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Abstract. This paper investigates how to best couple hand-annotatedndth information
extracted from an external lexical resource to improve P&ging performance. Focusing
on French tagging, we introduce a maximum entropy conditisequence tagging system
that is enriched with information extracted from a morplyidal resource. This system gives
a 97.7% accuracy on the French Treebank, an error reductio28& (28% on unknown
words) over the same tagger without lexical information. && conduct experiments on
datasets and lexicons of varying sizes in order to asse$fethé¢rade-off between annotating
data vs. developing a lexicon. We find that the use of a lexiogroves the quality of the
tagger at any stage of development of either resource, atdahfixed performance levels
the availability of the full lexicon consistently reducégtheed for supervised data by at least
one half.

Keywords: Part-of-speech tagging, maximum entropy models, morpftasyic lexicon,
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1 Introduction

Over recent years, numerous systems for automatic papadch (POS) tagging have been pro-
posed for a large variety of languages. Among the best peifigy systems are those based on
supervised machine learning techniques (see (Manning emigt&, 1999) for an overview). For
some languages like English and other European langudgese systems have reached perfor-
mance that comes close to human levels. Interestingly, #jerity of these systems have been
built without resorting to any external lexical informatigources; they instead rely on a dictio-
nary that is based on the training corpus (see howeverdHz2(i00)). This raises the question of
whether we can still improve tagging performance by expigithis type of resource. Arguably, a
potential advantage of using an external dictionary is iettel handling of unknown words (i.e.,
words that are not present in the training corpus, but that beapresent in the external dictio-
nary). A subsequent question is how to best integrate tloenrdtion from a lexical resource into
a probabilistic POS tagger. In this paper, we consider twtirdit scenarios: (i) using the external
dictionary asconstraintsthat restrict the set of possible tags that the tagger caosehfsom, and
(i) incorporating the dictionary tags &saturesin a probabilistic POS tagging model. Another in-
teresting question is that of the relative impact of tragnémrpora and of lexicons of various sizes.
This issue is crucial to the development of POS taggers fmuree-scarce languages for which it
is important to determine the best trade-off between atingtdata and constructing dictionaries.
This paper addresses these questions through variousigaggperiments carried out on
French, based on our new tagging system called MEIt (Maxir&intnopy Lexicon-enriched Tag-
ger). An obvious motivation for working on this languagetis availability of a training corpus
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(namely, the French Treebank (Abeillé et al., 2003)) andgelscale lexical resource (namely,
Lefff (Sagot et al., 2006)). Additional motivation comes from thet that there has been com-
paratively little work in probabilistic POS tagging in thi@nguage. An important side contri-
bution of our paper is the development of a state-of-thefaeely distributed POS tagger for
French! Specifically, we here adopt a maximum entropy (MaxEnt) setialeclassification ap-
proach. MaxEnt models remain among the best performingriggrystems for English and they
are particularly easy to build and fast to train.

This paper is organized as follows. Section 2 describes dkgsdts and the lexical resources
that were used. Section 3 presents a baseline MaxEnt tagigeérdnch that is inspired by pre-
vious work, in particular (Ratnaparkhi, 1996) and (Toutamand Manning, 2000), that already
outperforms TreeTagger (Schmid, 1994) retrained on theesdata. In Section 4, we show that
the performance of our MaxEnt tagger can be further imprdyeidcorporating features extracted
from a large-scale lexicon, reachingd@ 7% accuracy, which compares favorably with the best
results obtained for English with a similar tagset. FinaBgction 5 evaluates the relative on ac-
curacy impact of the training data and the lexicon duringyéagdevelopment by varying their
respective sizes.

2 Resources and tagset
2.1 Corpus

The morphosyntactically annotated corpus we used is antavfathe French TreeBank &TB,
(Abeillé et al., 2003). It differs from the origin&TB in so far that all compounds that do not
correspond to a syntactically regular sequence of categbave been merged into unigue tokens
and assigned a category corresponding to their spanning ntdter compounds have been left as
sequences of several tokens (Candito, p.c.). The resudtngus has50, 931 tokens in12, 351
sentences.

