On Definability for Model Counting

Jean-Marie Lagniez¹, Emmanuel Lonca¹ and Pierre Marquis^{1,2}

¹CRIL, U. Artois & CNRS
² Institut Universitaire de France

Meeting GT ALGA GdR IM Tille October 15th 2018

- Key idea: Leveraging the power of modern SAT solvers to tackle other intractable problems
- ▶ Objective: Enlarging the sets of instances which can be solved in practice using "reasonable" resources
 - Knowledge compilers
 - MUS/MCS enumerators
 - OBF solvers
 - Model counters
- beyondnp.org

$$ightharpoonup \Sigma \mapsto \|\Sigma\| = ?$$

$$\Sigma \mapsto \|\Sigma\| = ?$$

$$\triangleright \ \Sigma = (x \vee y) \wedge (\neg y \vee z)$$


```
\Sigma \mapsto \|\Sigma\| = ?
```

▶ The models of Σ over $\{x, y, z\}$ are :

```
011
100
101
```

111

- $\Sigma \mapsto \|\Sigma\| = ?$
- $\triangleright \ \Sigma = (x \vee y) \wedge (\neg y \vee z)$
- ▶ The models of Σ over $\{x, y, z\}$ are :
 - 011
 - 100
 - 101
 - 111
- $||\Sigma|| = 4$

- 4
- ➤ Counting the models of a propositional formula is a key task for a number of problems (especially in AI):
 - probabilistic inference
 - stochastic planning
 - **.**..

- 4
- Counting the models of a propositional formula is a key task for a number of problems (especially in AI):
 - probabilistic inference
 - stochastic planning
 - **.**..
- ► However #SAT is a computationally hard task: #P-complete

- 4
- Counting the models of a propositional formula is a key task for a number of problems (especially in AI):
 - probabilistic inference
 - stochastic planning
 - ▶ ..
- ► However #SAT is a computationally hard task: #P-complete
- Even for subsets of formulae for which SAT is easy (e.g., monotone Krom formulae)!

- Counting the models of a propositional formula is a key task for a number of problems (especially in AI):
 - probabilistic inference
 - stochastic planning

On Definability for Model Counting

- ► However #sat is a computationally hard task: #P-complete
- Even for subsets of formulae for which SAT is easy (e.g., monotone Krom formulae)!
- The "power" of counting and its complexity are reflected by Toda's theorem:

Seinosuke Toda (Gödel Prize 1998):

$$PH \subseteq P^{\#P}$$

- ► Many model counters have been developed:
 - Exact model counters:
 - search-based: Cachet, SharpSAT, DMC, etc.,
 - compilation-based: C2D, Dsharp, D4, etc.
 - Approximate model counters (SampleCount, etc.)

- ► **Many model counters** have been developed:
 - Exact model counters:
 - search-based: Cachet, SharpSAT, DMC, etc.,
 - compilation-based: C2D, Dsharp, D4, etc.
 - **.**..
 - Approximate model counters (SampleCount, etc.)
 - **...**
- ► In this talk: improving exact model counters by **preprocessing** the input

 $\mathtt{CNF} \to \mathtt{CNF}$

Preprocessings

- Objective: simplifying the input so that the task at hand can be achieved more efficiently from the input once preprocessed
- Simplifying = "reducing something"
- Trade-off preprocessing cost / rest of the computation to be looked for
- Using aggressive, computationally demanding preprocessing techniques can make sense when dealing with highly complex problems (like #SAT)
- P-preprocessing vs. NP-preprocessing

Similarities: two off-line approaches for improving the model counting task

- Similarities: two off-line approaches for improving the model counting task
- ▶ Differences:
 - computing a new representation in the same vs. a distinct language
 - ► "hard part" vs. "easy part"

- Similarities: two off-line approaches for improving the model counting task
- ▶ Differences:
 - computing a new representation in the same vs. a distinct language
 - "hard part" vs. "easy part"
- knowledge compilation

