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The Beyond NP Era
ash2

I Key idea: Leveraging the power of modern sat solvers to
tackle other intractable problems

I Objective: Enlarging the sets of instances which can be
solved in practice using ”reasonable” resources
I Knowledge compilers
I MUS/MCS enumerators
I QBF solvers
I Model counters
I ...

I beyondnp.org
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Model Counting
ash3

I Σ 7→ ‖Σ‖ = ?

I Σ = (x ∨ y) ∧ (¬y ∨ z)

I The models of Σ over {x , y , z} are :

011
100
101
111

I ‖Σ‖ = 4
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Model Counting
ash4

I Counting the models of a propositional formula is a key task
for a number of problems (especially in AI):
I probabilistic inference
I stochastic planning
I ...

I However #sat is a computationally hard task: #P-complete
I Even for subsets of formulae for which sat is easy

(e.g., monotone Krom formulae)!

I The ”power” of counting and its complexity are reflected by
Toda’s theorem:

Seinosuke Toda (Gödel Prize 1998):

PH ⊆ P#P
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Model Counting
ash5

I Many model counters have been developed:
I Exact model counters:

I search-based: Cachet, SharpSAT, DMC, etc.,
I compilation-based: C2D, Dsharp, D4, etc.
I ...

I Approximate model counters (SampleCount, etc.)
I ...

I In this talk: improving exact model counters by
preprocessing the input

CNF → CNF
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Preprocessings
ash6

I Objective: simplifying the input so that the task at hand can
be achieved more efficiently from the input once preprocessed

I Simplifying = ”reducing something”
I Trade-off preprocessing cost / rest of the computation to be

looked for
I Using aggressive, computationally demanding

preprocessing techniques can make sense when dealing with
highly complex problems (like #sat)

I P-preprocessing vs. NP-preprocessing
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Knowledge Compilation vs. Preprocessing for #sat
ash7

I Similarities: two off-line approaches for improving the model
counting task

I Differences:
I computing a new representation in the same vs. a distinct

language
I ”hard part” vs. ”easy part”

I knowledge compilation
CNF Σ compilation d-DNNF Ψ model counting ‖Σ‖

I preprocessing
CNF Σ preprocessing CNF Φ model counting ‖Σ‖

I The two approaches can be combined
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Dozens of P-Preprocessings
ash8

I Vivification (VI) and a light form of it, called Occurrence Elimination (OE),
I Gate Detection and Replacement (GDR)
I Pure Literal Elimination (PLE)
I Variable Elimination (VE)
I Blocked Clause Elimination (BCE)
I Covered Clause Elimination (CCE)
I Failed Literal Elimination (FLE)
I Self-Subsuming Resolution (SSR)
I Hidden Literal Elimination (HLE)
I Subsumption Elimination (SE)
I Hidden Subsumption Elimination (HSE)
I Asymmetric Subsumption Elimination (ASE)
I Tautology Elimination (TE)
I Hidden Tautology Elimination (HTE)
I Asymmetric Tautology Elimination (ATE)
I ...
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Use in State-of-the-Art sat Solvers
ash9

I Glucose (exploits the SatELite preprocessor)
I Lingeling (has an internal preprocessor)
I Riss (use of the Coprocessor preprocessor)
I ...
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Reducing What?
ash10

CNF Σ 7→ CNF p(Σ)

I What are the connections between Σ and p(Σ)?

I Removing clauses from Σ

I Removing literals in the clauses of Σ

I ...
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Looking for IES or Minimal CNF is often too Expensive
ash11

I A clause δ of a CNF Σ is redundant if and only if Σ \ {δ} |= δ
I A CNF Σ is irredundant if and only if it does not contain any

redundant clause
I A subset Σ′ of a CNF Σ is an irredundant equivalent subset

(IES) of Σ if and only if Σ′ is irredundant and Σ′ ≡ Σ

I Deciding whether a CNF Σ is irredundant is NP-complete
I Deciding whether a CNF Σ′ is an irredundant equivalent

subset (IES) of a CNF Σ is Dp-complete
I Given an integer k , deciding whether a CNF Σ has an IES of

size at most k is Σp
2-complete

I Given an integer k , deciding whether there exists a CNF

formula Σ′ with at most k literals (or with at most k clauses)
equivalent to a given CNF Σ is Σp