In the originalFTB, words are split intal3 main categories, themselves divided iBtbsub-
categories. The version of the treebank we used was obthinednverting subcategories into a
tagset consisting d8 tags, with a granularity that is intermediate between categ and sub-
categories. Basically, these tags enhance main categutlegnformation on the mood of verbs
and a few other lexical features. This expanded tagset haxs dfown to give the best statistical
parsing results for French (Crabbé and Candito, 2808)sample tagged sentence from #es
is given in Figure 1.

CetteDET mesureNC ,/PONCT qui/PROREL pourraitV étreNl NF appliquéeyPP
dansP lesDET prochaine#DJ semainedC ,/PONCT permettrait/ d'/P
économiseil NF quelqueDET 4/ADJ milliards/NC defP francsNC ./PONCT

Figurel: Sample data froraTB in Brown format

As in (Candito et al., 2009), theTs is divided into3 sections : training§0%), development
(10%) and test [0%). The dataset sizes are presented in Table 1 together athumber of
unknown words.

Data Set #of sent. | #of tokens | # of unk. tokens
FTB-TRAIN 9,881 278,083

FTB-DEV 1,235 36, 508 1,892 (5.2%)
FTB-TEST 1,235 36, 340 1,774 (4.9%)

Table 1: Data sets

! The MEIt tagger is freely available frotm t p: / / gf orge. i nria.fr/ projects/|ingwb/.
2 This tagset is known asREEBANK+ in (Crabbé and Candito, 2008), and since then as CC (Caeidito, 2009).



2.2 Lexicon

One of the goals of this work is to study the impact of using eeraal dictionary for training a
tagger, in addition to the training corpus itself. We usesrttorphosyntactic information included
in the large-coverage morphological and syntactic lexiceiff (Sagot et al., 2006).

Although Ldff contains both morphological and syntactic informationdach entry (includ-
ing sub-categorization frames, in particular for verbsy extracted only the morphosyntactic
information. We converted categories and morphologicgs tato the same tagset used in the
training corpus, hence building a large-coverage morpttasyic lexicon containing07, 362 dis-
tinct entries of the forngform, tag, lemma)corresponding t602, 223 distinct entries of the form
(form, tag) If grouping all verbal tags into a single “category” whilerssidering all tags as “cate-
gories”, these entries correspondliy, 397 (lemma, categorypairs (the relevance of these pairs
will appear in Section 5).

3 Baseline MaxEnt tagger

This section presents our baseline MaxEnt-based Frencttd@8&r, MEIf . This tagger is largely
inspired by (Ratnaparkhi, 1996) and (Toutanova and Manrg0), both in terms of the model
and the features being used. To date, MaxEnt conditionalese® taggers are still among the
best performing taggers developed for EngfisAn important appeal of MaxEnt models is that
they allow for the combination of very diverse, potentiadlyerlapping features without assuming
independence between the predictors. These models havihaladvantage of being very fast to
train>

3.1 Description of thetask

Given atagsel” and a string of words 7', we define the task of tagging as the process of assigning
the maximum likelihood tag sequentg € T™ to w}. Following (Ratnaparkhi, 1996), we can
approximate the conditional probabili#y(¢}|w]) so that:

n
i = arg g P(tf[uf) ~ arg max il_[lP(tilhi) @

wheret; is the tag for wordwv;, andh; is the “history” (or context) for(w;, t;), which comprises
the preceding tags ! and the word sequence’’.

3.2 Modd and features

In a MaxEnt model, the parameters of an exponential moddieofdllowing form are estimated:
1 m
P(tilhi) = Z(h) - €xp ;)\jfj(huti) 2

fi™ are feature functions defined over tagand historyh; (with f(h;,t;) € {0,1}), A\7* are the

parameters associated wift?", and Z(h) is a normalization term over the different tags. In this
type of model, the choice of the parameters is subject tot@ints that force the model expec-
tations of the features to be equal to their empirical exqi@nis over the training data (Berger et

% The Léff is freely distributed under the LGPL-LR licensetatt p: / / al exi na. gforge.inria.fr/

* (Ratnaparkhi, 1996) and (Toutanova and Manning, 2000¥tegouracy scores §6.43 and96.86 on section 23-24
of the Penn Treebank, respectively.

