ONTOLOGY-MEDIATED QUERY
ANSWERING

Harnessing knowledge to get more from data

Meghyn Bienvenu (LaBRI - CNRS & University of Bordeaux)

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

incomplete ontology user query
database

domain knowledge

2/42

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

ZE'_ ¢

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

expected answers: Melanie, Paul

2/42

ONTOLOGY-MEDIATED QUERY ANSWERING (OMQA)

patient data medical knowledge user query
“Melanie has listeriosis” “Listeriosis & Lyme disease “Find all patients with
“Paul has Lyme disease” are bacterial infections” bacterial infections”

expected answers: Melanie, Paul

Why use an ontology?

- extend the vocabulary (making queries easier to formulate)
- provide a unified view of multiple data sources
- obtain (by exploiting domain knowledge)

2/42

TODAY'S TALK

Two main objectives:

- give a brief introduction to OMQA

- show

Structure of the talk:
- Introductory material
- description logic (DL) ontologies, OMQA problem, query rewriting

- Understanding query rewriting

- natural questions related to size and existence of rewritings
- links to circuit complexity, automata, CSP

3/42

INTRODUCTION TO OMQA &
QUERY REWRITING

OUR FOCUS: DESCRIPTION LOGIC ONTOLOGIES

Ontologies typically described using logic-based formalisms

In this talk: ontologies formulated in description logics (DLs)
- family of

- range from fairly simple to highly expressive

- complexity of query answering well understood

- lots of practical work on algorithms and implementations
- basis for OWL web ontology language (W3C standard)

Today, we'll mainly focus on three particular DLs:
- ALC, EL, DL-Liteg

5/42

DL BASICS

Building blocks of DLs:

- concept names (unary predicates, classes) Prof, Course
- role names (binary predicates, properties) teaches
(constants)

6/42

DL BASICS

Building blocks of DLs:

- concept names (unary predicates, classes) Prof, Course
- role names (binary predicates, properties) teaches
(constants)

Build complex concepts and roles using constructors. For example:

- Non-professors: —Prof
- Profs who teach a Master's course: Prof r Jteaches.MCourse

- Taught by: teaches™

Note: set of available constructors depends on the particular DL!

6/42

DL KNOWLEDGE BASES

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- example assertions: Prof(marie), teaches(marie, inf100)

7/42

DL KNOWLEDGE BASES

Knowledge base (KB) = ABox (data) + TBox (ontology)

ABox contains facts about specific individuals

- finite set of concept assertions A(a) and role assertions r(a, b)
- example assertions: Prof(marie), teaches(marie, inf100)

TBox contains general knowledge about the domain of interest

- finite set of axioms (types of axioms depends on the DL)
- concept inclusions most common form of axiom

- CLC D, with C,D complex concepts
- intuitive meaning: “everything that is a Cis also a D"

- examples on later slides

7/42

DL SEMANTICS

”

Interpretation Z (“possible world”) (like FO logic semantics)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object

8/42

DL SEMANTICS

Interpretation Z (“possible world”) (like FO logic semantics)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object

- extend -Z to complex concepts and roles, for example:
- (cnD)yf =cFnDp* (3r.0)F = {di| exists (di,ds) € rF with d, € (*}

8/42

DL SEMANTICS

Interpretation Z (“possible world”) (like FO logic semantics)

- domain of objects AZ (possibly infinite set)

that maps

~ set of objects
~ set of pairs of objects
~ object

- extend -Z to complex concepts and roles, for example:
- (cnD)yf =cFnDp* (3r.0)F = {di| exists (di,ds) € rF with d, € (*}

Satisfaction in an interpretation

7T satisfies B(a) < a* € B* T satisfies CL D & C* C D

Model of a KB K = interpretation that satisfies all statements in K

C entails o (written K |= o) = every model Z of K satisfies

8/42

DESCRIPTION LOGIC ALC

In ALC, we have the following concept constructors:
(acts as a “wildcard”, denotes set of all things)
(denotes empty set)
- conjunction (1), disjunction (L1), negation (—)
- restricted forms of existential and universal quantification (3, ¥)
Complex concepts are formed as follows:

C,D:=T|L|A|=C|CAD|CUD|3rC|vrC

where A is a concept name, r a role name.