- Similarities: two off-line approaches for improving the model counting task
- Differences:
 - computing a new representation in the same vs. a distinct language
 - "hard part" vs. "easy part"
- knowledge compilation

preprocessing

- Similarities: two off-line approaches for improving the model counting task
- ► Differences:
 - computing a new representation in the same vs. a distinct language
 - "hard part" vs. "easy part"
- knowledge compilation

preprocessing

► The two approaches can be **combined**

Dozens of P-Preprocessings

- Vivification (VI) and a light form of it, called Occurrence Elimination (OE),
- Gate Detection and Replacement (GDR)
- Pure Literal Elimination (PLE)
- Variable Elimination (VE)
- Blocked Clause Elimination (BCE)
- Covered Clause Elimination (CCE)
- Failed Literal Elimination (FLE)
- Self-Subsuming Resolution (SSR)
- Hidden Literal Elimination (HLE)
- Subsumption Elimination (SE)
- Hidden Subsumption Elimination (HSE)
- Asymmetric Subsumption Elimination (ASE)
- Tautology Elimination (TE)

On Definability for Model Counting

- Hidden Tautology Elimination (HTE)
- Asymmetric Tautology Elimination (ATE)
- ▶

Use in State-of-the-Art SAT Solvers

- Glucose (exploits the SatELite preprocessor)
- Lingeling (has an internal preprocessor)
- Riss (use of the Coprocessor preprocessor)
- **.**..

Reducing What?

$$CNF \Sigma \mapsto CNF p(\Sigma)$$

- ▶ What are the connections between Σ and $p(\Sigma)$?
- Removing clauses from Σ
- lacktriangle Removing literals in the clauses of Σ
- **.**..

Looking for IES or Minimal CNF is often too Expensive

- 11
- ▶ A clause δ of a CNF Σ is redundant if and only if $\Sigma \setminus \{\delta\} \models \delta$
- \blacktriangleright A CNF Σ is irredundant if and only if it does not contain any redundant clause
- A subset Σ' of a CNF Σ is an irredundant equivalent subset (IES) of Σ if and only if Σ' is irredundant and $\Sigma' \equiv \Sigma$
- lacktriangle Deciding whether a CNF Σ is irredundant is NP-complete
- ▶ Deciding whether a CNF Σ' is an irredundant equivalent subset (IES) of a CNF Σ is D^p -complete
- Given an integer k, deciding whether a CNF Σ has an IES of size at most k is Σ_2^p -complete
- Given an integer k, deciding whether there exists a CNF formula Σ' with at most k literals (or with at most k clauses) equivalent to a given CNF Σ is Σ_2^p -complete

Preserving What?

- ► Logical equivalence
- ► Queries over the input alphabet
- ► Number of models
- Satisfiability
- **.**..

Measuring the Impact of a Preprocessing

Several measures for the reduction achieved can be considered:

- lacktriangle The number of variables in the input CNF Σ
- ightharpoonup The size of Σ (the number of literals or the number of clauses in it)
- ightharpoonup The value of some structural parameters for Σ
- **.**..

Example: Subsumption Elimination

A clause δ_1 subsumes a clause δ_2 if every literal of δ_1 is a literal of δ_2

$$SE: (x_1 \vee x_2) \wedge (x_1 \vee x_2 \vee \bar{x}_3) \mapsto x_1 \vee x_2$$

- P-preprocessing
- Preserves logical equivalence
- Hence preserves the number of models of the input (over the original alphabet), its queries and its satisfiability
- $\blacktriangleright \# var(\Sigma) \geq \# var(\mathtt{SE}(\Sigma))$
- $\blacktriangleright \#lit(\Sigma) \geq \#lit(\mathtt{SE}(\Sigma))$

$$\Sigma = \begin{bmatrix} \overline{x} \lor u \lor v \\ \overline{x} \lor \overline{y} \lor u \\ \overline{x} \lor \overline{z} \lor u \\ x \lor \overline{u} \\ y \lor z \lor \overline{u} \end{bmatrix}$$

$$\overline{x} \lor u \lor v
\overline{x} \lor \overline{y} \lor u$$

$$\Sigma = \overline{x} \lor \overline{z} \lor u
x \lor \overline{u}
y \lor z \lor \overline{u}$$

$$u \leftrightarrow (x \land (y \lor z))$$

$$\Sigma =
\begin{array}{c}
\overline{x} \lor u \lor v \\
\overline{x} \lor \overline{y} \lor u
\end{array}$$