® Arguably better suited for sequential problems, Conditld®andom Fields (CRF) (Lafferty et al., 2001) are consid-
erably slower to train.



al., 1996). In our experiments, the parameters were edtngting the Limited Memory Variable
Metric Algorithm (Malouf, 2002) implemented in the Megantgage®

The feature templates we used for designing our Frenchrtggoiodel is a superset of the
features used by (Ratnaparkhi, 1996) and (Toutanova anailki@r2000) for English (these were
largely language independent). These features fall intorh&in categories. A first set of features
try to capture théexical formof the word being tagged: these include the actual wordgsfanthe
current wordw;, prefixes and suffixes (of character lengthnd less), as well as binary features
testing whetherw; contains special characters like numbers, hyphens, anercgge letters. A
second set of features directly model ttentextof the current word and tag: these include the
previous tag, the concatenation of the two previous tagsetlsaas the surrounding word forms in
a window of2 tokens.

The detailed list of feature templates we used in this basdtigger is shown in Table’2.

Lexical features

w; = X & t; = T
Prefix ofw; = P,|P| <5 &t;, =T
Suffix of w; = S, |S] < 5 &t;, =T
w; contains number & =T
w; contains hyphen & =T
w; contains uppercase character t&= T
w; contains only uppercase characters t;,& T

w; contains up. char. and doesn't start sentencet; & T’
Contextual features

tic1 =X &tZ:T
ti—oti-1 = XY & ti=T
wi+j:X,j€{—2,—1,1,2} &t; =T

Table 2: Baseline model features

An important difference with (Ratnaparkhi, 1996) in ternisfeature design is that we did
not restrict the application of the prefix/suffix featuresmords that are rare in the training data.
In our model, these features always get triggered, evemfoequent words. We found that the
permanent inclusion of these features led to better peefoom during development, which can
probably be explained by the fact that these features gadrbsthtistics and are extremely use-
ful for unknown words. These features are also probably rd@eriminative in French than in
English, since it is morphologically richer. Another diace to previous work regards smooth-
ing. (Ratnaparkhi, 1996) and (Toutanova and Manning, 208@)feature count cutoff af0 to
avoid unreliable statistics for rare features. We did netagoffs but instead use a regularization
Gaussian prior on the weigfitsvhich is arguably a more principled smoothing technigjue.

3.3 Testing and Performance

The test procedure relies onbeam searcho find the most probable tag sequence for a given
sentence. That is, each sentence is decoded from left tbaighwe maintain for each word;
then highest probability tag sequence candidates up;td-or our experiments, we used a beam

® Available fromht t p: / / ww. ¢s. ut ah. edu/ ~hal / megani .
" Recall that features in MaxEnt are functions ranging on lotitexts and classes. A concrete example of one of our
feature is given below:
1 ifw;="le"& t=DET
h,t) = )
Froo(h, ) {0 otherwise
8 Specifically, we used a prior with precision (i.e., inveragiance) ofl (which is the default in Megam); other values
were tested during development but did not yield improvemien
® Informally, the effect of this kind of regularization is tepalize artificially large weights by forcing the weights to
be distributed according to a Gaussian distribution witameero.



size of3.19 In addition, the test procedure utilizesagy dictionarywhich lists for a given word the
tags associated with this word in the training data. Thistirally restricts the allowable labels
that the tagger can choose from for a given word, in prindigdeling to fewer tagging errors and
reduced tagging time.

The maximum entropy tagger described above, Q{I,Enas compared against two other base-
line taggers, namelyuNIGRAM and TreeTaggemuNIGRAM works as follows: for a word seen in
the training corpus, this tagger uses the most frequentssacated with this word in the corpus;
for unknown words, it uses the most frequent tag in the cofputhis caseNC). TreeTagger is a
statistical, decision tree-based POS tagger (Schmid,)249he version used for this comparison
was retrained on theTs training corpus. The performance results of the three tagge given
in Table 3; scores are reported in terms of accuracy overthetbntire test set and the words that
were not seen during training.

| Tagger | Overall Acc. | Unk. Word Acc. |
UNIGRAM 91.90 24.50

TreeTagger 96.12 75.77

MEItY. 97.00 86.10

Table 3: Baseline tagger performance

As shown in Table 3, ME&EI achieves accuracy scoresQ®6 overall and86.1% on unknown
words?? Our baseline tagger significantly outperforms the retchiversion of TreeTagger, with
an improvement of over0% on unknown words$? There are several possible explanations for
such a discrepancy in handling unknown words. The first otfeisdMaxEnt parameter estimation
is less prone to data fragmentation for sparse featuresDeaision Tree parameter estimation
due to the fact that it does not partition the training samplesecond related explanation is that
TreeTagger simply misses some of the generalizations diegplexical features due to the fact
that it only includes suffixes and this only for unknown words

4 Lexicon-enriched MaxEnt tagger

For trying to further improve ME§, we investigate in this Section the impact of coupling itvén
external lexical resource, and compare two ways of integgahis new information: as contraints
vs. as features.

