
Université Paris Diderot (Paris 7) Sorbonne Paris Cité
UFR de Mathématiques

Thèse

pour obtenir le titre de

Docteur de l’Université Paris Diderot (Paris 7)
Sorbonne Paris Cité

Spécialité Informatique

présentée par

Florent CAPELLI

Structural restrictions of CNF-formulas: applications
to model counting and knowledge compilation.

Directeur de thèse : Arnaud DURAND

Soutenue publiquement le 27 Juin 2016 devant le jury composé de :

M. Arnaud Durand Directeur
M. Dieter Kratsch Examinateur (excusé)
M. Pierre Marquis Rapporteur
M. Luc Segoufin Examinateur
M. Olivier Serre Examinateur
M. Stefan Szeider Rapporteur (excusé)
M. Bruno Zanuttini Examinateur

ii

Abstract

It is well-known that clause restrictions of CNF-formulas such as 2-SAT or Horn-SAT
are easy instances of the problem SAT. It is however not the case for harder prob-
lems such as #SAT, the problem of counting the satisfying assignments of a CNF-
formula: #2-SAT is already as hard as the general case. Fortunately, structural
restrictions of the input formula, that are restrictions on the way the variables
interact with the clauses, have been a successful approach to find large classes of
formulas for which #SAT is doable in polynomial time.

In this thesis, we investigate the question of understanding the tractability
frontier of the problem #SAT. We prove new tractability results, in particular,
the tractability of #SAT on β-acyclic instances, a structural restriction for which
only SAT was known to be tractable. Moreover we show that for every tractable
class known so far, we can transform the counting algorithm into a compilation
algorithm that construct a succinct representation of the input CNF-formula that
support many queries in polynomial time such as counting or enumeration.

Finally, we study the theoretical limits of structural restrictions by proving
new lower bounds on the size of the such representations of CNFs.

Résumé (en français)

Le problème SAT est connu pour être facile sur des instances particulières où
la forme des clauses autorisées est restreinte, comme c’est le cas pour 2-SAT ou
Horn-SAT. En revanche, le problème de comptage associé, #SAT, est déjà aussi
difficile que le cas général pour ces sous-problèmes. On peut toutefois trouver de
nombreux cas où ce problème peut être résolu en temps polynomial en restreignant
structurellement la formule d’entrée, c’est-à-dire en restreignant la façon dont les
variables interagissent avec les clauses.

Dans cette thèse, nous nous intéressons à la question de comprendre quelles
sont les restrictions structurelles pertinentes pour ce problème et essayons de
déterminer la frontière entre les cas faciles et les cas aussi difficiles que le cas
général. Nous introduisons des algorithmes en temps polynomial pour de nou-
velles restrictions structurelles. En particulier, nous prouvons que #SAT sur des
formules β-acycliques, une restriction structurelle pour laquelle seule la décision
était connue comme étant facile, peut être résolu en temps polynomial. De plus,
nous montrons que tous les algorithmes de comptage connus à ce jour pour ces
restrictions structurelles peuvent être vus comme des algorithmes de compilation
qui transforment une formule CNF en un petit circuit booléen ayant de fortes
propriétés qui permettent une résolution rapide de différents problèmes comme le
comptage ou l’énumération.

Enfin, nous nous intéressons aux limites de l’approche par restrictions struc-
turelles en prouvant des bornes inférieures non-polynomiales sur la taille de tels
circuits représentant des formules CNF.

Remerciements

Je ne serais jamais arrivé à aucun des deux bouts de ce travail de thèse sans la
présence, l’aide et les conseils de nombreuses personnes que je souhaite remercier
ici.

Recherche. Je tenais tout d’abord à remercier Pierre Marquis et Stefan Szeider
pour avoir accepté de rapporter ma thèse. Merci aussi à Dieter Kratsch, Luc
Segoufin, Olivier Serre et Bruno Zanuttini qui me font l’honneur d’être membres
du jury de soutenance.

J’ai aimé travailler avec de nombreuses personnes lors de ces trois années et
c’est grâce à eux que j’ai pris autant de plaisir à faire de la recherche et à enseigner :
merci à Yann Strozecki, plus particulièrement pour son aide dans la relecture du
manuscrit, Simone Bova et Friedrich Slivovsky, pour nos nombreuses discussions
sur la compilation, Amélie Gheerbrant et Cristina Sirangelo, avec qui nous avons
beaucoup joué aux jeux d’Ehrenfreucht-Fräıssé, Jean-Marie Lagniez, SATeux ma-
gicien, qui m’a souvent rappelé que “de toutes façons, en pratique, ça marchera
pas”. Merci aussi à Stéphane Boucheron avec qui l’enseignement n’a jamais été
aussi simple et agréable.

Bien avant cela, j’étais un étudiant un peu désorienté devant l’étendue de ce
qu’est aujourd’hui l’informatique théorique. Je voudrais remercier Hervé Fournier,
Guillaume Malod et Sylvain Périfel qui m’ont donné le goût de la recherche lors
d’un stage au LIAFA. Merci aussi à tous mes professeurs de l’ENS Lyon qui m’ont
fait découvrir de nombreux domaines différents, en particulier Patrick Baillot et
Pascal Koiran, grâce à qui j’ai découvert la théorie de la complexité.

Ma vie de chercheur débutant se serait vite compliquée sans l’aide inestimable
des gestionnaires de l’équipe Logique. Merci, dans l’ordre chronologique, à Élodie
Destrebecq, Aurélie Oumezzaouche, que nous sommes toujours très heureux de
voir revenir nous saluer, Claire Lavollay et Mylène Merciris. Merci aussi à Élise
Delos qui a toujours été là pour répondre à mes questions hebdomadaires depuis
que j’ai rendu ce manuscrit.

Je tiens à remercier plus particulièrement Stefan Mengel qui est la personne
avec qui j’ai le plus travaillé durant ma thèse et qui fut un modèle pour moi.
Grâce à lui, j’ai beaucoup appris sur les aspects concrets de la recherche comme,
par exemple, quelles sont les bonnes habitudes à avoir lors de l’écriture d’un pa-
pier ou d’un résumé ou encore comment construire et décrire un programme de

iii

iv

recherche. Il a su souvent me guider lorsque je ne voyais plus comment avancer et
nos discussions ont toujours été très enrichissantes. Je le remercie aussi pour son
aide dans la relecture des chapitres de ce manuscrit, notamment pour ses correc-
tions utiles de mes erreurs d’anglais récurrentes. J’espère qu’il ne m’en voudra pas
d’avoir été un si mauvais élève dans ce cas précis.

Mais surtout je remercie de tout cœur Arnaud Durand pour son travail for-
midable en tant que directeur de thèse. Je ne suis pas le premier, ni, j’en suis
sûr, ne serai le dernier à l’écrire, mais je voudrais rappeler ici à quel point il a su
être toujours présent pendant ces trois années pour m’écouter, me guider et me
conseiller, tout en me laissant beaucoup d’autonomie et d’indépendance dans mes
recherches. J’ai beaucoup appris à ses côtés au travers de nombreuses discussions
techniques devant le tableau (à feutres, au diable le romanesque !) ou bavardages
informels, tant sur le plan scientifique et humain que sur les aspects administra-
tifs et sociaux du travail de chercheur, moins romantiques certes, mais tout aussi
nécessaires. C’est en majeure partie grâce à ses conseils que je pars sans crainte
l’an prochain tenter ma chance dans ce vaste monde qu’est la recherche.