2-complete
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Preserving What?
ash12

I Logical equivalence
I Queries over the input alphabet
I Number of models
I Satisfiability
I ...
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Measuring the Impact of a Preprocessing
ash13

Several measures for the reduction achieved can be considered:
I The number of variables in the input CNF Σ

I The size of Σ (the number of literals or the number of clauses
in it)

I The value of some structural parameters for Σ

I ...
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Example: Subsumption Elimination
ash14

A clause δ1 subsumes a clause δ2
if every literal of δ1 is a literal of δ2
SE : (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x̄3) 7→ x1 ∨ x2

I P-preprocessing
I Preserves logical equivalence
I Hence preserves the number of models of the input (over the

original alphabet), its queries and its satisfiability

I #var(Σ) ≥ #var(SE(Σ))

I #lit(Σ) ≥ #lit(SE(Σ))
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The Gate Detection and Replacement Family
ash15

A gate of Σ is a circuit `⇔ β such that Σ |= `⇔ β
Σ and Σ[`← β] have the same number of models (but are not
logically equivalent in general)

Σ =

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u

u ↔ (x ∧ (y ∨ z))

Σ ≡
(x ∨ u ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) detection
(x ∨ (x ∧ (y ∨ z)) ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) replacement
(x ∨ y ∨ z ∨ v) ∧ (u ↔ (x ∧ (y ∨ z))) normalization

‖Σ‖ = ‖Σ[u ← (x ∧ (y ∨ z))]‖ = ‖x ∨ y ∨ z ∨ v‖ = 15
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The Gate Detection and Replacement Family
ash16

I Gate detection and replacement proves to be a valuable
preprocessing

I Specific gates are typically sought for (literal equivalence,
AND/OR gates, XOR gates) for complexity reasons

I The replacement Σ[`← β] requires to turn the resulting
formula into CNF

I It is implemented only if it it does not lead to increase the
size of the input (a ”small” increase can also be accepted)

I BCP (instead of a ”full” sat solver) is often used for efficiency
reasons (P-preprocessing)
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Literal Equivalence (LE)
ash17

I Literal equivalence aims to detect equivalences between
literals using BCP

I P-preprocessing
I For each literal `, all the literals `′ which can be found

equivalent to ` using BCP are replaced by ` in Σ

I Taking advantage of BCP makes it more efficient than a
”syntactic detection” (if two binary clauses stating an
equivalence between two literals ` and `′ occur in Σ, then
those literals are found equivalent using BCP, but the
converse does not hold)
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Literal Equivalence (LE)
ash18

Algorithm 1: LE

input : a CNF formula Σ
output: a CNF formula Φ such that ‖Φ‖ = ‖Σ‖
Φ←Σ; Unmark all variables of Φ;1
while ∃` ∈ Lit(Φ) s.t. var(`) is not marked do2

// detection

mark var(`);3
P`←BCP(Φ ∪ {`});4
N`←BCP(Φ ∪ {∼`});5
Γ←{`↔ `′|`′ 6= ` and `′ ∈ P` and ∼`′ ∈ N`};6

// replacement

foreach `↔ `′ ∈ Γ do7
replace ` by `′ in Φ;8

return Φ9
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Literal Equivalence (LE): Example
ash19

Σ =
a ∨ b ∨ c ∨ ¬d ¬a ∨ ¬b ∨ ¬c ∨ d
a ∨ b ∨ ¬c ¬a ∨ ¬b ∨ c
¬a ∨ b a ∨ ¬b
¬e ∨ ¬f ∨ h e ∨ f ∨ g
e ∨ ¬g ¬e ∨ ¬h

Assume that the variables of Σ are considered in the following
ordering: a < b < c < d < e < f < g < h

The equivalences (a⇔ b) ∧ (b ⇔ c) ∧(c ⇔ d) ∧ (e ⇔ ¬f ) are
detected

LE(Σ) =
¬f ∨ ¬g f ∨ ¬h
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Properties of LE
ash20

I Preserves the number of models (but not logical equivalence)

I #var(Σ) ≥ #var(LE(Σ))