9/42

DESCRIPTION LOGIC ALC

In ALC, we have the following concept constructors:
(acts as a “wildcard”, denotes set of all things)
(denotes empty set)
- conjunction (1), disjunction (L1), negation (—)

- restricted forms of existential and universal quantification (3, ¥)

Complex concepts are formed as follows:
C,D:=T|L|A|=C|CND|CUD|3r.C|vrC

where A is a concept name, r a role name.
ALC TBox: set of concept inclusions CC D

9/42

EXAMPLES OF TBOX AXIOMS

Professors and MCFs are disjoint classes of faculty

Prof C Faculty Mcf C Faculty Prof C —Mcf

Every Master's student is supervised by some faculty member

MStudent C JsupervisedBy.Faculty

Master’s students are students who only take Master-level courses
MStudent C Student m VtakesCourse.MCourse

FO translation:
vx (MStudent(x) — (Student(x) A Vy takesCourse(x,y) — MCourse(y))

10/42

DESCRIPTION LOGIC EL

In £L, complex concepts are constructed as follows:

C,D:=T|A|CND|3rC

EL TBox = set of inclusions C C D, with C, D as above

1/42

DESCRIPTION LOGIC EL

In £L, complex concepts are constructed as follows:

C,D=T|A|CMD|3rcC
EL TBox = set of inclusions C C D, with C, D as above
: reasoning much simpler ()
Despite lower expressivity, ££ very useful in practice

- used for large-scale biomedical ontologies (example: SNOMED)

- importance witnessed by OWL 2 EL profile

1/42

DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Liteg (which underlies OWL 2 QL profile).

DL-Litegr TBoxes contain two types of axioms:

- concept inclusions B C B,, B; C =B,

- role inclusions 5, C S;, S C =S,

where

12/42

DESCRIPTION LOGIC DL-LITE

We present the dialect DL-Liteg (which underlies OWL 2 QL profile).

DL-Litegr TBoxes contain two types of axioms:

- concept inclusions B C B,, B; C =B,

- role inclusions 5, C S;, S C =S,

where

Some DL-Liteg axioms:
- Every professor teaches something: Prof C Jteaches
- Everything that is taught is a course:
- Teaches inverse of taughtBy:
teaches C taughtBy ™, teaches™ C taughtBy

12/42

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x, y)

13/42

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x,y)

Conjunctive queries (CQs) ~ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A teaches(x, y)

(find all faculty members that teach something)

13/42

QUERY LANGUAGES

Instance queries (1Qs): find instances of a given concept or role

Faculty(x) teaches(x,y)

Conjunctive queries (CQs) ~ select-project-join queries in SQL
conjunctions of atoms, some variables can be existentially quantified

Jy. Faculty(x) A teaches(x, y)

(find all faculty members that teach something)

pair with 7 a TBox and g a query (IQ / CQ)

13/42

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

map into

Q@ Fe——. homomarphism dataset

database D + query g ~» set of answers ans(q, D)

14/42

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

map into

cQ F,—hzl homomorphism

dataset

database D + query g ~» set of answers ans(q, D)

Answering CQs in the presence of a TBox (ontology)

models
of KB
(data + ontology)

map into

model Z of KB (7,.A) + query g~ set of answers ans(q,Z)

14/42

QUERY ANSWERING: DATABASE VS ONTOLOGY SETTINGS

Answering CQs in database setting

map into

cQ F,—hzl homomorphism

dataset

database D + query g ~» set of answers ans(q, D)

Answering CQs in the presence of a TBox (ontology)

models
of KB
(data + ontology)

map into

model Z of KB (7,.A) + query g~ set of answers ans(q,Z)

Question: how to combine the answers from different models?

14/42

OMQA, CERTAIN ANSWERS, AND CANONICAL MODELS

Certain answers:
- tuples of inds d such that d € ans(q,Z) for every model Z of (T,.A)
- corresponds to a form of entailment, we'll write 7, A = q(d)

15/42

OMQA, CERTAIN ANSWERS, AND CANONICAL MODELS

Certain answers:
- tuples of inds d such that d € ans(q,Z) for every model Z of (T,.A)
- corresponds to a form of entailment, we'll write 7, A = q(d)

Ontology-mediated query answering: computing certain answers

15/42

OMQA, CERTAIN ANSWERS, AND CANONICAL MODELS

Certain answers:
- tuples of inds d such that d € ans(q,Z) for every model Z of (T,.A)

- corresponds to a form of entailment, we'll write 7, A = q(d)

Ontology-mediated query answering: computing certain answers

For Horn DLs (no form of disjunction) like ££ and DL-Liteg:
enough to consider a single canonical model

- idea: exhaustively apply TBox axioms to ABox
- possibly infinite (A C 3r.A)
- forest-shaped (ABox + new tree structures)

- give correct answer to all CQs

15/42

COMPLEXITY OF OMQA

OMGQA viewed as a decision problem (yes-or-no question):

PROBLEM:
INPUT:

QUESTION:

O answering in £ (Q a query language, £ a DL)

An n-ary query g € Q, an ABox A4, a L-TBox T,
and a tuple @ € Ind(A)"

Does 7, A |= q(d)?

