random direction strategy picks a
direction of interest, whereas our algorithm is built for
dealing with such problems.

4 Analysis of the SL-UCB algorithm

4.1 Event ξ of interest

Step 0: Bound on the variations of θ̂t around
its mean during the Support Exploration Phase
Note that as xk,t = 1√

K
or xk,t = − 1√

K
during the

Support Exploration Phase, the estimate θ̂t of θ during
the Support Exploration Phase is such that, for any
t0 ≤ T and any k

θ̂k,t0 =
K

t0

( t0∑
t=1

xk,trt

)
=

K

t0

( t0∑
t=1

xk,t

K∑
k′=1

xk′,t(θk′ + ηk′,t)
)

=
K

t0

t0∑
t=1

x2
k,tθk +

K

t0

t0∑
t=1

xk,t

∑
k′ 6=k

xk′,tθk′

+
K

t0

t0∑
t=1

xk,t

K∑
k′=1

xk′,tηk′,t

= θk +
1

t0

t0∑
t=1

∑
k′ 6=k

bk,k′,tθk′ +
1

t0

t0∑
t=1

K∑
k′=1

bk,k′,tηk′,t,

(6)

where bk,k′,t = Kxk,txk′,t.

Note that as the xk,t are i.i.d. random variables
such that xk,t = 1√

K
with probability 1/2 and

xk,t = − 1√
K

with probability 1/2, the (bk,k′,t)k′ 6=k,t

are i.i.d. Rademacher random variables, and bk,k,t = 1.

Step 1: Study of the first term. Let us first study
1
t0

∑t0
t=1

∑
k′ 6=k bk,k′,tθk′ .

Note that the bk,k′,tθk′ are (K − 1)T zero-mean in-
dependent random variables and that among them,
∀k′ ∈ {1, ...,K}, t0 of them are bounded by θk′ , i.e. the
(bk,k′,tθk′)t. By Hoeffdings inequality, we thus have

with probability 1−δ that | 1t0
∑t0

t=1

∑K
k′ 6=k bk,k′,tθk′ | ≤
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||θ||2
√

2 log(2/δ)√
t0

. Now by using an union bound on all

the k = {1, . . . ,K}, we have w.p. 1− δ, ∀k,

| 1
t0

t0∑
t=1

∑
k′ 6=k

bk,k′,tθk′ | ≤
||θ||2

√
2 log(2K/δ)√

t0
. (7)

Step 2: Study of the second term. Let us now
study 1

t0

∑t0
t=1

∑K
k′=1 bk,k′,tηk′,t.

Note that the (bk,k′,tηk′,t)k′,t are Kt0 independent
zero-mean random variables, and that among these
variables, ∀k ∈ {1, ...,K}, t0 of them are bounded
by 1

2σk. By Hoeffdings inequality, we thus have with

probability 1 − δ that | 1t0
∑t0

t=1

∑K
k′=1 bk,k′,tηk′,t| ≤

||σ||2
√

2 log(2/δ)√
t0

. Thus by an union bound with proba-

bility 1− δ, ∀k,

| 1
T

t0∑
t=1

K∑
k′=1

bk,k′,tηk′,t| ≤
||σ||2

√
2 log(2K/δ)√
t0

. (8)

Step 3: Global bound Finally for a given t0, with
probability 1− 2δ, we have by Equations 6, 7 and 8

||θ̂T − θ||∞ ≤
(||θ||2 + ||σ||2)

√
2 log(2K/δ)√

T
. (9)

Step 4: Definition of the event of interest Now
we consider the event ξ such that

ξ =
⋂

t=1,...,n

{
ω ∈ Ω/||θ − K

t
XtRt||∞ ≤ b√

t

}
, (10)

where b = (θ̄2 + σ̄2)
√
2 log(2K/δ).

From Equation 9 and an union bound over time, we
deduce that P(ξ) ≥ 1− 2nδ.

4.2 Length of the Support Exploration Phase

The Support Exploration Phase stops at the first
time t such that (i) maxk |θ̂k,t| − 2b√

t
> 0 and (ii)

t ≥
√
n

maxk |θ̂k,t|− b√
t

.