Famille. Merci à mes parents sans qui je ne serais jamais arrivé jusqu’ici. Ils
m’ont toujours soutenu dans tous les aspects de la vie tout en me laissant libre de
mes choix. Merci à eux pour la joie de vivre qu’ils m’ont transmise, leur patience
et leur amour. C’est chez eux que j’ai écrit les premières lignes de cette thèse en
automne dans le confort matériel nécessaire à la réussite de ce genre de travail.
C’est grâce à eux que j’ai le goût de l’enseignement et que je suis assez curieux pour
aimer faire de la recherche et suffisamment têtu pour vouloir continuer (c’est aussi
un peu parce que j’ai peur de mal calculer la tension d’un câble de télésiège...). Et,
plus concrètement, c’est grâce à eux que le pot qui suivra ma soutenance sera aussi
réussi et que le présent chapitre sera sans fôtes d’ortograf. Merci à ma sœur Estelle,
pour ses petits textos bêtes et méchants, ses coups de téléphone nécessaires que je
rate une fois sur deux et pour ses petits apéros avec Maxime quand je rentre au
bercail. Un merci particulier à Aurélia, qui n’a pas fui lorsque je me suis tranformé
en grincheux-irritable-et-étourdi-thésard-qui-écrit, mais m’a compris et soutenu.
Je ne regrette pas les heures passées dans le TGV pour la rejoindre.

“Doctorat d’état de name dropping”[Buk11]. Un grand merci à mes colocs.
Eux non plus n’ont pas fui pendant la rédaction et ont patiemment supporté mes
coups de folie passagers. Merci à Xouille pour son amitié et son humour. Merci
à Angèle qui rayonne de joie et de force. Ceux qui ne la connaissent pas croiront
peut-être à un compliment banal mais il faut avoir passé une heure à ses côtés
pour se rendre compte qu’on peut difficilement ne pas la remercier pour cela. Merci
à Brice, le petit dernier, rider épicurien, pour son amour universel et son savoir
encyclopédique de la punchline.

Merci à tous ces thésards qui font de Sophie Germain un endroit vivant et
convivial. Merci à Takfarinas d’être passé du cobureau à l’ami, à vélo entre Nantes

v

et Bordeaux. Merci au M (Martin) et au A (Antoine), voisins de bureau rêvés et
soutiens essentiels de rédaction. Le premier : compagnon infaillible du septième
étage, pompeur de café et gourmet gourmand. Le second : extracornidaire artiste
(auteur du fameux “Une icorne”), toujours à la recherche d’un site internet pour
se persuader qu’il fera beau à Fontainebleau. Merci à ceux que je connais de-
puis encore plus longtemps et qui sont devenus des amis indispensables : Bruno,
inlassable compagnon de chanson depuis sept ans déjà, Guillaume, faux-jumeau
scientifique et littéraire, Ioana, pour sa gentillesse inégalée, Étienne, compagnon
éternel de snack (sauce algérienne bien sûr !). Merci Alexandre, R.E.D.A, Vi-
nicius, Juan-Pablo, Jean-Michel, V.E.R.O (il est tout croche ce paragraphe !),
membres éminents du CROUS Crew. Merci aux doctorants du sixième qui tra-
vaillent d’arrache-pied pour créer une vraie complicité entre nous tous à l’IMJ :
merci Assia, Baptiste, Charles, Charlotte, David, Élie, Kévin, Marco, Victoria.
Merci à Laure, Charles et Luc, partis il y a déjà bien longtemps du LIAFA, mais
qui furent là pour me faire rire un peu lors de ma toute première conférence à Kiel.
Merci à Kuba, Lourdes, Shahin. Merci aux amis du LSV : Konstantinos, Marie
et Nadime. Et à ceux rencontrés aux EJCIM : à Alexandra pour ses cornelamars,
à Vincent, Louis, Félix, Thomas. Merci aux amis de la Cyclofficine d’Ivry, où je
suis allé plus d’une fois me changer les idées : Jessica, Una, David, Martin, Nicolas
et Paul. Enfin, merci à vous qui êtes venus à la soutenance de ma thèse. Vous
avez sans doute décroché en cours de route et êtes donc en ce moment-même en
train de finir de lire les remerciements : rassurez-vous, on le fait tous. Si vous
vous ennuyez trop, vous pouvez toujours vous amuser à retrouver tous les gens
mentionnés ci-dessus dans la grille suivante :

B V F R I E D R I C H R E I V I L O S P

O L B A P O L M K G I E T E V D G L T Z

N E R D N A X E L A X I T H L J P V E E

I W P A W A R E G E K I E S O O Y L F I

T G A D V S O D R N H C L M I M D O A R

R U S E I P A I N I A C I E I T A I N A

A I C N C D A L Z A A M I R F X P S E M

M L A N T I P U O J X L A M T F A A D N

F L L E O V L A L C L E C R N A A M B A

S A N I R A F K A T I L L O I A P N C E

V U J T I D A N T O I N E A V E E R U J

I M R E A G C H A R L E S L Q A I J A C

N E Y F L A I L E R U A J Q C S Y R H O

C B K O N S T A N T I N O S T L U A R A

E V I N I C I U S B U X F I O A R X E C

N H Z R E T E I D E R H N U L L L H X I

T Y E E N A H P E T S A R A O A B U K S

W U I E L L I U O X W D N T Q F O S C S

L O L P A U R E L I E N T J L O U I S E

P B E E R B V F X S A E E N E L Y M R J

vi

Contents

1 Preliminaries 1

1.1 Complexity . 1

1.1.1 Classical complexity . 1

1.1.2 The problem SAT . 5

1.1.3 Counting complexity . 8

1.1.4 Parametrized complexity 9

1.2 Graphs, hypergraphs and decompositions 12

1.2.1 Generalities on graphs and hypergraphs 12

1.2.2 Graph measures and decompositions 15

1.2.3 Hypergraphs: acyclicity and decompositions 19

1.3 Knowledge compilation . 25

1.3.1 Generalities . 25

1.3.2 Binary decision diagrams 27

1.3.3 DNNF and its restrictions 29

2 Structural restrictions of #SAT 39

2.1 Structure of a CNF-formula . 40

2.1.1 Primal and dual graphs . 40

2.1.2 Incidence graph and hypergraph 41

2.1.3 Structural restriction of CNF-formulas 42

2.2 A first tractable class: disjoint branches 44

2.2.1 Disjoint branches hypergraphs 45

2.2.2 Model counting of disjoint branches formula 46

2.2.3 Finding a disjoint branches decomposition 49

2.3 Tractability frontier . 57

2.3.1 Parametrized polynomial time algorithms 58

2.3.2 Hardness results . 67

2.3.3 Unknown complexity hardness 68

3 Parametrized compilation of CNF-formulas 73

3.1 Compilation of bounded PS-width formulas 74

3.1.1 Shapes . 74

3.1.2 Constructing a Structured d-DNNF 76

vii

viii CONTENTS

3.2 Consequences of the compilation algorithm 80
3.2.1 Compilation for other graph measures 80
3.2.2 Solving MaxSAT . 82

4 Compilation of β-acyclic formulas 85
4.1 Incomparability with other measures 86
4.2 Structure of β-acyclic hypergraphs 89

4.2.1 Orders . 89
4.2.2 Applications . 90

4.3 The compilation algorithm . 93
4.3.1 Compilation to dec-DNNF 93
4.3.2 Corollaries . 97

4.4 Conclusion . 98

5 Weighted DP-resolution 99
5.1 DP-Resolution . 100

5.1.1 A well-known algorithm for SAT 100
5.1.2 Resolution on 2-CNF . 103
5.1.3 Resolution on bounded primal tree width 103
5.1.4 Resolution on β-acyclic formulas 105

5.2 Weighted DP-resolution for β-acyclic instances 105
5.2.1 Encoding SAT using CSP with default values 106
5.2.2 Computing the weight of a chain 109
5.2.3 Computing the weight of β-acyclic instances 112
5.2.4 Runtime of Algorithm 8 . 117

5.3 Weighted DP-resolution on general instances 123
5.3.1 Description of the algorithm 123
5.3.2 Cover-width . 133

5.4 Conclusion . 137

6 Unconditional separations 139
6.1 Preliminaries . 141

6.1.1 Certificates . 141
6.1.2 Rectangles and covers . 144

6.2 Separating CNF-formulas from DNNF 149
6.2.1 A weakly exponential lower bound 150
6.2.2 Lifting known lower bound from communication complexity 151
6.2.3 A family of CNF having no small DNNF 152
6.2.4 Corollaries . 157

6.3 Separating structured DNNF from FBDD 158
6.3.1 Rectangle covers of structured DNNF 158
6.3.2 Rectangle covers of graph CNF 160
6.3.3 Separations . 161

6.4 Conclusion . 163

Introduction

In the Thirties, the notion of computation went from an intuitive definition –
everybody knows that adding two numbers is a computation – to the following
formal definition: a computation is what a computer does. Of course, computers
did not exist back then, but researchers such as Turing, Church or Kleene had
defined formal models of computation, that allowed one to describe a computa-
tion – an algorithm – that a human, with infinite patience, could perform with a
pen and paper. The construction in the Forties of electronic devices that could
automatically perform such computations reinforced the idea that this notion was
indeed natural and effective. As logic before it, computation became more than a
tool used by mathematicians, it became a whole field that can be studied in itself:
computer science.