$$\Sigma =
\begin{array}{c}
\overline{x} \lor \overline{y} \lor u \\
\overline{x} \lor \overline{z} \lor u \\
x \lor \overline{u} \\
y \lor z \lor \overline{u}
\end{array}$$

$$\Sigma \equiv (\overline{x} \lor u \lor v) \land (u \leftrightarrow (x \land (y \lor z)))$$
 detection

$$\overline{x} \lor u \lor v
\overline{x} \lor \overline{y} \lor u$$

$$\Sigma = \overline{x} \lor \overline{z} \lor u
x \lor \overline{u}
y \lor z \lor \overline{u}$$

$$u \leftrightarrow (x \land (y \lor z))$$

$$\begin{split} \Sigma &\equiv \\ & (\overline{x} \lor u \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{detection} \\ & (\overline{x} \lor (x \land (y \lor z)) \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{replacement} \end{split}$$

$$\overline{x} \lor u \lor v
\overline{x} \lor \overline{y} \lor u$$

$$\Sigma = \overline{x} \lor \overline{z} \lor u
x \lor \overline{u}
y \lor z \lor \overline{u}$$

$$u \leftrightarrow (x \land (y \lor z))$$

$$\begin{split} \Sigma &\equiv \\ &(\overline{x} \lor u \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{detection} \\ &(\overline{x} \lor (x \land (y \lor z)) \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{replacement} \\ &(\overline{x} \lor y \lor z \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{normalization} \end{split}$$

$$\overline{x} \lor u \lor v
\overline{x} \lor \overline{y} \lor u$$

$$\Sigma = \overline{x} \lor \overline{z} \lor u
x \lor \overline{u}
y \lor z \lor \overline{u}$$

$$u \leftrightarrow (x \land (y \lor z))$$

$$\begin{array}{l} \Sigma \equiv \\ (\overline{x} \lor u \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{detection} \\ (\overline{x} \lor (x \land (y \lor z)) \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{replacement} \\ (\overline{x} \lor y \lor z \lor v) \land (u \leftrightarrow (x \land (y \lor z))) & \text{normalization} \end{array}$$

$$\|\Sigma\| = \|\Sigma[u \leftarrow (x \land (y \lor z))]\| = \|\overline{x} \lor y \lor z \lor v\| = 15$$

- ► Gate detection and replacement proves to be a valuable preprocessing
- Specific gates are typically sought for (literal equivalence, AND/OR gates, XOR gates) for complexity reasons
- ▶ The replacement $\Sigma[\ell \leftarrow \beta]$ requires to turn the resulting formula into CNF
- It is implemented only if it it does not lead to increase the size of the input (a "small" increase can also be accepted)
- ▶ BCP (instead of a "full" SAT solver) is often used for efficiency reasons (P-preprocessing)

On Definability for Model Counting

<u> Literal Equivalence (LE)</u>

- Literal equivalence aims to detect equivalences between literals using BCP
- P-preprocessing
- \blacktriangleright For each literal ℓ , all the literals ℓ' which can be found equivalent to ℓ using BCP are replaced by ℓ in Σ
- ► Taking advantage of BCP makes it more efficient than a "syntactic detection" (if two binary clauses stating an equivalence between two literals ℓ and ℓ' occur in Σ , then those literals are found equivalent using BCP, but the converse does not hold)

Literal Equivalence (LE)

```
Algorithm 1: LE
```

```
input: a CNF formula \Sigma
    output: a CNF formula \Phi such that \|\Phi\| = \|\Sigma\|
1 \Phi \leftarrow \Sigma; Unmark all variables of \Phi;
2 while \exists \ell \in Lit(\Phi) s.t. var(\ell) is not marked do
           // detection
3
          mark var(\ell);
          \mathcal{P}_{\ell} \leftarrow BCP(\Phi \cup {\{\ell\}});
          \mathcal{N}_{\ell} \leftarrow \text{BCP}(\Phi \cup \{\sim \ell\});
          \Gamma \leftarrow \{\ell \leftrightarrow \ell' | \ell' \neq \ell \text{ and } \ell' \in \mathcal{P}_{\ell} \text{ and } \sim \ell' \in \mathcal{N}_{\ell}\};
          // replacement
          foreach \ell \leftrightarrow \ell' \in \Gamma do
                 replace \ell by \ell' in \Phi;
```

return Φ

5

6

Literal Equivalence (LE): Example

$$\begin{split} \Sigma = & \\ & a \lor b \lor c \lor \neg d \quad \neg a \lor \neg b \lor \neg c \lor d \\ & a \lor b \lor \neg c \quad \neg a \lor \neg b \lor c \\ & \neg a \lor b \quad a \lor \neg b \\ & \neg e \lor \neg f \lor h \quad e \lor f \lor g \\ & e \lor \neg g \quad \neg e \lor \neg h \end{split}$$