16/42

COMPLEXITY OF OMQA

OMGQA viewed as a decision problem (yes-or-no question):
PROBLEM: O answeringin £ (Q a query language, £ a DL)

INPUT: An n-ary query g € Q, an ABox A4, a L-TBox T,
and a tuple @ € Ind(A)"

QUESTION: Does 7, A = q(d)?
> in terms of

Data complexity: in terms of size of A only
- view rest of input as fixed (of constant size)
- motivation: ABox (data) typically much larger than rest of input

data complexity <

Note: use |.A| to denote size of A (similarly for |T], |q|, etc.)
16/42

QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: OMQ (T, g) ~ first-order (SQL) query q’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

17/42

QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: OMQ (T, g) ~ first-order (SQL) query q’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:

- FO query @’ is an FO-rewriting of (T, q) iff for every ABox A:
&

Informally:

17/42

QUERY REWRITING

Idea: reduce OMQA to database query evaluation

- rewriting step: OMQ (T, g) ~ first-order (SQL) query q’

- evaluation step: evaluate query g’ using relational DB system

Advantage: harness efficiency of relational database systems

Key notion:

- FO query @’ is an FO-rewriting of (T, q) iff for every ABox A:
&

Informally:

Can also consider Datalog rewritings, defined analogously

17/42

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has an FO-rewriting

18/42

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has an FO-rewriting

Example:

Query qo = Jy Faculty(x) A teaches(x,y)

18/42

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has an FO-rewriting

Example:

Query qo = Jy Faculty(x) A teaches(x,y)
The following query is an FO-rewriting of (7, qo):

Go VvV Prof(x) Vv Mcf(x)
vV 3y CR(x) Ateaches(x,y) Vv 3JyDR(x) Ateaches(x,y)

18/42

QUERY REWRITING IN DL-LITE

Good news: every CQ and DL-Liteg ontology has an FO-rewriting

Example:

Query qo = Jy Faculty(x) A teaches(x,y)
The following query is an FO-rewriting of (7, qo):

Go VvV Prof(x) Vv Mcf(x)
vV 3y CR(x) Ateaches(x,y) Vv 3JyDR(x) Ateaches(x,y)

Existence of FO-rewritings = low data complexity (AC; C PTIME)

18/42

WHAT ABOUT EL?

EL:M,3r.C
In £L, FO-rewritings need not exist:
- no FO-rewriting of A(x) w.rt. {3rAC A}

T T T

unbounded propagation of A along r

19/42

WHAT ABOUT EL?

EL:M,3r.C
In £L, FO-rewritings need not exist:
- no FO-rewriting of A(x) w.rt. {3rAC A}

T T T

unbounded propagation of A along r

Datalog rewritings always exist: Datalog ~ function-free Horn clauses
- Datalog program I: r(x,y) AA(X) = A(y) A(X) — goal(x)
- T, A EA(c) iff can derive goal(c) from A using N

Can pass on rewriting to Datalog engine

19/42

WHAT ABOUT EL?

EL:M,3r.C
In £L, FO-rewritings need not exist:
- no FO-rewriting of A(x) w.rt. {3rAC A}

T T T

unbounded propagation of A along r

Datalog rewritings always exist: Datalog ~ function-free Horn clauses
- Datalog program I: r(x,y) AA(X) = A(y) A(X) — goal(x)
- T, A EA(c) iff can derive goal(c) from A using N

Can pass on rewriting to Datalog engine

Datalog rewriting =

19/42

WHAT ABOUT ALC?

ALC :1,u,M, 3r.C,Vr.C

Neither FO nor Datalog rewritings need exist

Encoding of non-3-colourability:

TBox axioms:

(same for R, G)

Graph is 3-colourable < Boolean query 3x.clash(x) not entailed

CQ answering has coNP data complexity

20/42

UNDERSTANDING QUERY REWRITING

Query rewriting:
data-independent reduction of OMQA to DB query evaluation

21/42

UNDERSTANDING QUERY REWRITING

Query rewriting:
data-independent reduction of OMQA to DB query evaluation

To gain better understanding of query rewriting,
we consider the following natural questions:

1. Size of rewritings DL-Lite

- How large are the rewritten queries?