It quickly became clear that not all computable functions are equally hard
to compute: some – such as adding two numbers – can be done in a few steps of
computation, others – such as finding a divisor greater than one of a given number
– apparently need much more time or memory to be computed. In other words,
even if a function is computable, it may not be computable in a reasonable amount
of time. This led to the introduction of the notion of complexity: the complexity
of a function is the minimal amount of resources, such as time or memory, needed
to compute it. It was proven early that some functions indeed need a very large
amount of resources to be computed. However, such functions were artificial or
trivially hard to compute. Even today, very little is known on most functions of
interest. Proving that there is no algorithm for a given function using a fixed
amount of resources turned out to be a hard mathematical problem. It is however
easier to compare the relative complexity of two functions. For example, if we
have an algorithm to find the smallest divisor greater than one of an integer, we
can easily decide if an integer is prime. Thus, finding divisors is at least as hard as
deciding if an integer is prime. This approach has led to a rich and useful theory
for classifying problems according to their relative hardness.

The most successful theory in this line of research is arguably the theory of
NP-completeness that was introduced by Cook in the early seventies. Intuitively,
a problem is in the class NP if its solutions can be checked efficiently. Say, for
example, that a traveler wants to visit every city in a country. He knows the
distance between the cities and he wants to know if he can do it by driving less
than 1000km. If someone shows him a possible tour, he can check by himself if the

ix

x CONTENTS

proposed itinerary is actually shorter than 1000km. However, finding such a tour
is much harder and one of the most famous open question of complexity theory –
known as P vs NP – is to understand if this problem can be solved quickly. The
problem – known as the traveling salesman problem – has a surprising property:
it is NP-complete, meaning that it is at least as hard as any problem in NP. That
is, if we know how to solve the traveling salesman problem efficiently, then we can
solve every problem of NP efficiently. We know thousands problems of this kind
and none of them seems to be solvable efficiently. The common assumption is thus
that these problems are hard and, given a problem that we do not know how to
solve efficiently, we generally cannot prove that it is hard in itself but we usually
can prove that it is at least as hard as the traveling salesman problem, which is
used as an evidence that it is indeed hard.

Unfortunately, many problems arising in practice are as hard as the traveling
salesman problem. In theory, it is believed that they are not solvable efficiently
by a computer in a reasonable amount of time. Surprisingly, efficient software for
solving such problems in practice are developed. Of course, such tools do not solve
NP-hard problems quickly on all instances, otherwise we would have P = NP. But
for many real-life scenarios, they perform well. This difference between theory
and practice can be partially explained by the fact that in theory, every input
is possible but in practice, the input is not completely arbitrary. For example,
a real input of the traveling salesman problem will be an existing country with
roads that were constructed by humans following an underlying plan for improving
transportation. Such structure may be implicitly used by software to solve hard
problems on real life instances. Understanding which kind of structure can or
cannot be exploited to solve a particular problem efficiently is the core problem
of this thesis.

In the rest of this introduction, we present the questions that are addressed
in this thesis together with our contributions. We conclude by giving a detailed
overview of each chapter.

CNF-formulas and the problem SAT. In this thesis, we are interested in prob-
lems that are NP-complete or harder. All these problems are problems concerning
formulas in conjunctive normal form, CNF-formulas for short. Let X be a set of
variables. A CNF-formula on X is a conjunction of clauses, where a clause is the
disjunction of literals, that is, variables or negation of variables of X. In other
words, a CNF-formula is a formula of the following form:

m∧
i=1

Ci where Ci =

ki∨
j=1

`i,j

where each `i,j is either a variable x or the negation of a variable ¬x. For instance,

F0 = (x ∨ y) ∧ (¬x ∨ ¬y)

CONTENTS xi

is a CNF-formula on variables {x, y}. A CNF-formula F on variables X naturally
defines a subset of {0, 1}X of satisfying assignments: an assignment τ ∈ {0, 1}X
satisfies F if when we replace each variable x ∈ X by its value τ(x) in F , the
resulting boolean formula evaluates to 1. For example, in the previous example,
the assignment {x 7→ 0, y 7→ 1} is a satisfying assignment of F0 whereas {x 7→
1, y 7→ 1} is not.

The problem SAT is the problem of deciding whether a given CNF-formula
F has a satisfying assignment. It is the first problem to have been shown to be
NP-complete by Cook [Coo71] and Levin [Lev73]. Even if it is unlikely that there
exists an efficient algorithm for SAT, this problem is omnipresent in computer
science. Despite its simple formulation, it has been used very early [Kar72] to
efficiently encode many other natural problems. For example, it has been shown
that given a graph G and an integer k, one can write a small CNF-formula FG
such that FG is satisfiable if and only if G has a k-clique. Over the last thirty
years, programs called SAT-solvers such as MiniSAT [ES03], Glucose [AS12, SA09],
Chaff or ZChaff [MMZ+01] are constantly improved and optimized to solve SAT in
practice. Such programs are often used as black boxes to solve other hard problems
that have an efficient encoding into SAT. Almost all of them use clever refinements
of a very simple algorithm due to Davis, Putnam, Logeman and Loveland [DLL62,
DP60] called DPLL. This algorithm iteratively chooses a variable and assigns it
a value in {0, 1} until it reaches either a satisfying assignment or a contradiction.
If a contradiction is found, the algorithm backtracks to a previous choice and
changes the chosen value at this point. Modern solvers use smart heuristics on the
way they choose variables and learn new clauses derived from the contradictions
they have encountered to speed up the computation. Over time, such methods
have been improved and the implementations have been made extremely efficient.
SAT-solvers today are able to solve industrial instances having several millions of
variables and hundred thousands clauses, an impressive performance considering
that the problem is NP-hard. The exact reasons why such solvers perform so
well in practice are still not well understood but it is generally believed that they
implicitly exploit hidden structure in the input [AGCL12]. For instances that
do come from the industry, for example, instances from cryptography, SAT-solver
indeed fails to find satisfying assignments in a reasonable time, which can be seen
as the fact that the underlying structure of such instances is different of the one
they were optimized for.

Counting satisfying assignments. One central problem studied in this thesis
is the counting version of SAT, the problem #SAT which is the problem of counting
the number of satisfying assignments of a given CNF-formula. #SAT is at least as
hard as SAT and theoretical evidences suggest that #SAT is actually much harder.
Toda’s theorem states that with one call to an oracle able to solve #SAT, the entire
polynomial hierarchy – a class of problems that contains NP but is believed to be
much bigger – can be decided in polynomial time.

xii CONTENTS

In practice too, programs for solving #SAT such as Cachet [SBB+04] or sharp-
SAT [Thu06] do not perform as well as SAT solvers. Almost all of them are based
on a generalization of DPLL for counting. The main difference here to SAT-solvers
is that the #SAT-solver cannot stop when it encounters a satisfiable assignment
since it has to count them all and the algorithm backtracks much more even if the
same heuristics and optimizations as for SAT-solvers are used. Consequently, the
size of the instances that can be solved in practice is much smaller than the size
of instances solved by SAT-solvers.

One can argue that, in practice, we sometimes do not need the exact number
of satisfying assignments and that an approximation would be enough for some
applications. Although this is a relevant observation, it has been shown that for
all ε > 0, computing a 2n

1−ε
-approximation of the number of satisfying assign-

ment of a CNF-formula with n variables is as hard as computing this number
exactly [Rot96].