Assume that the variables of Σ are considered in the following ordering: a < b < c < d < e < f < g < h

The equivalences $(a \Leftrightarrow b) \land (b \Leftrightarrow c) \land (c \Leftrightarrow d) \land (e \Leftrightarrow \neg f)$ are detected

$$LE(\Sigma) = \\ \neg f \lor \neg g \quad f \lor \neg h$$

Properties of LE

- Preserves the number of models (but not logical equivalence)
- $\blacktriangleright \# var(\Sigma) \geq \# var(LE(\Sigma))$
- $\blacktriangleright \#lit(\Sigma) \geq \#lit(LE(\Sigma))$

LE: Reduction of the Number of Variables

equivSimpl(Σ)

FIGURE – Comparing $\#var(\Sigma)$ with $\#var(LE(\Sigma))$.

LE: Reduction of the Size

FIGURE – Comparing $\#lit(\Sigma)$ with $\#lit(LE(\Sigma))$.

Backbone Identification (BI)

- \triangleright The backbone of a CNF formula Σ is the set of all literals which are implied by Σ when Σ is satisfiable, and is the empty set otherwise
- ▶ The purpose of the *BI* preprocessing is to make the backbone B of the input CNF formula Σ explicit, to conjoin it to Σ , and to use BCP (Boolean Constraint Propagation) on the resulting set of clauses
- NP-preprocessing

Backbone Identification (BI)

Algorithm 2: BI Backbone Identification

```
input: a CNF formula \Sigma output: the CNF BCP(\Sigma \cup B), where \mathcal{B} is the backbone of \Sigma 1 \mathcal{B} \leftarrow \emptyset; 2 \mathcal{I} \leftarrow \operatorname{solve}(\Sigma); 3 while \exists \ell \in \mathcal{I} \text{ s.t. } \ell \notin \mathcal{B} \text{ do} 4 \mathcal{I}' \leftarrow \operatorname{solve}(\Sigma \cup \{ \sim \ell \}); 5 \mathsf{if} \ \mathcal{I}' = \emptyset \text{ then } \mathcal{B} \leftarrow \mathcal{B} \cup \{ \ell \} \text{else } \mathcal{I} \leftarrow \mathcal{I} \cap \mathcal{I}'; 6 return BCP(\Sigma \cup \mathcal{B})
```

Backbone Identification (BI): Example


```
\Sigma =
       a \lor b
       \neg a \lor b
       \neg b \lor c
       c \lor d
       \neg c \lor e \lor f
       f \vee \neg g
```

The backbone of Σ is equal to $B = \{b, c\}$

$$BI(\Sigma) = b$$

$$c$$

$$e \lor f$$

$$f \lor \neg g$$

Properties of BI

- Preserves logical equivalence
- $\#var(\Sigma) \ge \#var(BI(\Sigma))$
- ▶ $\#lit(\Sigma) \ge \#lit(BI(\Sigma))$

BI: Reduction of the Number of Variables

FIGURE – Comparing $\#var(\Sigma)$ with $\#var(BI(\Sigma))$.

BI: Reduction of the Size

FIGURE – Comparing $\#lit(\Sigma)$ with $\#lit(BI(\Sigma))$.