2. Existence of rewritings beyond DL-Lite
- When is query rewriting applicable?

21/42

SIZE OF REWRITINGS

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested

Most produce

23/42

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested
Most produce

Experiments showed that such rewritings can be huge!

- can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

23/42

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested
Most produce

Experiments showed that such rewritings can be huge!

- can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:

- Query: Ad(x) A ... AA%(X)
- Ontology: AJC A AlCAY ... AlCA?

23/42

QUERY REWRITING FOR DL-LITE ONTOLOGIES

Lots of rewriting algorithms for DL-Lite designed and tested
Most produce

Experiments showed that such rewritings can be huge!

- can be difficult / impossible to generate and evaluate

Not hard to see smallest UCQ-rewriting may be exponentially large:
- Query: Ad(x) A ... AA%(X)

- Ontology: AJC A AlCAY ... AlCA?

But: simple polysize FO-rewriting does exist! Ai1 (A2 (x) v Al(x))

23/42

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)

(r(y) v s(y, X)) A(A(X) V (B(x) A3z p(x,2))) A (A(Y) v (B(Y) ATz p(y, 2)))

24/42

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)
(rO6y) Vs(y, x)) A (A(X) V (B(x) A3z p(x,2))) A (A(Y) V (B(Y) ATz p(y, 2)))
NDL-rewritings: non-recursive Datalog queries

C]1(X,y), QZ(X)v q2(y) — goal(x,y)
r(x,y) = aqi(x,y) A(X) = G2(x)
s(v,X) = q(x,y) B(x), p(x,2) = Ga(x)

24/42

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)
(rO6y) Vs(y, x)) A (A(X) V (B(x) A3z p(x,2))) A (A(Y) V (B(Y) ATz p(y, 2)))
NDL-rewritings: non-recursive Datalog queries

C]1(X,y), QZ(X)v q2(y) — goal(x,y)
r(x,y) = aqi(x,y) A(X) = G2(x)
s(v,X) = q(x,y) B(x), p(x,2) = Ga(x)

FO-rewritings: first-order queries (can also use V,)

24/42

DIFFERENT FORMS OF REWRITINGS

PE-rewritings: positive existential queries (only 3, A, V)
(rO6y) Vs(y, x)) A (A(X) V (B(x) A3z p(x,2))) A (A(Y) V (B(Y) ATz p(y, 2)))
NDL-rewritings: non-recursive Datalog queries

C]1(X,y), QZ(X)v q2(y) — goal(x,y)
r(x,y) = aqi(x,y) A(X) = G2(x)
s(v,X) = q(x,y) B(x), p(x,2) = Ga(x)

FO-rewritings: first-order queries (can also use V,)

What if we replace UCQs by PE / NDL / FO?

24/42

FIRST NEGATIVE RESULTS [kkPz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs g, and DL-Liteg TBoxes T, such that

- PE- and NDL-rewritings of (75, qn) exponential in |gn| + |75
of (75, qn) unless NP/poly € NC'

25/42

FIRST NEGATIVE RESULTS [kkPz12]

Exponential blowup unavoidable for PE / NDL-rewritings

Formally: sequence of CQs g, and DL-Liteg TBoxes T, such that

- PE- and NDL-rewritings of (75, qn) exponential in |gn| + |75
of (75, qn) unless NP/poly € NC'

Key proof step: reduce CNF satisfiability to CQ answering in DL-Liteg

- TBox generates full binary tree, leaves represent prop. valuations
- depth of tree = number of variables

- tree-shaped query selects valuation, checks clauses are satisfied
- number of leaves / branches in query = number of clauses

25/42

RESTRICTING DEPTH OF THE TBOX [kkPz14]

Depth of TBox =
maximum depth of generated trees in canonical model

- T has finite depth < applying axioms in 7 always terminates

26/42

RESTRICTING DEPTH OF THE TBOX [kkPz14]

Depth of TBox =
maximum depth of generated trees in canonical model

- T has finite depth < applying axioms in 7 always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?

26/42

RESTRICTING DEPTH OF THE TBOX [kkPz14]

Depth of TBox =
maximum depth of generated trees in canonical model

- T has finite depth < applying axioms in 7 always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

26/42

RESTRICTING DEPTH OF THE TBOX [kkPz14]

Depth of TBox =
maximum depth of generated trees in canonical model

- T has finite depth < applying axioms in 7 always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

- no polysize FO-rewritings unless NP/poly C NC'

Depth 1 TBoxes:
- no polysize PE- or NDL-rewritings
- no polysize FO-rewritings unless NL/poly C NC'

26/42

RESTRICTING DEPTH OF THE TBOX [kkPz14]

Depth of TBox =
maximum depth of generated trees in canonical model

- T has finite depth < applying axioms in 7 always terminates

Does restricting the depth of TBoxes suffice for polysize rewritings?
Unfortunately not...