Another natural idea is to restrict the type of clauses of the formula in order
to find easy cases for solving #SAT, a type of restriction that has been extensively
studied for SAT [Sch78]. For example, it is known that SAT is easy if every clause
has at most 2 variables [Sch78, APT79]. Similarly, if the formula is monotone,
that is it does not use negations, then it is satisfiable since assigning every variable
to 1 yields a satisfying assignment. But these restrictions do not give easy classes
for #SAT. Roth [Rot96] has shown that approximating the number of satisfying
assignments of monotone formulas where each clause is of size at most two is
as hard as #SAT. Creignou and Hermann [CH96] have shown that the only
restriction on the type of clauses that is easy for exact counting is a case that boils
down to counting the number of solutions of a system of Z/2Z. This suggests that
the complexity of #SAT should be studied from another point of view where the
input is restricted differently.

Understanding which kind of restrictions yield tractable classes for #SAT and
using them to solve other problems on CNF-formulas is the main topic of this
thesis. In the rest of this section, we explain in details the questions that are
addressed in this thesis and review our contributions.

Structural restrictions of CNF-formulas. In order to understand the com-
plexity of #SAT, a successful line of research, inspired by previous work in database
theory [Fag83, BFMY83, GLS01a, GLS99], focuses on so-called structural restric-
tions of CNF-formulas. Here, it is not the type of clauses that is restricted but
the way they interact with each other. In order to model such interactions, a
graph or a hypergraph is associated to the formula and the tractability of #SAT
is addressed with respect to a given class of graphs, that is, we study the tractabil-
ity of #SAT when it is assumed that the graph associated to the formula is in a
given class of graphs. For example, it can be proven that #SAT can be solved in
polynomial time if the graph associated to the formula is a tree.

Several notions from graph theory, called width, aim to quantify the complex-

CONTENTS xiii

ity of the structure of a graph. The most famous is the tree width of a graph that
intuitively measures how far it is from a tree. Tree width and other width are
usually defined with respect to a decomposition of the graph into subgraphs. The
complexity of the decomposition is then measured with an integer. These notions
have been used successfully to find tractable instances for #SAT. For example,
Samer and Szeider have shown that #SAT is tractable when the tree width of the
graph of the input formula is bounded by a constant k [SS10]. Many generaliza-
tions of this result have followed for graph widths that are more general than tree
width [PSS13, SS13]. With Arnaud Durand and Stefan Mengel, we contributed
to this knowledge by showing that #SAT is tractable on a class of hypergraphs,
called disjoint branches hypergraphs [CDM14]. This result is presented in Chap-
ter 2 together with the first polynomial time recognition algorithm for this class
of hypergraphs.

All these structure-based algorithms for #SAT follow a similar approach: the
graph of the formula is first decomposed according to the structural restriction
and a dynamic programming algorithm is performed along the decomposition,
where the number of satisfying assignments of sub-formulas is propagated along
the decomposition. The decomposition usually has tree-shape and the dynamic
programming usually solve sub-problems associated to each vertex in the tree.

In a recent contribution, Sæther, Telle and Vatshelle [STV14] have given a
dynamic programming algorithm for #SAT that works on a very general decom-
position. They proved that their algorithm may be used to rediscover known
tractable classes for #SAT. With Stefan Mengel and Johann Brault-Baron, we
prove [BCM15] that actually every known tractable class for #SAT could be ex-
plained in their framework. Indeed, for every graph decomposition for which #SAT
is known to be tractable, we explain how to construct a good decomposition for
the framework of [STV14]. We present these contributions in Chapter 2.

The singular case of β-acyclic hypergraphs. β-acyclicity is a generalization
of acyclicity on graphs to hypergraphs. The complexity of #SAT on β-acyclic
formulas – that is, formulas whose associated hypergraph is β-acyclic – was for long
a singularity among the structural restrictions of CNF-formula. SAT was known
to be tractable on such instances [OPS13] but every attempt for solving #SAT on
β-acyclic formulas by using the classical dynamic programming approach failed.
The main reason for this failure is that no characterization of β-acyclicity in terms
of tree-like decomposition is known. Besides, the proof of tractability of SAT on
such formulas is not helpful since it is based on Davis-Putnam resolution [DP60],
an algorithm that does not generalize to counting.

With Johann Brault-Baron and Stefan Mengel, we proved the tractability of
#SAT on β-acyclic formulas and provided evidences that the classical dynamic
programming approach was unlikely to work on such formulas [BCM15]. We
explain this deviation from standard techniques by showing that the algorithm
from [STV14], which gives a uniform explanation of this approach, in general

xiv CONTENTS

takes exponential time on β-acyclic formulas. This result is presented in the first
section of Chapter 4 where we construct an explicit family of β-acyclic formulas
that cannot be efficiently decomposed to be used with the algorithm from [STV14].

To solve #SAT on β-acyclic instances, we introduced a generalization of Davis-
Putnam resolution to counting called the weighted DP-resolution. It works on a
weighted version of CNF formulas where we have added weights on clauses. In the
beginning, the weights are chosen such that the total weight of the formula is equal
to its number of satisfying assignments. We then give a procedure that iteratively
removes variables from the formula and updates the weights on the clauses to
preserve the total weight of the resulting formula. We present a more general result
in which our algorithm works on a generalization of CNF-formulas on domains
different from {0, 1}. The algorithm is presented in Chapter 5 together with a
new parameter for hypergraphs called the cover-width that generalizes β-acyclicity
and such that #SAT is still tractable on such hypergraphs by using weighted DP-
resolution. We also show that this new width is a natural generalization of tree
width to hypergraphs and that both widths coincide when restricted to graphs.

Knowledge compilation. In the framework of knowledge compilation, we as-
sume that knowledge on a system is stored into a knowledge base. The goal is to
query the knowledge base in order to infer new knowledge or to perform reasoning
on it. For example, a common query that is often performed for reasoning is the
problem of clause entailment which is to decide if a knowledge base implies a given
clause. The complexity of answering such query strongly depends on the way the
knowledge base is encoded. If the knowledge base is encoded as a CNF-formula,
then it is NP-complete to answer clause entailment queries, thus, we cannot do it
in polynomial time.

The idea of knowledge compilation is to preprocess the knowledge base in an
offline phase, in order to encode it with a representation language that can be used
to answer queries efficiently during an online phase. Such approaches have been
used successfully in practice [ACF10, Par03]. In order to choose the right language
for a given application, a systematic study of the properties of different represen-
tation languages and the relations between them has been initiated by Darwiche
and Marquis [DM02]. This study focuses on three key aspects of representation
languages: their succinctness, the queries they support in polynomial time such as
deciding satisfiability or counting satisfying assignments and the operations that
can be done on them with only a polynomial increase in size such as negation or
conjunction.

In this thesis we focus on the particular representation language of DNNF and
some of its restrictions. DNNF is a representation language based on boolean
circuits with additional properties which ensure that deciding satisfiability is sup-
ported in polynomial time. DNNF is a particularly interesting language: it is more
succinct than almost every other representation language used in practice and still
supports interesting queries in polynomial time.

CONTENTS xv

Our first contribution in knowledge compilation is to show that structural
restrictions of CNF-formulas may be successfully used for compilation. More pre-
cisely, we show that every known structural restriction for which #SAT is tractable
can also be used to compile CNF-formulas into succinct deterministic DNNF, a re-
striction of DNNF that supports model counting. This result explains why the
structure-based algorithms for #SAT can be so easily adapted to solve various
problems such as weighted model counting or efficient enumeration by showing
that these algorithms may be decomposed into a compilation phase that takes
advantage of the structure followed by a query on the compiled representation
of the formula. This result is shown in Chapter 3 by proving that the general
framework of [STV14] may also be used for compilation. Since this framework
encompasses every known tractable class for #SAT, we can show that all these
classes can be efficiently compiled into deterministic DNNF. This result was elab-
orated with Simone Bova, Stefan Mengel and Friedrich Slivovsky and published
in [BCMS15]. We also show how to use this result to show the tractability of sev-
eral other interesting problems on CNF-formulas for these classes such as MaxSAT.
Since the case of β-acyclic formulas is not covered by the framework of [STV14],
we present in Chapter 4 an algorithm to compile β-acyclic formulas into an even
more restrictive version of DNNF called decision DNNF. We rely on new results
concerning the structure of β-acyclic hypergraphs that we prove in the second
section of Chapter 4.