Step 1: A result on the empirical best arm
On the event ξ, we know that for any t and any k,
|θk| − b√

t
≤ |θ̂k,t| ≤ |θk| + b√

t
. In particular for

k∗ = argmaxk |θk| we have

|θk∗ | − b√
t
≤ max

k
|θ̂k,t| ≤ |θk∗ |+ b√

t
. (11)

Step 2: Maximum length of the Support Explo-
ration Phase If |θk∗ |− 3b√

t
> 0 then by Equation 11,

the first (i) criterion is verified on ξ. If t ≥ 1
θk∗− 3b√

t

√
n

then by Equation 11, the second (ii) criterion is veri-
fied on ξ.

Note that both those conditions are thus verified if
t ≥ max

(
9b2

|θk∗ |2 ,
4
√
n

3|θk∗ |
)
. The Support Exploration

Phase stops thus before this moment. Note that as
the budget of the algorithm is n, we have on ξ that

T ≤ max
(

9b2

|θk∗ |2 ,
4
√
n

3|θk∗ | , n
)

≤ 9
√
Sb2

||θ||2
√
n. We write

Tmax = 9
√
Sb2

||θ||2
√
n.

Step 3: Minimum length of the Support Explo-
ration Phase If the first (i) criterion is verified then
on ξ by Equation 11 |θk∗ | − b√

t
> 0. If the second (ii)

criterion is verified then on ξ by Equation 11 we have

t ≥
√
n

|θk∗ | .

Combining those two results, we have on the event ξ

that T ≥ max
(

b2

θ2
k∗
,

√
n

|θk∗ |
)
≥ b2

||θ||2
√
n. We write Tmin =

b2

||θ||2
√
n.

4.3 Description of the set A

The set A is defined as A =
{
k : |θ̂k,T | ≥ 2b√

T

}
.

Step 1: Arms that are in A Let us consider an

arm k such that |θk| ≥
3b
√

||θ||2
n1/4 . Note that T ≥ Tmin =

b2

||θ||2
√
n on ξ. We thus know that on ξ

|θ̂k,T | ≥ |θk| −
b√
T

≥
3b
√

||θ||2
n1/4

−
b
√
||θ||2

n1/4
≥ 2b√

T
.

This means that k ∈ A on ξ. We thus know that
|θk| ≥

3b
√

||θ||2
n1/4 implies on ξ that k ∈ A.

Step 2: Arms that are not in A Now let us con-
sider an arm k such that |θk| < b

2
√
n
. Then on ξ, we

know that
|θ̂k,T | < |θk|+

b√
T

<
b

2
√
n
+

b√
T

<
3b

2
√
T

<
2b√
T
.

This means that k ∈ Ac on ξ.
This implies that on ξ, if |θk| = 0, then k ∈ Ac.

Step 3: Summary Finally, we know that A is com-

posed of all the |θk| ≥
3b
√

||θ||2
n1/4 , and that it contains

only positives θk, i.e. at most S elements since θ is

S−sparse. We write Amin = {k : |θk| ≥
3b
√

||θ||2
n1/4 }

4.4 Comparison of the best element on A
and on BK .

Now let us compare maxxt∈V ec(A)∩BK
〈θ, xt〉 and

maxxt∈BK
〈θ, xt〉.



Running heading title breaks the line

At first, note that maxxt∈BK
〈θ, xt〉 = ||θ||2

and that maxxt∈V ec(A)∩BK
〈θ, xt〉 = ||θA||2 =√∑K

k=1 θ
2
kI {k ∈ A}, where θA,k = θk if k ∈ A and

θA,k = 0 otherwise. This means that
max
xt∈BK

〈θ, xt〉 − max
xt∈V ec(A)∩BK

〈θ, xt〉

= ||θ||2 − ||θI {k ∈ A} ||2 =
||θ||22 − ||θI {k ∈ A} ||22
||θ||2 + ||θI {k ∈ A} ||2

≤
∑

k∈Ac θ2k
||θ||2

≤
∑

k∈Ac
min

θ2k

||θ||2
≤ 9Sb2√

n
. (12)

4.5 Expression of the regret of the algorithm

Assume that we launch algorithm
ConfidenceBall2(V ec(A) ∩ BK , δ, T ) at time T
where A ⊂ Supp(θ) with a budget of n1 = n − T
samples. In paper (Dani et al., 2008), they prove
that on an event ξ2(V ec(A) ∩ BK , δ, T ) of probability
1 − δ the regret of algorithm ConfidenceBall2
is bounded by Rn(AlgCB2(V ec(A)∩BK ,δ,T )) ≤
64|A|

(
||θ||2 + ||σ||2

)
(log(n2/δ))2

√
n1.