- no polysize FO-rewritings unless NP/poly C NC'

Depth 1 TBoxes:

- no polysize PE- or NDL-rewritings

- no polysize FO-rewritings unless NL/poly C NC'

- but: polysize PE-rewritings for tree-shaped queries

26/42

MAP OF RESULTS SO FAR

no poly PE but poly NDL

no poly FO unless NL/poly C NC!

\ T T T T T
arb 7\5] [no polysize PE or NDL] < -
=z
=
5 btw Léj 7
= <]
& s |
= =
i
tw 2 E |
» trees -1
(<]
=
< 14 |
g
o
& a
o
1S
zZ 2 _
| | | | | |
1 2 3 T d arb

TBox depth
27142

COMPLETING THE LANDSCAPE [BKP15], [BKKPZ1

T T T T T
arb — [] [no polysize PE or NDL] = —
g btw -) Li' -
(o] ~
= T no poly PE but poly NDL = -
(poly FO <> 5AC! € NCT) ¢
w2 Qo |
poly =
trees - PE, - -
i NDL,
>
8 s & FO |
“f no poly PE but poly NDL
2 [(poly FO < NL/poly C NC') 7
£
2 2 |
N J
| | | | |
1 2 3 d arb

TBox depth

28/42

COMPLETING THE LANDSCAPE [BkP15], [BKKPZ18]

Strong negative result for PE-rewritings
- no polysize PE-rewritings for depth 2 TBoxes + linear CQs

- polysize FO-rewritings exist iff
bounded depth + bounded treewidth CQs
bounded-leaf tree-shaped CQs

Positive results for NDL-rewritings
- bounded depth TBox + bounded treewidth CQs
- bounded-leaf tree-shaped CQs (+ arbitrary TBox)

Takeaway: NDL good target language for rewritings
29/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

30/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

- recall k-ary Boolean function maps tuples from {0,1}* to {0, 1}

30/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

- recall k-ary Boolean function maps tuples from {0,1}* to {0, 1}

Example: function REACH,

- input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

- output: 1iff encoded graph G contains a directed path from s to t

30/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (1)

Standard computational complexity not the right tool
- can be used to show no polytime-computable rewriting
- ... but not that no polysize rewriting exists

Instead: establish tight connections to circuit complexity

- branch of complexity that classifies Boolean functions wrt. size /
depth of Boolean circuits / formulas that compute them

- recall k-ary Boolean function maps tuples from {0,1}* to {0, 1}

Example: function REACH,

- input: a Boolean vector representing the adjacency matrix of a
directed graph G with n vertices including special vertices s and t

- output: 1iff encoded graph G contains a directed path from s to t
No family of polysize mon. Boolean formulas computing REACH,,

30/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Ay
-rewritings (A, V)
-rewritings (v- and A-gates)
-rewritings (A, Vv, =)

31/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Ay
-rewritings (A, V)
-rewritings (v- and A-gates)
-rewritings (A, Vv, =)

Associate Boolean functions with OMQ (7, q)

31/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Ay
-rewritings (A, V)
-rewritings (v- and A-gates)
-rewritings (A, Vv, =)

Associate Boolean functions with OMQ (7, q)

‘Lower bound’ function f,5- = lower bounds on rewriting size
- transform rewriting of g, 7" into formula / circuit that computes f, 5

‘Upper bound’ function f’? = upper bounds on rewriting size
- transform formula / circuit that computes fﬁ into rewriting of q, T

31/42

BRIEF GLIMPSE AT PROOF TECHNIQUES (2)

Ay
-rewritings (A, V)
-rewritings (v- and A-gates)
-rewritings (A, Vv, =)

Associate Boolean functions with OMQ (7, q)

‘Lower bound’ function f,5- = lower bounds on rewriting size
- transform rewriting of g, 7" into formula / circuit that computes f, 5

‘Upper bound’ function f’? = upper bounds on rewriting size
- transform formula / circuit that computes fq‘fg into rewriting of q, T

Exploit circuit complexity results about (in)existence of small
formulas / circuits computing different classes of Boolean functions
- which functions expressible as f,'5 / f,’% for given OMQ class?