Limitations of the Basic Gate Detection and Replacement Preprocessings

- The replacement phase requires gates to be detected
 - ► The search space for gates is **huge**
 - ► The size of a gate can be huge as well

Limitations of the Basic Gate Detection and Replacement Preprocessings

- ► The replacement phase requires gates to be detected
 - ► The search space for gates is **huge**
 - ► The size of a gate can be **huge** as well
- Identifying "complex gates" is incompatible with the efficiency expected for a preprocessing: only "simple" gates are targeted

```
\begin{array}{ll} \text{literal equivalences} & y \leftrightarrow x_1 \\ \text{AND/OR gates} & y \leftrightarrow \left(x_1 \wedge \overline{x_2} \wedge x_3\right) \\ \text{XOR gates} & y \leftrightarrow \left(x_1 \oplus \overline{x_2}\right) \end{array}
```


- ► The (explicit) identification phase can be replaced by an implicit identification phase
- Stated otherwise, there is **no need to identify** f to determine that a gate of the form $y \leftrightarrow f(x_1, \ldots, x_n)$ exists in Σ

- ► The (explicit) identification phase can be replaced by an implicit identification phase
- Stated otherwise, there is **no need to identify** f to determine that a gate of the form $y \leftrightarrow f(x_1, \dots, x_n)$ exists in Σ
- ► Let us ask Evert and Alessandro for some help ...

▶ Σ **explicitly defines** y in terms of $X = \{x_1, \dots, x_n\}$ iff there exists a formula $f(x_1, \dots, x_n)$ over X such that

$$\Sigma \models y \leftrightarrow f(x_1,\ldots,x_n)$$

▶ Σ **explicitly defines** y in terms of $X = \{x_1, \dots, x_n\}$ iff there exists a formula $f(x_1, \dots, x_n)$ over X such that

$$\Sigma \models y \leftrightarrow f(x_1, \ldots, x_n)$$

▶ Σ implicitly defines y in terms of $X = \{x_1, \dots, x_n\}$ iff for every canonical term γ_X over X, we have $\Sigma \land \gamma_X \models y$ or $\Sigma \land \gamma_X \models \overline{y}$

▶ Σ **explicitly defines** y in terms of $X = \{x_1, \dots, x_n\}$ iff there exists a formula $f(x_1, \dots, x_n)$ over X such that

$$\Sigma \models y \leftrightarrow f(x_1, \ldots, x_n)$$

- ▶ Σ implicitly defines y in terms of $X = \{x_1, \dots, x_n\}$ iff for every canonical term γ_X over X, we have $\Sigma \land \gamma_X \models y$ or $\Sigma \land \gamma_X \models \overline{y}$
- ▶ Beth's theorem: Σ explicitly defines y in terms of X iff Σ implicitly defines y in terms of X

Alessandro Padoa (1868-1937)

Padoa's theorem:

Let Σ_X' be equal to Σ where each variable but those of X have been renamed in a uniform way If $y \not\in X$, then Σ (implicitly) defines y in terms of X iff $\Sigma \wedge \Sigma_X' \wedge y \wedge \overline{y'}$ is inconsistent

Alessandro Padoa (1868-1937)

Padoa's theorem:

Let Σ_X' be equal to Σ where each variable but those of X have been renamed in a uniform way If $y \not\in X$, then Σ (implicitly) defines y in terms of X iff $\Sigma \wedge \Sigma_X' \wedge y \wedge \overline{y'}$ is inconsistent

Deciding whether Σ (implicitly) defines y in terms of X is "only" coNP-complete

ightharpoonup There is **no need to identify** f to determine that a gate of the form $y \leftrightarrow f(x_1, \dots, x_n)$ exists in Σ

- ► There is **no need to identify** f to determine that a gate of the form $y \leftrightarrow f(x_1, \dots, x_n)$ exists in Σ
 - ► Gate identification = Explicit definability

- ► There is **no need to identify** f to determine that a gate of the form $y \leftrightarrow f(x_1, \dots, x_n)$ exists in Σ
 - ► Gate identification = Explicit definability
 - Explicit definability = Implicit definability (Beth's theorem)

- ▶ There is **no need to identify** *f* to determine that a gate of the form $y \leftrightarrow f(x_1, \dots, x_n)$ exists in Σ
 - ► Gate identification = Explicit definability
 - Explicit definability = Implicit definability (Beth's theorem)
 - ightharpoonup One call to a SAT solver is enough to decide whether Σ defines y in terms of $\{x_1, \ldots, x_n\}$ (thanks to Padoa's theorem)