Our second contribution in knowledge compilation is proving lower bounds on
the succinctness of representation languages. In [DM02], the succinctness of CNF
and DNNF was shown to be incomparable only under assumptions from complexity
theory. We show that this result holds unconditionally. We prove this by making
a new connection between knowledge compilation and communication complexity.
We show that the communication complexity (in a very general model) of a DNNF
is no more than its size. By using known lower bounds on the communication com-
plexity of some functions, we are able to prove the first strong exponential lower
bound on the size of every DNNF computing a family of CNF. We also give a
family of monotone 2-CNF and prove an exponential lower bound on their com-
munication complexity by using tools from graph theory, making the proof of the
lower bound self-contained. Finally, we push the connection with communication
complexity further to get new separations left open in [DM02] and reprove known
lower bounds from [PD10b] in a new unified framework. These results are pre-
sented in Chapter 6 and a different presentation of this results, which does not
rely on the connection with communication complexity, may be found in an arXiv
preprint [BCMS14].

Overview of the thesis. We now give an overview of the content of each
chapter of this thesis. More details are given in the introduction of each chapter.

Chapter 1 contains the basic definitions and properties of the objects that are
used in this thesis. We give a brief overview of each area connected to our results

xvi CONTENTS

and provide some references.
In Chapter 2, we introduce the notion of structural restrictions of CNF-formulas

and give an overview of the known results concerning the complexity of #SAT on
such restrictions. We start by defining the existing ways of characterizing the
structure of a formula and give examples of such notions. We then present a
contribution with Arnaud Durand and Stefan Mengel [CDM14] concerning the
complexity of #SAT an so-called disjoint branches hypergraphs. We show that
#SAT can be solved efficiently if the underlying hypergraph of the formula is
disjoint branches and show that deciding if a hypergraph has this property can
be done in polynomial time. We use this results as an illustration of the main
techniques that are commonly used for proving such results. We finish the chapter
by presenting the known classes for which #SAT can be solved in polynomial time.
We review in particular the result work of Sæther, Telle and Vatshelle [STV14]
and show how it can be used to rediscover all other known results concerning the
tractability of #SAT. We finally review the known hardness results concerning
#SAT and conclude the chapter by giving open questions.

In Chapter 3, we show how to leverage structure-based algorithms for #SAT
to compilation algorithm into deterministic DNNF. The results presented in this
chapter were elaborated with Simone Bova, Stefan Mengel and Friedrich Slivovsky
and are published in [BCMS15]. Our compilation algorithm is based on the gen-
eral algorithm of [STV14] in Chapter 2. This allows us to prove that every known
structure-based algorithm for #SAT known so far can actually be lifted to a com-
pilation algorithm.

In Chapter 4, we show that #SAT is tractable on β-acyclic instances by giving
an algorithm that compiles β-acyclic formulas into decision DNNF, a restriction of
DNNF that supports model counting. The first section of this chapter is dedicated
to the proof that the complexity of #SAT on β-acyclic instances cannot be proven
by using the algorithm of [STV14] presented in Chapter 3. The second section
studies the structure of β-acyclic hypergraphs and shows several useful properties
of such hypergraphs. The third and last section presents the compilation algorithm
and corollaries on the tractability of several problems related to β-acyclic formulas.

In Chapter 5, we give a simpler algorithm for efficiently solving #SAT on β-
acyclic instances that was done in collaboration with Johan Brault-Baron and
Stefan Mengel and published in [BCM15]. This algorithm is based on a general-
ization of Davis-Putnam resolution [DP60]. We recall this algorithm and several
result concerning its complexity in the first section. In a second section, we present
a generalization of DP-resolution working on β-acyclic formulas only. We prove
that our algorithm is sound and runs in polynomial time. Bounding the runtime
of the algorithm is done in two steps: we first show that the algorithm does a
polynomial number of arithmetic operations. We then show that the size of the
numbers involved in these arithmetic operations is polynomially bounded. The
second part of the proof is surprisingly much more challenging than the first one
and relies on results shown in Chapter 5 concerning the structure of β-acyclic
hypergraphs. In the last section, we present a generalized version of the previous

CONTENTS xvii

algorithm, the weighted DP-resolution which runs on any CNF-formulas and re-
turns its number of satisfying assignments. We then present a generalization of
β-acyclicity, the cover-width, for which weighted DP-resolution runs with a poly-
nomial number of arithmetic operations. We also give additional results on how
cover-width compares to other hypergraph widths.

Finally, in Chapter 6, we show, in the first section, a connection between the
size of a DNNF and the communication complexity of the function it computes. We
use this connection in the second section to construct CNF-formulas that cannot
be represented succinctly by DNNF. Our proof settles several open questions con-
cerning knowledge representation [DM02]. Such CNF-formulas can be seen as hard
instances for the known algorithm for #SAT. Indeed, Darwiche and Huang [HD05]
have observed that every practical tool for solving #SAT was implicitly construct-
ing a succinct DNNF equivalent to the input formula. Moreover, we show in the
other chapters that all structured-based algorithms for #SAT can also be turned
into compilation algorithm into succinct DNNF. Thus, CNF-formulas having no
small DNNF are hard for both practical tools and structure-based algorithms for
#SAT. Finally, we use our connection to rediscover known results on a representa-
tion language called structured DNNF [PD10b] and reprove, by reusing results in
communication complexity and graph theory, separations between different rep-
resentation languages. We conclude this chapter by giving open questions and
perspectives on such techniques for knowledge compilation.

xviii CONTENTS

Chapter 1

Preliminaries

This chapter provides the main definitions of the objects that will later appear in
this thesis. It also aims at introducing background on the different concepts that
lie at the core of our results. Each section presents a different topic and will serve
as a reference for the next chapters.

1.1 Complexity

Most of the results presented in this thesis originate from complexity theory. The
aim of complexity theory is to understand how much resources – such as time or
memory – one needs to solve a problem on a given computational device. This
question for a given problem is however never answered with a precise value and it
is usually not desired since even the necessary mathematical formalization of the
device is already an approximation of what is happening in practice. The Turing
machine model for instance fails to capture the complex interactions between the
architecture of a processor, the allocation of resources by the OS and the opti-
mizations done by the compiler. However this approximation is often sufficiently
accurate to grasp the difficulty of a problem. That is why complexity theorists
are mainly interested in asymptotic behavior of the resources needed.

In this thesis, we need concepts from classical complexity but also from more
advanced subjects such as counting complexity, that is, the complexity of comput-
ing a function expressed as the cardinal of some set or parametrized complexity,
that is, the complexity of computing a function when some parameter of the input
is assumed to be bounded by a constant. In the following, we only present the
main tools we need for stating and proving our results but we pay attention, for
each topic, to give to the interested reader good textbook references.

1.1.1 Classical complexity

In this section, we introduce the main concept of computational complexity theory
that are widely used in the rest. The interested reader can find details in one of

1

2 CHAPTER 1. PRELIMINARIES

the most complete book on the subject by Arora and Barak [AB09] or the very-
well written book by Papadimitriou [Pap94]. The french reader can also use the
marvelous book by Perifel [Per14].

In computational complexity, we are often interested in decision problems that
are formalized as subset of {0, 1}∗ =

⋃
n∈N{0, 1}n. A set A ⊆ {0, 1}∗ defines the

following decision problem: given x ∈ {0, 1}∗, does x ∈ A? The aim of complexity
is to understand how the time or the space needed to solve this problem grows
with |x| on a given model of computation.

Model of computation. In this thesis, we use the RAM model of computation,
which is a good compromise between the modern architectures and a formalization
simple enough to be used in theory. This architecture will proved particularly
useful in Chapter 5 where most of our results are stated in terms of number of
arithmetic operations, which are easier to deal with in this model than in other
models such as Turing machines. Moreover, this model is particularly adapted to
enumeration problems that we will briefly mention. We follow the definition of
[Str10] which itself follows [Gra96].