- intermediate computational model: hypergraph programs

31/42

COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES

Size of rewritings Combined complexity of OMQA
T T T T T T T T T
o)
arb - C] [no polysize PE or NDL] B arb - [NP-complete j i
=] \ — =
E bwp .2 | 1 B btwp . |
g <ul H g
2 z = OJ =
= T no poly PE but poly NDL o3 | 1 & = _ = -
(poly FO & sac NcT) _3;: LOGCFL-complete g
tw2 - s= | H tw2 - & i
poly E d
trees - | o = trees [~ B
4 NDL,] L J
E H o)
5 ,L|&FO 15 . |
5 no poly PE but poly NDL s
o 5) .
2 [(poly FO «» NL/poly C NC') 18 r NL-complete 3 |
£ £ g
2 of 4 2 2F 8 |
-
‘ ! ! - L I | | | |
! : } - g 2 L 2 3 d arb
TBox depth TBox depth

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity

32/42

COMPARING SUCCINCTNESS & COMPLEXITY LANDSCAPES

Size of rewritings Combined complexity of OMQA
T T T T T T T T T
o)
arb - C] [no polysize PE or NDL] B arb - [NP-complete j i
=] \ — =
E bwp .2 | 1 B btwp . |
g <ul H g
2 z = OJ =
= T no poly PE but poly NDL o3 | 1 & = _ = -
(poly FO & sac NcT) _3;: LOGCFL-complete g
tw2 - s= | H tw2 - & i
poly E d
trees - | o = trees [~ B
4 NDL,] L J
E H o)
5 ,L|&FO 15 . |
5 no poly PE but poly NDL s
o 5) .
2 [(poly FO «» NL/poly C NC') 18 r NL-complete 3 |
£ £ g
2 of 4 2 2F 8 |
-
‘ ! ! - L I | | | |
! : } - g 2 L 2 3 d arb
TBox depth TBox depth

polysize NDL-rewritings ~ polynomial (LOGCFL / NL) complexity

Can we marry the positive succinctness & complexity results?

32/42

OPTIMAL NDL-REWRITINGS [BKKPRZ17]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:

- rewriting can be constructed by L¢ transducer

- evaluating the rewriting can be done in C

with C € {NL, LOGCFL} the complexity of the OMQ class

33/42

OPTIMAL NDL-REWRITINGS [BKKPRZ17]

For the three well-behaved classes of OMQs, define
NDL-rewritings of optimal complexity:

- rewriting can be constructed by L¢ transducer

- evaluating the rewriting can be done in C

with C € {NL, LOGCFL} the complexity of the OMQ class

Preliminary experiments with simple OMQs (depth 1, linear CQs):
- compared with other NDL-rewritings (Clipper, Rapid, Presto)

- our rewritings grow linearly with increasing query size

- other systems produce rewritings that grow exponentially

33/42

EXISTENCE OF REWRITINGS

QUERY REWRITING BEYOND DL-LITE

We have seen that:
- for ££ ontologies, FO-rewritings need not exist

- for ontologies,

But these are worst-case results
- only say that some OMQ that does not have a rewriting

- possible that rewritings exist for many OMQs encountered
in practice

To extend the applicability of query rewriting beyond DL-Lite:
- devise ways of identifying ‘good cases’

- construct rewritings when they exist

35/42

DECIDING EXISTENCE OF REWRITINGS

Use (£, Q) to denote set of OMQs (7, q) where:
- T is an L-TBox

- gisaquery from Q Q € {1Q,CQ}
For example: (££,CQ), (ALC,1Q)
FO-rewritability in (£, Q)

- Input: OMQ (7, g) from (£, Q)

- Problem: decide whether (7, q) has an FO-rewriting

Datalog-rewritability decision problem can be defined analogously

36/42

FO-REWRITABILITY IN EL [BLW13] [BCLW16]

EL M, 3r.C
FO-rewritability is EXPTIME-complete in (££,1Q) and (££,CQ)

37/42

FO-REWRITABILITY IN EL [BLW13] [BCLW16]

EL M, 3r.C
FO-rewritability is EXPTIME-complete in (££,1Q) and (££,CQ)

oMQ is not FO-rewritable iff there exist tree-shaped ABoxes
Ay Ay As Ay

ATKE AL AL

such that foralli>1: 7, A; = A(ap) and

37/42

FO-REWRITABILITY IN EL [BLW13] [BCLW16]

EL M, 3r.C
FO-rewritability is EXPTIME-complete in (££,1Q) and (££,CQ)

oMQ is not FO-rewritable iff there exist tree-shaped ABoxes
Ay Ay As Ay

ATKE AL AL

such that foralli>1: 7, A; = A(ap) and

Pumping argument: enough to find ABox of particular finite size kg
- desired ABox Ay, exists = can construct full sequence of ABoxes