- ► There is **no need to identify** f to determine that a gate of the form $y \leftrightarrow f(x_1, \dots, x_n)$ exists in Σ
 - ► Gate identification = Explicit definability
 - Explicit definability = Implicit definability (Beth's theorem)
 - One call to a SAT solver is enough to decide whether Σ defines y in terms of $\{x_1, \ldots, x_n\}$ (thanks to Padoa's theorem)
- ► There is **no need to identify** f to compute $\Sigma[y \leftarrow f(x_1, \dots, x_n)]$

- ► There is **no need to identify** f to determine that a gate of the form $y \leftrightarrow f(x_1, \dots, x_n)$ exists in Σ
 - Gate identification = Explicit definability
 - Explicit definability = Implicit definability (Beth's theorem)
 - One call to a SAT solver is enough to decide whether Σ defines y in terms of $\{x_1, \ldots, x_n\}$ (thanks to Padoa's theorem)
- ► There is **no need to identify** f to compute $\Sigma[y \leftarrow f(x_1, \dots, x_n)]$
 - The replacement phase can be replaced by an **output variable elimination phase**: if $y \leftrightarrow f(x_1, ..., x_n)$ is a gate of Σ , then

$$\Sigma[y \leftarrow f(x_1, \dots, x_n)] \equiv \exists y. \Sigma$$

The B + E Preprocessing

A two-step preprocessing

▶ "Identification = \underline{B} ipartition": compute a **definability bipartition** $\langle I, O \rangle$ of Σ such that $I \cup O = Var(\Sigma)$, $I \cap O = \emptyset$, and Σ defines every variable $o \in O$ in terms of I

The B + E Preprocessing

A two-step preprocessing

- ▶ "Identification = \underline{B} ipartition": compute a **definability bipartition** $\langle I, O \rangle$ of Σ such that $I \cup O = Var(\Sigma)$, $I \cap O = \emptyset$, and Σ defines every variable $o \in O$ in terms of I
- ► "Replacement = \underline{E} limination": compute $\exists E.\Sigma$ for $E \subseteq O$

The B + E Preprocessing

A two-step preprocessing

- ▶ "Identification = \underline{B} ipartition": compute a **definability bipartition** $\langle I, O \rangle$ of Σ such that $I \cup O = Var(\Sigma)$, $I \cap O = \emptyset$, and Σ defines every variable $o \in O$ in terms of I
- ► "Replacement = \underline{E} limination": compute $\exists E.\Sigma$ for $E \subseteq O$
- ➤ Steps B and E of B + E can be tuned in order to keep the preprocessing phase light from a computational standpoint (NP-preprocessing)

Identifying u as an Output Variable and Eliminating it

Identification:

$$\Sigma \wedge \Sigma'_{\{x,y,z\}} \wedge u \wedge \overline{u'}$$
 is inconsistent

$$\begin{array}{c|c} \overline{x} \lor u \lor v \\ \overline{x} \lor \overline{y} \lor u \\ \overline{x} \lor \overline{z} \lor u \\ x \lor \overline{u} \\ y \lor z \lor \overline{u} \\ \overline{x} \lor u' \lor v' \\ \overline{x} \lor \overline{y} \lor u' \\ \overline{x} \lor \overline{z} \lor u' \\ x \lor \overline{u'} \\ y \lor z \lor \overline{u'} \\ \end{array}$$

Identifying u as an Output Variable and Eliminating it

$$\Sigma \wedge \Sigma'_{\{x,y,z\}} \wedge u \wedge \overline{u'}$$
 is inconsistent

Elimination:

computing resolvents over \boldsymbol{u}

$\overline{x} \lor v \lor x$	valid
$\overline{x} \lor v \lor y \lor z$	
$\overline{x} \vee \overline{y} \vee x$	valid
$\overline{x} \vee \overline{y} \vee y \vee z$	valid
$\overline{X} \vee \overline{Z} \vee X$	valid
$\overline{X} \vee \overline{Z} \vee y \vee z$	valid

Identifying u as an Output Variable and Eliminating it

35

Identification:

$$\Sigma \wedge \Sigma'_{\{x,y,z\}} \wedge u \wedge \overline{u'}$$
 is inconsistent