Definition 1.1. A RAM machine is an infinite sequence of read-only input reg-
ister (I(i))i∈N, an infinite sequence of computation register (R(i))i∈N, two special
registers A and B and a finite sequence of indexed instructions P = {p1, . . . , pn},
called the program, among the following:

1. A← I(A)

2. A← R(A)

3. B ← A

4. R(A)← B

5. A← A+B

6. A← A−B

7. IfA > 0 Goto(i), for i ∈ [n]

8. Stop

The semantic of a RAM machine is as follows: it executes the instructions
one after the other until it reaches the instruction Stop. The ← denotes the
affectation, thus executing the instruction A ← B for instance will affect the
value of register B to register A. If the program reaches the instruction If A >
0 Goto(i) and if the value of register A is positive, then it goes to the instruction
pi and resumes its execution from this point.

The input of a machine is a sequence x = x1 . . . xn with xi ∈ {0, 1}. Each xi
is stored in the input register I(i) and we assume that I(0) = n. We assume that

1.1. COMPLEXITY 3

each instruction of a RAM machine costs 1 and we define the runtime T (M,x) of
RAM machine M on input x to be the number (possibly infinite) of instructions
it executes before reaching the instruction Stop on input x. Given a function
f : N → N, we say that a machine M runs in time f(n) if the maximal runtime
on input of size n is O(f), that is, if the function n 7→ maxx∈{0,1}n T (M,x) is
O(f). The memory used by a RAM machine M on x is the maximal indices of the
registers it accesses on input x. For a function f : N 7→ N, we say that a machine
M runs with memory f(n) is the maximal memory used by M on input of size n
is O(f).

A RAM machine M computes a function of {0, 1}∗ → {0, 1}∗ that associates to
x the sequence of register R(1) . . . R(m) when M stops after having been executed
on input x. We classify functions depending on their complexity, that is, the
minimum amount of resources needed to compute them on a RAM machine. This
is usually formalized in complexity theory by defining complexity classes.

Reductions and complexity classes. A complexity class is a class of com-
putable functions that share a common property regarding the resources they
need. One of the most natural class is the class of problems that can be solved in
polynomial time. We say that a function is computable if there exists a RAM ma-
chine M that computes this function. In this thesis, we will mostly be interested
in the resources needed to compute a given function. We say that a function g can
be computed in polynomial time if there exists a RAM machine M that computes
g in time p(n), for p a polynomial.

Definition 1.2. The class P is the class of decision problems L ⊆ {0, 1}∗ that can
be decided by a RAM machine in time p(n) for p a polynomial.

The class P is often considered as the class of easy problems. This is arguably
not true since a problem solvable in time n1030 or in time n with a hidden constant
of 210000 is in P but certainly not that easy to solve. In this thesis however, one
of our goal will be to understand for which inputs a problem that is unlikely to
be in P can still be solved in polynomial time and for which inputs the problem is
unlikely to be solved in polynomial time. We aim to understand where the frontier
between the inputs that can be solved in polynomial time and those which cannot
lies. In this setting, it makes sense to consider P as the class of easy problems.

Another well-known class is the class NP of problems. Historically, NP prob-
lems were introduced as problems that could be solved by non-deterministic ma-
chines in polynomial time. In this thesis, we will not need to introduce non-
determinism and we use the following characterization of NP:

Definition 1.3. A problem L is in NP if and only if there exists a polynomial p,
a machine M in time p such that for every x ∈ {0, 1}∗,

x ∈ L⇔ ∃y ∈ {0, 1}p(|x|),M(x, y) = 1.

4 CHAPTER 1. PRELIMINARIES

Intuitively, a problem L is in NP if for every member x ∈ L, there exists a
proof y of the fact that x ∈ L that can be checked in polynomial time. Clearly,
from the definition, if a problem is in P, then it is in NP as well, that is, P ⊆ NP.

Many practical problems are in the class NP. For example, consider the prob-
lem of finding a planning for a university satisfying a set of constraints concerning
the available rooms, the disponibility of teachers etc. It is easy to check if a given
planning meets these constraints by simply checking that each one of them is sat-
isfied. Such problem are typical instances of NP problems. The problem of finding
such planning however seems much more difficult. One of the main open question
in computer science is to know if every NP problems can be solved in polynomial
time. In other words, is P 6= NP? Even if this is widely believed that P 6= NP, no
one has yet been able to prove this separation.

In order to classify problems depending on their hardness, it is crucial to have
tools to compare such hardness. We introduce the notion of polynomial-time
(Karp) reduction from one a problem to another.

Definition 1.4. A decision problem L1 ⊆ {0, 1}∗ is polynomial time reducible to
a decision problem L2 ⊆ {0, 1}∗, denoted by L1 ≤p L2, if there exists a function
f : {0, 1} → {0, 1}, computable in polynomial time, such that for every x ∈ {0, 1}∗,
x ∈ L1 if and only if f(x) ∈ L2.

Keeping in mind that the polynomial time computable functions are the easy to
compute functions, polynomial time reductions may be seen as a way of comparing
the hardness of different decision problems. Indeed, if L1 ≤p L2, then L2 is harder
to solve than L1 in the sense that if there exists a polynomial time algorithm for
L2 (that is if L2 is “easy”), then there exists a polynomial time algorithm for L1

as well. It is easy to see that polynomial time reductions are transitive since the
composition of two polynomial time computable functions is still computable in
polynomial time. Moreover, classes such as P and NP are closed by polynomial
time reductions, that is:

Theorem 1.5. Let L1, L2 ⊆ {0, 1}∗ be decision problems. It holds that:

• if there exists L ⊆ {0, 1}∗ such that L1 ≤p L and L ≤p L2 then L1 ≤p L2,

• if L1 ≤p L2 and L2 ∈ P then L1 ∈ P and,

• if L1 ≤p L2 and L2 ∈ NP then L1 ∈ NP.

Using this, we can compare a decision problem with a class of problems. In-
deed, if C is a class of problems, we say that a decision problem L is C-hard if it is
harder than every problem in C. In other words, if for every L′ ∈ C, L′ ≤p L. It
means that if we are able to solve L quickly, then every problem of C are also easy
to solve. This led to the notion of NP-completeness, introduced by Cook [Coo71]:

Definition 1.6. A decision problem L if NP-hard if for every L′ ∈ NP, it holds
that L′ ≤p L. It is NP-complete if L is NP-hard and L ∈ NP.

1.1. COMPLEXITY 5

Intuitively, NP-complete problems are the hardest problems of NP. If one can
solve quickly an NP-complete problem, then we could solve every other problems of
NP in quickly and we would have P = NP. What makes the notion so important is
that there actually exist NP-complete problems and these problems arise naturally
in various scientific fields. Of course, since P 6= NP is still an open question, no
NP-complete problem is known to be computable in polynomial time, nor it is
known not to be. The fact that numerous problems, formalized in a hundred of
different ways, are NP-complete and no one has found any efficient algorithms
for one of them is one of the reasons it is believed that P 6= NP. The fact that
a problem is NP-complete is usually used as strong evidence it does not have a
polynomial time algorithm.

1.1.2 The problem SAT

The first natural problem to have been shown to be NP-complete is the problem
SAT. It was shown independently by Cook [Coo71] and Levin [Lev73]. In the rest
of this section, we define the problem SAT and states the Cook-Levin Theorem.
Since SAT (and its counting version) is the main problem we study in this thesis,
we also introduce several notations on CNF-formulas in the end of this section.

Let X be a finite set of variables. A literal is either a variable x ∈ X or its
negation ¬x. A clause on variables X is a finite set of literals on variables X. A
formula F in conjunctive normal form , CNF-formula for short, on variables X is
a finite set of clauses. A mapping τ : X → {0, 1} is a satisfying assignment of F if
for every clause C ∈ F , there exists a literal ` ∈ C such that τ(`) = 1 where τ(`)
is defined to be τ(`) = τ(x) if ` is the variable x and τ(`) = 1− τ(x) if ` = ¬x. A
formula F is said to be satisfiable if there exists a satisfying assignment of F . It
is said unsatisfiable otherwise.