37/42

FO-REWRITABILITY IN EL [BLW13] [BCLW16]

EL M, 3r.C
FO-rewritability is EXPTIME-complete in (££,1Q) and (££,CQ)

oMQ is not FO-rewritable iff there exist tree-shaped ABoxes
Ay Ay As Ay

ap i ag ag ag

AA AL AL

such that foralli>1: 7, A; = A(ap) and

Pumping argument: enough to find ABox of particular finite size kg
- desired ABox Ay, exists = can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

37/42

FO-REWRITABILITY IN EL [BLW13] [BCLW16]

EL M, 3r.C
FO-rewritability is EXPTIME-complete in (££,1Q) and (££,CQ)

oMQ is not FO-rewritable iff there exist tree-shaped ABoxes
Ay Ay As Ay

ap i ag ag ag

AA AL AL

such that foralli>1: 7, A; = A(ap) and

Pumping argument: enough to find ABox of particular finite size kg
- desired ABox Ay, exists = can construct full sequence of ABoxes

Use tree automata to check whether such a witness ABox exists

Can generalize this technique to handle CQs as well
37/42

COMPUTING FO-REWRITINGS IN EL [HLsw15], [HL17]

Idea for IQs: use existing backwards-chaining rewriting procedure
- if FO-rewriting does exist, terminates

- to ensure termination in general: use characterization result

To make practical: decomposed algorithm
- allows for structure sharing

- produces (succinct) NDL-rewriting instead of UCQ-rewriting

Experimental results are
, produced are
- suggests that in practice for

Recently extended to handle CQs with promising results

38/42

REWRITABILITY FOR (ALC, 1Q) [BcLw13] [BCcLwW14]

ALC : —, 1,1, 3r.C,vr.C

FO-rewritability and Datalog-rewritability of (ALC,1Q) are both
NEXPTIME-complete.

39/42

REWRITABILITY FOR (ALC, 1Q) [BcLw13] [BCcLwW14]

ALC : —, 1,1, 3r.C,vr.C

FO-rewritability and Datalog-rewritability of (ALC,1Q) are both
NEXPTIME-complete.

Upper bound: connection to constraint satisfaction problems (CSPs)
- CSP(B8): decide if homomorphism from input structure D into B
- (Boolean) OMQs in (ALC, Q) ~ (complement of) CSPs

- exponential reduction to problem of deciding whether a CSP is
definable in FO / Datalog

- use NP upper bounds for latter problems [LLTO7] [FKKMMWO9]

39/42

FO-REWRITABILITY FOR (ALC, UCQ) [FKL17]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

40/42

FO-REWRITABILITY FOR (ALC, UCQ) [FkL17]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

Instead of CSP, uses
fragment of monadic second-order

OMQs from (ALC,UCQ) ~ complement of MMSNP formulas
~ monadic disjunctive Datalog [BCLW13] [BCLW14]

40/42

FO-REWRITABILITY FOR (ALC, UCQ) [FkL17]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

Instead of CSP, uses
fragment of monadic second-order

OMQs from (ALC,UCQ) ~ complement of MMSNP formulas
~ monadic disjunctive Datalog [BCLW13] [BCLW14]

FO-expressibility of (co)MMSNP not studied in CSP literature

40/42

FO-REWRITABILITY FOR (ALC, UCQ) [FkL17]

FO-rewritability of (ALC, UCQ) is 2NEXPTIME-complete

Instead of CSP, uses
fragment of monadic second-order

OMQs from (ALC,UCQ) ~ complement of MMSNP formulas
~ monadic disjunctive Datalog [BCLW13] [BCLW14]

FO-expressibility of (co)MMSNP not studied in CSP literature

Recently: shown to be decidable and 2NEXPTIME-complete

40/42

CONCLUDING REMARKS

CONCLUSION

Ontology-mediated query answering:
- new paradigm for intelligent information systems

- offers many advantages, but also computational challenges

Many interesting problems related to OMQA and query rewriting:

- succinctness of rewritings (Boolean functions, circuit complexity)
- existence of FO and Datalog rewritings (automata, CSP / MMSNP)
- other tools: parameterized complexity, word rewriting

Active area with lots left to explore!

42/42

QUESTIONS?