Elimination:

computing resolvents over u

$$\overline{x} \lor v \lor x \qquad \text{valid}
\overline{x} \lor v \lor y \lor z
\overline{x} \lor \overline{y} \lor x \qquad \text{valid}
\overline{x} \lor \overline{y} \lor y \lor z \qquad \text{valid}
\overline{x} \lor \overline{z} \lor x \qquad \text{valid}
\overline{x} \lor \overline{z} \lor y \lor z \qquad \text{valid}$$

$$\|\Sigma\| = \|\overline{x} \vee v \vee y \vee z\| = 15$$

Tuning the Computational Effort

Both steps B and E of B + E can be tuned in order to keep the preprocessing phase **light from a computational standpoint**

- It is not necessary to determine a definability bipartition $\langle I,O\rangle$ with |I| minimal
 - \Rightarrow B is a **greedy algorithm** (one definability test per variable)
 - \Rightarrow Only the minimality of I for \subseteq is guaranteed

Tuning the Computational Effort

Both steps B and E of B + E can be tuned in order to keep the preprocessing phase light from a computational standpoint

- \blacktriangleright It is not necessary to determine a definability bipartition $\langle I, O \rangle$ with |/| minimal
 - ⇒ B is a **greedy algorithm** (one definability test per variable)
 - \Rightarrow Only the minimality of I for \subseteq is guaranteed
- \triangleright It is not necessary to eliminate in Σ every variable of O but focusing on a subset $E \subseteq O$ is enough
 - ⇒ Eliminating every output variable could lead to an exponential blow up
 - \Rightarrow The elimination of $y \in O$ is committed only if $|\Sigma|$ after the elimination step and some additional preprocessing techniques (occurrence simplification and vivification) remains small enough

Experiments

Objectives:

- ► Evaluating the computational benefits offered by B + E when used upstream to state-of-the-art model counters:
 - the search-based model counter Cachet
 - the search-based model counter SharpSAT
 - the compilation-based model counter C2D (used with -count -in_memory -smooth_all)
 - ▶ the compilation-based model counter D4

Experiments

Objectives:

- ightharpoonup Evaluating the computational benefits offered by B + E when used upstream to state-of-the-art model counters:
 - ▶ the search-based model counter Cachet
 - the search-based model counter SharpSAT
 - the compilation-based model counter C2D (used with -count -in_memory -smooth_all)
 - ▶ the compilation-based model counter D4
- Comparing the benefits offered by B + E with those offered by our previous preprocessor pmc (based on gate identification and replacement) or with no preprocessing

Empirical Setting

- 703 CNF instances from the SAT LIBrary
- 8 data sets: BN (Bayesian networks) (192), BMC (Bounded Model Checking) (18), Circuit (41), Configuration (35), Handmade (58), Planning (248), Random (104), Qif (7) (Quantitative Information Flow analysis - security)
- ► Cluster of Intel Xeon E5-2643 (3.30 GHz) processors with 32 GiB RAM on Linux CentOS
- ▶ Time-out =1h
- ► Memory-out = 7.6 GiB

Empirical Results: Reduction Achieved

Figure – Reduction achieved by $\mathtt{B} + \mathtt{E}$

Empirical Results: Time Saving

(b) SharpSAT vs. B + E + SharpSAT

FIGURE – Time saved by using B + E upstream

Empirical Results: Time Saving

FIGURE – Time saved by using B+E upstream

 ${\sf Figure}$ — Cachet depending on the preprocessing used

 $\label{eq:figure} \textbf{Figure} - \textbf{SharpSAT} \ depending \ on \ the \ preprocessing \ used$

FIGURE - C2D depending on the preprocessing used

FIGURE - D4 depending on the preprocessing used

Conclusion and Perspectives

Conclusion

- ▶ Design and implementation of the B + E preprocessor
- ▶ Empirical evaluation of B + E: for several model counters mc, mc(B + E(.)) proves computationally more efficient than mc(.)
- "Real" instances are structured ones

Conclusion and Perspectives

Conclusion

- lacktriangle Design and implementation of the B + E preprocessor
- ▶ Empirical evaluation of B + E: for several model counters mc, mc(B + E(.)) proves computationally more efficient than mc(.)
- "Real" instances are structured ones

Perspectives

- Developing other ordering heuristics for B
- Investigating the connections to **projected model counting**: computing $\|\exists E.\Sigma\|$ given a set E of variables and a formula Σ