4.1 Integrating lexical information in the tagger

The most natural way to make use of the extra knowledge sgpif a lexicon is to represent it as
“filtering” constraints: that is, the lexicon is used as aditdnal tag dictionary guiding the POS
tagger, in addition to the lexicon extracted from the tragnéorpus. Under this scenario, the tagger
is forced for a given wordv to assign one of the tags associated witin the full tag dictionary:
the set of allowed tags fap is the union of the sets of its tags in the corpus and ifff LeT his
approach is similar to that of (H&ji 2000), who applied it to highly inflected languages, and in
particular to Czech.

In a learning-based tagging approach, there is anotheibdidgsto accommodate the extra
information provided by L#f: we can directly incorporate the tags associated bif lte each
word in the form of features. Specifically, for each word, vesipa new lexical feature for each
of its possible tags according to theftfe as well as a feature that represents the disjunction of

10 We tried larger values (i.e5, 10, 15, 20) during development, but none of these led to significanrawgments.
11 Available atht t p: / / www. i ns. uni - stuttgart. de/ proj ekt e/ cor pl ex/ TreeTagger/ .
12 The accuracy results of MElton FTB-DEV are:96.7 overall and36.2 on unknown words.

13 Chi-square statistical significance tests were appliechanges in accuracy, with set t00.01 unless otherwise
stated.



all Lefff tags (provided there is more than one). Similarly, we caao ate the L#f to provide
additional contextual features: that is, we can includéfltags for all the words in a window of
2 tokens. Table 4 summarizes these new feature templates.

Lexical features

Lefff tag forw; = X &t;, =T
Lefff tags forw; = Xo... X, &t;, =T
Contextual features

Lefff tag forw;; = X, j € {—2,-1,1,2} &t; =T

Lefff tags forw;+; = Xo... X,,,j € {—2,-1,1,2} &t =T

Table 4: Lexicon-based features

Integrating the lexical information in this way has a numbgpotential advantages. First,
features are by definition more robust to noise (in this cesgotential errors in the lexicon
or simply mismatches between the corpus annotations arléxtoen categories). Furthermore,
some the above features directly model the context, whildiltering constraints are entirely non
contextual.

4.2 Comparative evaluation

We compared the performance of theffteonstraints based tagger MEland Léff-features
based tagger ME]tto other lexicon-enriched taggers. The first of these teygeriIGRAM eff,

like UNIGRAM, is a unigram model based on the training corpus, but it usf§ tor labeling
unknown words: among the possiblefifgag for a word, this model chooses the tag that is most
frequent in the training corpus (all words taken into acdpuliVords that are unknown to both
the corpus and Lff are assignedC. The second tagger, TreeTaggegr is a retrained version

of TreeTagger to which we provide ffe as an external dictionary. Finally, we also compare
our tagger tae-BKY, an instantiation of the Berkeley parser adapted for Frdayc{Crabbé and
Candito, 2008) and used as a POS tagger. The performandes fesuhese taggers are given in
Table 5.

| Tagger | Overall Acc. | Unk. Word Acc. |
UNIGRAM  gfff 93.40 55.00

TreeTagga s 96.55 82.14

F-BKY 97.30 82.90

MEIt 97.00 86.10

MEIt§, 97.10 89.00

MEIt] 97.70 90.01

Table 5: Lexicon-based taggers performance

The best tagger is MEfp; with accuracy scores dof7.7% overall and90.1% for unknown
words. This represents significant improvementsr®t and3.9% over MEIt, respectively. These
scores put MEf} above all the other taggers we have tested, including theephased-BKY,
by a significant margin. To our knowledge, these scores arddist scores reported for French
POS tagging?® By contrast, MELH. achieves a rather limited (and statistically insignifiggver-
formance gain of1% overall but &.9% improvement on unknown words.