JOINT WORK WITH:

BALDER TEN CATE, PETER HANSEN, CARSTEN LUTZ, STANISLAV KIKOT,
ROMAN KONTCHAKOV, VLADIMIR PODOLSKII, VLADISLAV RYZHIKOV,

FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

REFERENCES: SUCCINCTNESS & OPTIMALITY OF REWRITINGS

[KKPZ12] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: Exponential Lower
Bounds and Separation for Query Rewriting. 39th International Collogquium on
Automata, Languages, and Programming (ICALP"12), 2012.

[GS12] G. Gottlob and T. Schwentick: Rewriting Ontological Queries into Small
Nonrecursive Datalog Programs. 13th International Conference on the Principles of
Knowledge Representation and Reasoning (KR"12), 2012.

[GKKPSZ14] G. Gottlob, S. Kikot, R. Kontchakov, V. Podolskii, T. Schwentick, and M.
Zakharyaschev: The Price of Query Rewriting in Ontology-based Data Access. Artificial
Intelligence (Al)), 2014.

[KKPZ14] S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev: On the
Succinctness of Query Rewriting over Shallow Ontologies. 29th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS4), 2014.

4442

REFERENCES: SUCCINCTNESS & OPTIMALITY OF REWRITINGS

[BKP15] M. Bienvenu, S. Kikot, V. Podolskii: Tree-like Queries in OWL 2 QL: Succinctness
and Complexity Results. 30th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS"5), 2015.

[BKKPRZ17] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, V. Ryzhikov and M.
Zakharyaschev: The Complexity of Ontology-Based Data Access with OWL 2 QL and
Bounded Treewidth Queries. Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS"7), 2017.

[BKKPZ18] M. Bienvenu, S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev:
Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via
Circuit Complexity. Journal of the ACM (JACM), 2018.

45/42

REFERENCES: EXISTENCE OF REWRITINGS

[BCLW13] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. 32nd International Conference
on the Principles of Database Systems (PODS"3), 2013.

[BLW13] M. Bienvenu, C. Lutz, and F. Wolter: First Order-Rewritability of Atomic Queries
in Horn Description Logics. 23rd International Joint Conference on Artificial
Intelligence (IJCAI13), 2013.

[BCLW14] M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter: Ontology-based Data Access:
A Study through Disjunctive Datalog, CSP, and MMSNP. Transactions on Database
Systems (TODS), 2014.

[KNG14] M. Kaminski, Y. Nenov, and B. Cuenca Grau: Datalog Rewritability of Disjunctive
Datalog Programs and its Applications to Ontology Reasoning. 28th AAAI Conference
on Artificial Intelligence (AAAI4), 2014,

46/42

REFERENCES: EXISTENCE OF REWRITINGS

[HLSW15] P. Hansen, C. Lutz, I. Seylan, and F. Wolter: Efficient Query Rewriting in the
Description Logic EL and Beyond. 24th International Joint Conference on Artificial
Intelligence (1JCAI"5), 2015.

[BL16] P. Bourhis and C. Lutz: Containment in Monadic Disjunctive Datalog, MMSNP, and
Expressive Description Logics. 15th International Conference on the Principles of
Knowledge Representation and Reasoning (KR'16), 2016.

[BCLW16] M. Bienvenu, P. Hansen, C. Lutz, and F. Wolter: First Order-Rewritability and
Containment of Conjunctive Queries in Horn Description Logics. 25th International
Joint Conference on Artificial Intelligence (1JCAI"6), 2016.

[FKL17] C. Feier, A. Kuusisto, and C. Lutz: Rewritability in Monadic Disjunctive Datalog,
MMSNP, and Expressive Description Logics. 20th International Conference on Database
Theory (ICDT17), 2017.

[HL17] P. Hansen and C. Lutz: Computing FO-Rewritings in ££ in Practice: from Atomic
to Conjunctive Queries. 16th International Semantic Web Conference (ISWC17), 2017.

4742

REFERENCES: DEFINABILITY OF CSPS

[LLTO7] B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint
satisfaction problems. Logical Methods in Computer Science (LMCS), 2007.

[FKKMMWO9] R. Freese, M. Kozik, A. Krokhin, M. Maroti, R. Mckenzie, and R. Willard. On
maltsev conditions associated with omitting certain types of local structures. Available
at: http://www.math.hawaii. edu/~ralph/Classes/619/0mittingTypesMaltsev.pdf, 2009.

[CL17] H. Chen and B. Larose. Asking the Metaquestions in Constraint Tractability. ACM
Transactions on Computation Theory (TOCT) 9(3), pages 1-27, 2017.

48/42

	Introduction to OMQA &Query Rewriting
	Size of Rewritings
	Existence of Rewritings
	Concluding Remarks
	Appendix