A clause can be seen as the disjunction of its literals since an assignment
satisfies a clause if that at least one literal is satisfied in each clause. A CNF-
formula can be seen as the conjunction of its clauses since an assignment satisfies
a formula if all its clauses are satisfied. We denote conjunction as ∧ and disjunction
as ∨. Following this observation, we will often denote CNF-formula as:∧

C∈F

∨
`∈C

`.

For example,

F = (x ∨ ¬y ∨ t) ∧ (¬x ∨ z ∨ w) ∧ (¬t ∨ ¬w)

is a CNF-formula whose clauses are {x,¬y, t}, {¬x, z, w} and {¬t,¬w}. The map-
ping {x 7→ 1, y 7→ 1, w 7→ 1, t 7→ 0, z 7→ 1} is a satisfying assignment of F whereas
{x 7→ 0, y 7→ 1, w 7→ 1, t 7→ 0, z 7→ 1} is not.

The problem SAT can be formulated as follows: given a CNF-formula F on
variables X, is F satisfiable? Until now, we have only mentioned decision problems
to be subset of {0, 1}∗ which is not how we just defined SAT. To fall in our

6 CHAPTER 1. PRELIMINARIES

theoretical framework, we should observe that a formula F can be encoded by an
element of {0, 1}∗ of size linear in (

∑
C∈F |C|) log(n) where n is the size of the

variable set X. See [AB09] for more details on how to encode problems.

It is easy to see why SAT is in NP. Indeed, given a formula, a short proof
of the fact that the formula is satisfiable could simply be a satisfying assignment
of F . A trivial algorithm to solve SAT is to bruteforce every possible assignment
τ : X → {0, 1} and to check whether it satisfies F or not. If F is not satisfiable,
such an algorithm would require at least 2|X| steps, at least one per assignment
τ which is not a polynomial time algorithm. Actually, finding a polynomial time
algorithm for SAT is very unlikely. The Cook-Levin Theorem states that SAT is
NP-complete:

Theorem 1.7 ([Coo71, Lev73]). SAT is NP-complete.

Notations and definitions. We introduce here several notations concerning
CNF-formulas and assignments that will be used later in this thesis. We denote
by ⊥ the empty clause , that is, the clause that has no literal. Observe that by
definition of a satisfying assignment, the empty clause cannot be satisfied, thus
if ⊥ ∈ F for F a CNF-formula, then F is not satisfiable. It is different from the
empty formula ∅, that is the formula that has no clause, which is always satisfiable
since for every assignment, every clause of F are satisfied.

Given a clause C, we denote by var(C) the set of variables of a clause, that is,
var(C) = {x | x ∈ C or ¬x ∈ C}. We denote by var(F) =

⋃
C∈F var(C) the set of

variables that appears in F . Observe that if F is a CNF-formula on variable X,
we only have var(F) ⊆ X since F may not mention some variables of X.

Given a CNF-formula F on variables X, we call τ a partial assignment if τ is a
mapping Y → {0, 1} for Y ⊆ X. We call Y the support of τ and we denote it by
supp(τ). Let F be a CNF-formula and τ a partial assignment. For a clause C, we
say that τ satisfy C, denoted by τ |= C, if there exists ` ∈ C such that τ(`) = 1.
We denote by τ 6|= C otherwise. A clause is said to be tautological if there exists
a variable x such that x ∈ C and ¬x ∈ C. A tautological clause is satisfied by
every assignment so we usually assume that they are automatically removed from
F . Observe that if C is not tautological, then there exists exactly one assignment
τC : var(C)→ {0, 1} such that τC 6|= C. We will often refer to such assignment as
the counter-example of C. For example, if C = x ∨ y ∨ ¬z then:

• var(C) = {x, y, z},

• τ = {x 7→ 0, y 7→ 1} |= C,

• τ ′ = {x 7→ 0, z 7→ 1} 6|= C and,

• τC = {x 7→ 0, y 7→ 0, z 7→ 1} 6|= C and is the only assignment of var(C) that
does not satisfy C.

1.1. COMPLEXITY 7

Similarly, we denote by τ |= F if for every C ∈ F , τ |= C. Observe that τ may be
extended to a satisfying assignment of F by choosing the values of the remaining
variables arbitrarily. Moreover, every satisfying assignment τ for F verifies τ |= F .

We denote by F [τ] the CNF-formula on variables X \ Y obtained by removing
the clauses of F that are satisfied by τ and removing the literals whose value is
fixed by τ from clauses. For example, if F = (x∨¬y∨ t)∧ (¬x∨z∨w)∧ (¬t∨¬w)
and τ = {x 7→ 1} then F [τ] = (z ∨ w) ∧ (¬t ∨ ¬w). We denote by sat(F) the
set of its satisfying assignments and by #F = |sat(F)|. If F ′ is a CNF-formula
on variables X, we denote by F ≡ F ′ if sat(F) = sat(F ′). A CNF-formula is said
to be monotone if it does not have negation. Observe that the boolean function
defined by a monotone CNF-formula is actually increasing, thus monotone.

Let τ1 : Y1 → {0, 1} and τ2 : Y2 → {0, 1} be two assignments. We denote
say that τ1 and τ2 are compatible, denoted by τ1 ' τ2, if for every y ∈ Y1 ∩ Y2,
τ1(y) = τ2(y). If τ1 ' τ2, we denote by τ1 ∪ τ2 the mapping from Y1 ∪ Y2 to {0, 1}
defined by

(τ1 ∪ τ2)(y) =

{
τ1(y) if y ∈ Y1

τ2(y) if y ∈ Y2

Given τ : X → {0, 1} and Y ⊆ X, we denote by τ |Y the restriction of τ on Y ,
that is, the mapping τ ′ : Y → {0, 1} such that τ ′ ' τ .

We denote by

size(F) = (log |X|)
∑
C∈F
|C|.

Observe that size(F) is proportional to the size of a reasonable encoding of CNF-
formulas on a RAM machine. We often use |F | too which is the number of clauses
in F since F is a set of clauses, it is different from size(F). If every clause of F
are of size at most k for k ∈ N, then we say that F is a k-CNF. The problem SAT
where the input are restricted to k-CNF is called k-SAT .

DNF-formulas. We briefly mention a normal form of formulas that is closely
related to CNF-formulas called DNF-formulas. A DNF-formula D is a disjunction
of conjunction of literals, that is:

D =
∨
i

∧
j

`i,j .

Observe that the negation of a CNF-formula may naturally be rewritten as a DNF
by using the De Morgan’s laws ¬(a∨b) = ¬a∧¬b and ¬(a∧b) = ¬a∨¬b. However,
it is easy to see that there exists CNF-formula F such that every equivalent DNF-
formula is of size exponential in the size of F . For example, it is easy to see that
every DNF-formula equivalent to

F =
n∧
i=1

(xi ∨ yi)

must be of size at least 2n.

8 CHAPTER 1. PRELIMINARIES

1.1.3 Counting complexity

One of our main focus in this thesis are not decision problems as we have defined
them in the last section but counting problems, that are, problems where our goal is
to count the number of solutions. For example, our input could be a linear system
over a finite field, and the problem would be to count the number of solutions
of the system. Such problems do not fall in the scope of the previously defined
classes since we do not want to decide if an element is a solution to a problem
but we want to actually compute a function f : {0, 1}∗ → {0, 1}∗. The class of
functions computable in polynomial time is called FP, for Functional P.

Definition 1.8. A function f : {0, 1}∗ → {0, 1}∗ is in FP if there exists a RAM
machine that computes f in polynomial time.

As for decision problems, we want to be able to compare the hardness of prob-
lems and to find a way of stating that some functions are unlikely to have poly-
nomial time algorithm. In the following, we define an analog of NP for counting
problems, the class #P, and define analog notions of completeness and reductions.