Our explanation for these improvements is that thifkieased features reduce data sparseness
and provide useful information on the right context: firstvér errors on unknown words (a direct
result of the use of a morphosyntactic lexicon) necesshdigs to fewer erroneous contexts for
other words, and therefore to better tagging; second, thsilgie categories of tokens that are on
the right of the current tokens are valuable pieces of infdiom, and they are available only from

14 The accuracy results of ME]|ton FTB-DEV are:97.3 overall and)0.01 on unknown words.



the lexicon. The lower result of ME]tcan probably be explained by two differences: it does not
benefit from this additional information about the right text, and it uses L information as
hard constraints, not as (soft) features.

4.3 Error analysis

In order to understand whether the.7% accuracy of ME@ could still be improved, we decided
to examine manually its fir&100 errors onFTB-DEV, and classify them according to an adequate
typology of errors. The resulting typology and the corregfing figures are given in Table 6.

| Error type | Frequency|
Adjective vs. past participle 5.5%
Standard errors Errors ate, du, des 4.0%
Other errors 34%
Errors on numbers 15.5%
Errors related to named entities 27.5%
Error inFTB-DEV 8.5%
MEIt{r’s result seem correct Unclear cases (both tags seem valid) 4.5%
Truncated text irFFTB-DEV 0.5%

Table 6: Manual error analysis of the 200 first errors of MEtin the development corpus

These results show that th&.7% score can still be improved. Indeed, standard named entity
recognition techniques could help solve most errors réladenamed entities, i.e., more than one
out of four errors. Moreover, simple regular patterns caalldw for replacing automatically
all numbers by one or several placeholder(s) both in th@itrgiand evaluation data. Indeed,
preserving numbers as such inevitably leads to a sparseutdtkem, which prevents the training
algorithm from modeling the complex task of tagging numberthey can be determiners, nouns,
adjectives or pronouns. Appropriate placeholders shdghificantly help the training algorithm
and improve the results. Finally, no less tHan5% of MEIt{r’s apparent errors are in fact related
to FTB-DEV’S annotation, because of errof§4) or unclear situations, for which both the gold tag
and MEI{ s tag seem valid.

Given these facts, we consider feasible to improve ¥JEibm 97.7% to 98.5% in the future.

5 Varying training cor pus and lexicon sizes
5.1 Motivationsand experimental setup

The results achieved in the previous section have been nusdéfe by the (relatively) large size
of the corpus and the broad coverage of the lexicon. Howewmth resources are not always
available for a given language, in particular for so-calledier-resourced languages. Moreover,
the significant improvement observed by usindgfiLehows that the information contained in a
morphosyntactic lexicon is worth using. The question artseknow if this lexical information is
able to compensate for the lack of a large training corpumrBetrically, it is unclear how various
lexicon sizes impact the quality of the results.

Therefore, we performed a series of experiments by traiME@{r on various subcorpora and
sublexicons. Extracting subcorpora is simple: the firsentences of a training corpus constitute
a reasonable corpus of size However, extracting sublexicons is less trivial. We dedido
extract increasingly large sublexicons in a way that appnately simulates the development of a
morphosyntactic lexicon. To achieve this goal, we used tEdIifytagger described in the previous
section to tag a large raw corptisWe then lemmatized the corpus by assigning to each token the

15 We used a corpus of 20 million words extracted from ltHest Républicairjournalistic corpus, freely available at
the web site of the CNRTLht t p: / / www. cnrt | . fr/corpus/estrepublicain/).



list of all of its possible lemmas that exhibit a categorysietent with the annotation. Finally, we
ranked all resultindglemma, categorypairs w.r.t. frequency in the corpus. Extracting a sublexic
of sizen then consists in extracting alform,tag,lemmakntries whose correspondirfiemma,
category)pair is among thé best ranked ones.

We reproduced the same experiments as those describedtianSgcbut training MEIﬁ on
various subcorpora and various sublexicons. We @sdiferent lexicon sizes and different
corpus sizes, summed up in Table 7. For each resulting taggeneasured the overall accuracy
and the accuracy on unknown words.