I #lit(Σ) ≥ #lit(LE(Σ))
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LE: Reduction of the Number of Variables
ash21
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Figure – Comparing #var(Σ) with #var(LE(Σ)).
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LE: Reduction of the Size
ash22
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Figure – Comparing #lit(Σ) with #lit(LE(Σ)).
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Backbone Identification (BI)
ash23

I The backbone of a CNF formula Σ is the set of all literals
which are implied by Σ when Σ is satisfiable, and is the
empty set otherwise

I The purpose of the BI preprocessing is to make the backbone
B of the input CNF formula Σ explicit, to conjoin it to Σ, and
to use BCP (Boolean Constraint Propagation) on the
resulting set of clauses

I NP-preprocessing
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Backbone Identification (BI)
ash24

Algorithm 2: BI Backbone Identification
input : a CNF formula Σ
output: the CNF BCP(Σ ∪ B), where B is the backbone of Σ
B←∅;1
I←solve(Σ);2
while ∃` ∈ I s.t. ` /∈ B do3
I ′←solve(Σ ∪ {∼`});4
if I ′ = ∅ then B←B ∪ {`}else I←I ∩ I ′;5

return BCP(Σ ∪ B)6
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Backbone Identification (BI): Example
ash25

Σ =
a ∨ b
¬a ∨ b
¬b ∨ c
c ∨ d
¬c ∨ e ∨ f
f ∨ ¬g

The backbone of Σ is equal to B = {b, c}
BI(Σ) =

b
c
e ∨ f
f ∨ ¬g
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Properties of BI
ash26

I Preserves logical equivalence

I #var(Σ) ≥ #var(BI(Σ))

I #lit(Σ) ≥ #lit(BI(Σ))

26/46 On Definability for Model Counting Meeting GT ALGA, GdR IM, Lille, October 15th , 2018



BI: Reduction of the Number of Variables
ash27
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BI: Reduction of the Size
ash28
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Limitations of the Basic Gate Detection and
Replacement Preprocessings

ash29
I The replacement phase requires gates to be detected

I The search space for gates is huge
I The size of a gate can be huge as well

I Identifying ”complex gates” is incompatible with the
efficiency expected for a preprocessing:
only ”simple” gates are targeted
literal equivalences y ↔ x1
AND/OR gates y ↔ (x1 ∧ x2 ∧ x3)
XOR gates y ↔ (x1 ⊕ x2)
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Overcoming the Limitations (1)
ash30

I The (explicit) identification phase can be replaced by an
implicit identification phase

I Stated otherwise, there is no need to identify f to determine
that a gate of the form y ↔ f (x1, . . . , xn) exists in Σ

I Let us ask Evert and Alessandro for some help ...
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Evert Willem Beth (1908-1964)
ash31

I Σ explicitly defines y in terms of
X = {x1, . . . , xn} iff there exists a
formula f (x1, . . . , xn) over X such that

Σ |= y ↔ f (x1, . . . , xn)

I Σ implicitly defines y in terms of
X = {x1, . . . , xn} iff for every
canonical term γX over X , we have
Σ ∧ γX |= y or Σ ∧ γX |= y

I Beth’s theorem: Σ explicitly defines y
in terms of X iff Σ implicitly defines
y in terms of X
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Alessandro Padoa (1868-1937)
ash32

Padoa’s theorem:

Let Σ′X be equal to Σ where each variable
but those of X have been renamed in a
uniform way
If y 6∈ X , then Σ (implicitly) defines y in
terms of X iff Σ ∧ Σ′X ∧ y ∧ y ′ is
inconsistent

Deciding whether Σ (implicitly) defines y
in terms of X is ”only” coNP-complete
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Overcoming the Limitations (2)
ash33

I There is no need to identify f to determine that a gate of
the form y ↔ f (x1, . . . , xn) exists in Σ

I Gate identification = Explicit definability
I Explicit definability = Implicit definability (Beth’s theorem)
I One call to a SAT solver is enough to decide whether Σ

defines y in terms of {x1, . . . , xn} (thanks to Padoa’s theorem)

I There is no need to identify f to compute
Σ[y ← f (x1, . . . , xn)]
I The replacement phase can be replaced by an output variable

elimination phase: if y ↔ f (x1, . . . , xn) is a gate of Σ, then

Σ[y ← f (x1, . . . , xn)] ≡ ∃y .Σ
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The B+ E Preprocessing
ash34