Note now that as A ⊂ Supp(θ), there is ξ2(V ec(A) ∩
BK , δ, T ) ⊂ ξ2(V ec(Supp(θ)) ∩ BK , δ, T ) (see pa-
per (Dani et al., 2008) for more details on the event
ξ2). We thus now that, conditional to T , with prob-
ability 1 − δ, the regret is bounded for any A ⊂
Supp(θ) as Rn(AlgCB2(V ec(A)∩BK ,δ,T )) ≤ 64S

(
||θ||2 +

||σ||2
)
(log(n2/δ))2

√
n1.

By doing an union bound on all possible val-
ues for T (i.e. from 1 to n), we obtain that
on an event ξ2 whose probability is higher than

1 − δ, Rn(AlgCB2(V ec(A)∩BK ,δ,T )) ≤ 64S
(
||θ||2 +

||σ||2
)
(log(n3/δ))2

√
n.

We thus have on ξ
⋃
ξ2, i.e. with probability higher

than 1− 2δ that

Rn(AlgSL−UCB , δ) ≤ 2Tmax||θ||2
+max

t
Rn(AlgCB2(V ec(A)∩BK ,δ,t))

+ n
(
max
x∈BK

〈x, θ〉 − max
x∈BK∩V ect(Amin)

〈x, θ〉
)
.

By using this Equation, the maximal length of the
support exploration phase Tmax deduced in Step 2 of
Subsection 4.2, and Equation 12, we obtain on ξ

Rn ≤ 64S
(
||θ||2 + ||σ||2

)
(log(n2/δ))2

√
n

+ 18Sb2
√
n+ 9Sb2

√
n

≤ 118(θ̄2 + σ̄2)
2 log(2K/δ)S

√
n.

by using b = (θ̄2+ σ̄2)
√
2 log(2K/δ) for the third step.

Conclusion

In the paper we provided an algorithm for sparse linear
bandits in high dimension. It has been designed us-
ing ideas from compressed sensing and bandit theory.
Compressed sensing is used in the support exploration
phase, in order to select the support of the parameter.
A linear bandit algorithm from (Dani et al., 2008) is
then applied to the small dimensional subspace defined
by the first phase. The algorithm SL-UCB provides
a regret of order O(S

√
n). Note that all the bound

scales with the sparsity S of the unknown parameter θ
instead of the dimensionK of the parameter (as is usu-
ally the case in linear bandits). We then provided an
example of application for this setting, the optimiza-
tion of a function in high dimension. There are to our
minds two main directions for further researches.

• It could be interesting to deal with the case when
the support of θ evolves in time: it would be nice
to have some assumptions on the way it has to
change so that we are able to achieve sub linear
regret. One idea would be to use techniques de-
veloped for adversarial bandits (see (Abernethy
et al., 2008; Bartlett et al., 2008; Cesa-Bianchi
and Lugosi, 2009; Koolen et al., 2010; Audib-
ert et al., 2011), but also (Flaxman et al., 2005)
for a more gradient-specific modeling) or also
from restless/switching bandits (see e.g. (Whittle,
1988; Nino-Mora, 2001; Slivkins and Upfal, 2008;
A. Garivier, 2011) and many others). This would
be particularly interesting to model gradient as-
cent on e.g. convex function where the support of
the gradient changes in space.

• The bound that we obtain is in O(S
√
n), and

it would be interesting to see if it is possible to
build an algorithm that has a regret in O(

√
Sn),

which is a theoretic lower bound for this problem.
Note that when an upper bound S′ on the spar-
sity is available, it seems possible to obtain such
a regret by replacing condition (ii) in the algo-

rithm by t <
√
n

||
(
θ̂t,kI

{
θ̂t,k≥ b√

t

})
k
||2−

√
S′b√
t

, and using

for the Exploitation phase the algorithm in (Rus-
mevichientong and Tsitsiklis, 2008). The regret
of such an algorithm would be in O(

√
S′n). But

it is not clear whether it is possible to obtain such
results when no upper bound on S is available.
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