Lexicon size (lemmas)| 0, 500, 1,000, 2,000, 5, 000,

10, 000, 20, 000, 50, 000, 110, 000
Corpus size (sentences)s0, 100, 200, 500, 1, 000, 2, 000,
5,000, 9, 881

Table 7: Varying training corpus and lexicon sizes: experimentalge

5.2 Resultsand discussion

Before comparing the respective relevance of lexicon amgusomanual development for opti-
mizing the tagger’s performance, we need to be able to gatimily compare their development
costs, i.e., times.

In (Marcus et al., 1993), the authors report a POS annotaperd that “exceeds 000 words
per hour” during the development of the Penn TreeBank. Te®d is reached afterlamonth
period (with 15 annotation hours per week, i.e., approxéyab0 hours) during which the POS
tagger used for pre-annotation was still improving. Théarg also report on a manual tagging
experiment (without automatic pre-annotation); they oles@ an annotation speed that is around
1, 300 words per hour. Therefore, it is probably safe to assume timasiverage, the creation of a
manually validated training corpus starts at a speed trabisnd 1,000 words (30 sentences) per
hour, and increases up 30000 words (100 sentences) per hour once the corpus has reached, say,
5,000 sentences.

For lexicon development, techniques such as those deddri&agot, 2005) allow for a fast
validation of automatically proposed hypothetical lemmidanual intervention is then limited to
validation steps that take aroudo 3 seconds per lemma, i.e., abdyt00 lemmas per hour.

Figure 2 compares contour lifégor two functions of corpus and lexicon sizes: tagger accu-
racy and development tinté. These graphs show different things:

e during the first steps of development (less ti3ahours of manual work), the distribution
of the manual work between lexicon and corpus developmennbsasignificant impact on
overall tagging accuracy, but accuracy on unknown wordeitebwhen focusing more or
equally on the lexicon than on the corpus;

¢ in later stages of development, the optimal approach isveldp both the lexicon and the
corpus, and this is true for both overall and unknown wordgiteg accuracy; however, it is
by far better to concentrate only on corpus than only on texidevelopment;

e using a morphological lexicon drastically improves thegiag accuracy on unknown words,
whatever the development stage;

o for fixed performance levels, the availability of the fulkieon consistently reduces for train-
ing data by at least one half (and up to two thirds).

16 As computed by théspl i ne mode ofgnupl ot ’s contour lines generation algorithm.

17 The development times per sentence and per lexical entriioned in the previous paragraphs lead to the following
formula for the total development tim¢s, [) (expressed in seconds), in whighs the number of sentencdsthe
number of lexical entriest(s, l) = 36s + 8400 - log(s/100 + 1) 4+ 2.4 - L.
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Figure2: Contour lines for two functions of corpus and lexicon sizegyger accuracy and development
time. In (a), the tagger accuracy is measured overall, vesare(b) it is restricted to unknown words

These results demonstrate the relevance of developing sing & morphosyntactic lexicon for
improving tagging accuracy both in the early stages of agrakent and for long-term optimiza-
tion.

6 Conclusionsand per spectives

We have introduced a new MaxEnt-based tagger, MEIt, thatraweetd on the=TB for building a
tagger for French. We show that this baseline can be significanproved by coupling it with
the French morphosyntactic lexiconftfe The resulting tagger, MEit reaches a7.7% accuracy
that are, to our knowledge, the best figures reported fordfréggging, including parsing-based
taggers. More precisely, the addition of lexicon-basedufes yield error reductions @&3.3%
overall and of27.5% for unknown words (corresponding to accuracy improvesent7% and
3.9%, respectively) compared to the baseline tagger.

We also showed that the use of a lexicon improves the qudlifyeatagger at any stage of lex-
icon and training corpus development. Moreover, we appnaiely estimated development times
for both resources, and show that the best way to optimizeahumork for tagger development is
to work on the development of both an annotated corpus andphosyntactic lexicon.

In future work, we plan on trying and demonstrating this heisupractice, by developing such
resources and the corresponding I\{{Hlagger for an under-resourced language. We also intend
to study the influence of the tagset, in particular by trajrimggers based on larger tagsets. This
work should try and understand how to benefit as much as pedsiln the internal structure of
tags in such tagsets (gender, number, etc.).
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