A two-step preprocessing
I ”Identification = Bipartition”:

compute a definability bipartition 〈I ,O〉 of Σ such that
I ∪ O = Var(Σ), I ∩ O = ∅, and Σ defines every variable
o ∈ O in terms of I

I ”Replacement = Elimination”:
compute ∃E .Σ for E ⊆ O

I Steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint
(NP-preprocessing)
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Identifying u as an Output Variable and Eliminating it
ash35

Identification:
Σ ∧ Σ′{x ,y ,z} ∧ u ∧ u′ is inconsistent

x ∨ u ∨ v
x ∨ y ∨ u
x ∨ z ∨ u
x ∨ u
y ∨ z ∨ u
x ∨ u′ ∨ v ′

x ∨ y ∨ u′

x ∨ z ∨ u′

x ∨ u′

y ∨ z ∨ u′

u
u′

Elimination:
computing resolvents over u

x ∨ v ∨ x valid
x ∨ v ∨ y ∨ z
x ∨ y ∨ x valid
x ∨ y ∨ y ∨ z valid
x ∨ z ∨ x valid
x ∨ z ∨ y ∨ z valid

‖Σ‖ = ‖x ∨ v ∨ y ∨ z‖ = 15
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Tuning the Computational Effort
ash36

Both steps B and E of B + E can be tuned in order to keep the
preprocessing phase light from a computational standpoint
I It is not necessary to determine a definability bipartition 〈I ,O〉

with |I | minimal
⇒ B is a greedy algorithm (one definability test per variable)
⇒ Only the minimality of I for ⊆ is guaranteed

I It is not necessary to eliminate in Σ every variable of O but
focusing on a subset E ⊆ O is enough
⇒ Eliminating every output variable could lead to an exponential
blow up
⇒ The elimination of y ∈ O is committed only if |Σ| after the
elimination step and some additional preprocessing techniques
(occurrence simplification and vivification) remains small enough
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Experiments
ash37

Objectives:
I Evaluating the computational benefits offered by B + E when

used upstream to state-of-the-art model counters:
I the search-based model counter Cachet
I the search-based model counter SharpSAT
I the compilation-based model counter C2D

(used with -count -in memory -smooth all)
I the compilation-based model counter D4

I Comparing the benefits offered by B + E with those offered by
our previous preprocessor pmc (based on gate identification
and replacement) or with no preprocessing

37/46 On Definability for Model Counting Meeting GT ALGA, GdR IM, Lille, October 15th , 2018



Experiments
ash37

Objectives:
I Evaluating the computational benefits offered by B + E when

used upstream to state-of-the-art model counters:
I the search-based model counter Cachet
I the search-based model counter SharpSAT
I the compilation-based model counter C2D

(used with -count -in memory -smooth all)
I the compilation-based model counter D4

I Comparing the benefits offered by B + E with those offered by
our previous preprocessor pmc (based on gate identification
and replacement) or with no preprocessing

37/46 On Definability for Model Counting Meeting GT ALGA, GdR IM, Lille, October 15th , 2018



Empirical Setting
ash38

I 703 CNF instances from the SAT LIBrary
I 8 data sets: BN (Bayesian networks) (192), BMC (Bounded

Model Checking) (18), Circuit (41), Configuration (35),
Handmade (58), Planning (248), Random (104), Qif (7)
(Quantitative Information Flow analysis - security)

I Cluster of Intel Xeon E5-2643 (3.30 GHz) processors with 32
GiB RAM on Linux CentOS

I Time-out =1h
I Memory-out = 7.6 GiB
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Empirical Results: Reduction Achieved
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Figure – Reduction achieved by B + E
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Empirical Results: Time Saving
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Empirical Results
ash42
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Empirical Results
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Empirical Results
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Conclusion and Perspectives
ash46

Conclusion
I Design and implementation of the B + E preprocessor
I Empirical evaluation of B + E: for several model counters mc,

mc(B + E(.)) proves computationally more efficient than mc(.)

I ”Real” instances are structured ones

Perspectives
I Developing other ordering heuristics for B
I Investigating the connections to projected model counting:

computing ‖∃E .Σ‖ given a set E of variables and a formula Σ
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