Definition 1.9. The class #P is the class of function f : {0, 1}∗ → {0, 1}∗ such
that there exists a polynomial time machine M such that for every x ∈ {0, 1}∗,
f(x) = |{y |M(x, y) = 1}|.

A function of #P may be understood as a counting function f such that f(x)
is the number of witnesses that x is in a language of NP. Most of the problems
of NP have a natural counting problem associated to them. For example, one
problem that is central in this thesis is the problem #SAT that can be formulated
as follows: given a CNF-formula on variables X, return the number of satisfying
assignments τ : X → {0, 1} of F . #SAT is in #P: we can construct a polynomial
time machine M such that M(F, τ) = 1 if and only if τ is a satisfying assignment
of F . Then #SAT(F) = |{y |M(x, y) = 1}|. Clearly, if we can count the number
of satisfying assignments of a CNF-formula, then we can also decide if there exists
a satisfying assignment of the formula. Thus, it is even less likely that there exists
a polynomial time algorithm for #SAT than it is for SAT.

The class #P was first introduced by Valiant [Val79b] to study the complex-
ity of counting problems. Of course, counting problems built from NP-complete
problems as #SAT are hard instances of this class. However, he shows in [Val79b]
that there are functions that can be defined as counting the number of solution
of problems in P that lead to problems as hard as #SAT. Such results are proven
through a notion of reduction for the class #P which gives then a natural notion
of #P-completeness. The notion of reduction we use for #P relies on the notion
of oracle:

Definition 1.10. Let g : {0, 1}∗ → {0, 1}∗. A RAM machine M with oracle g is
a RAM machine with the extra-instruction R(A)← g(B).

1.1. COMPLEXITY 9

The runtime of a RAM machine with oracle is still the number of instruction
it executes before reaching the Stop instruction. In other word, we assume that
the extra-instruction is executed in unit time.

Definition 1.11. A function f : {0, 1}∗ → {0, 1}∗ is polynomial time Turing
reducible to a function g : {0, 1}∗ → {0, 1}∗, denote by f ≤T g if there exists a
RAM machine M with oracle g that computes f in polynomial time.

Turing reductions are transitives and the class #P is closed by Turing reduc-
tions:

Theorem 1.12. Let f, g : {0, 1}∗ → {0, 1}∗. It holds that:

• if there exists h : {0, 1}∗ → {0, 1}∗ such that f ≤T h and h ≤T g then f ≤T g
and,

• if f ≤T g and g ∈ #P then f ∈ #P.

Definition 1.13. A function g is #P-hard if for every function f ∈ #P, it holds
f ≤T g. A function g is #P-complete if it is #P-hard and if g ∈ #P.

Unsurprisingly, the Cook-Levin Theorem generalizes to the counting case.

Theorem 1.14 ([Val79b]). #SAT is #P-complete.

What is more surprising is that there exists counting problems constructed
from decision problems in P that are as hard as #SAT. This was proven in [Val79b]
by Valiant who shows that computing the permanent PER(M) =

∑
σ

∏n
i=1M [i, σ(i)]

of a n×n matrix M is #P-complete whether deciding if there exists a permutation
σ of [n] such that

∏n
i=1M [i, σ(i)] = 1 can be done in polynomial time.

1.1.4 Parametrized complexity

The results we have recalled on complexity theory until then were focused on
classifying problems depending on their complexity. We have shown that some
problems were harder than others. In the framework we have presented until
then, a hard problem is a problem that we cannot solve efficiently on every input.
But even a hard problem may be easy on some particular instance. For example,
it is well-known that the problem 2-SAT can be solved with a linear time algorithm
(see [APT79] or Chapter 5). Thus SAT on such instances is easy to solve.

The aim of parametrized complexity is to understand the complexity of a
problem depending on some parameter of the input. It can be argued that this idea
is quite natural and that algorithms complexity has been expressed as function
of parameters without relying on complexity theory. The role of parametrized
complexity is somewhat similar to the one of complexity theory. Designing better
algorithms and analyzing their runtime was done long before complexity classes
were defined. Complexity theory is a framework to assert the hardness of problems.

10 CHAPTER 1. PRELIMINARIES

In this section, we present a framework due to Downey and Fellows [DF12] to
analyze the complexity of problems together with a parameter, that is, we give the
necessary tools to compare the quality of different parameters for a same problem
and to provide evidences of the hardness of a problem for a given parameter. We
only present the basic tools we need in this thesis but the domain of parametrized
complexity is much richer than this. The interesting reader may refer to the book
of Flum and Grohe [FG06] that proposed a good overview of the subject.

Definition 1.15. A parametrization is a mapping κ : {0, 1}∗ → N that can be
computed in polynomial time. A parametrized problem is a pair (L, κ) where
L ⊆ {0, 1}∗ and κ is a parametrization.

For example, a parametrization of CNF-formula can be the function κ = var
that associates to an encoding of a CNF-formula F the number of variables of F and
the parametrized problem associated is (SAT, var). Observe that by brute forcing
over every assignment, we can decide if F is satisfiable in time O(2var(F) · |F |).

Given a parametrized problem, we will be mostly interested in finding poly-
nomial time algorithms for inputs where the parameter is bounded. The class of
such problem is known as XP:

Definition 1.16. The class XP is the class of parametrized problems (L, κ) such
that there exists a computable function f and a RAM machine M deciding L in
time nf(k).

We can already use the tools from classical complexity theory to show that
some problems are unlikely to be in XP. For example, it can be shown that 3-SAT
is NP-complete. Thus:

Theorem 1.17. If P 6= NP, then the parametrized problem (SAT, cla) is not in
XP, where cla is the function which associates to a formula the size of its biggest
clause.

The class XP is very large and the runtime of M may depend differently on the
parameter. For example, (SAT, var) is in XP since we have an algorithm running
in time O(2var(F) · |F |). The dependence on the size of F here is linear whatever is
the size of the parameter. But a parametrized problem (L, κ) that can be solved
in time |x|κ(x) is in XP. We see here that the dependence on the parameter is
much worse than before and that such algorithm may be stuck already for small
values of n. One of the main success of parametrized complexity is to provide a
fine hierarchy of problems depending on how the value of the parameter acts on
the complexity of the algorithm. Usually, the dependence on the parameter that
is desirable is the following:

Definition 1.18. The class of fixed-parameter tractable problems, denoted by
FPT is the class of parametrized problem (L, κ) such that there exists a machine
M , a polynomial p and a computable function f : N → N that decides L in time
f(κ(n)) · p(n).

1.1. COMPLEXITY 11

From the previous observation, (SAT, var) is fixed-parameter tractable. Again,
the notion of easiness is relative here and if the computable function f of the

definition is O(222k
) then the parameter is certainly not relevant for practical

purposes. While it is better than having an algorithm with O(nκ) complexity
such algorithm may take already too much time for small inputs.

In the rest of this section, we will present a tool analog to NP-completeness or
#P-completeness that can be used to provide strong evidences that a parametrized
problem is unlikely to have an FPT algorithm. We start by introducing a notion
of FPT-reduction:

Definition 1.19. Let (L, κ) and (L′, κ′) be parametrized problems. The problem
(L, κ) is FPT-reducible to (L′, κ′), denoted by (L, κ) ≤FPT (L′, κ′), if there exists
a mapping f : {0, 1}∗ → {0, 1}∗ such that:

• for every x ∈ {0, 1}∗, x ∈ L if and only if f(x) ∈ L′,

• f is computable by an FPT-algorithm with parameter κ and,

• there exists a computable function g : N→ N such that κ′(f(x)) ≤ g(κ(x)).

The class FPT is closed by FPT-reduction:

Theorem 1.20. Let (L, κ), (L, κ′) be parametrized problems such that (L, κ) ≤FPT

(L′, κ′). If (L′, κ′) ∈ FPT, then (L, κ) ∈ FPT.

Finally, we introduce the class W[1]. There are several characterizations of W[1]
and we let the interested reader refer to Chapter 5 of [FG06] for an exhaustive
presentation of W[1]. We present here only the definition we will need in this
thesis. The problem k-CLIQUE is the parametrized problem of deciding, given a
graph G = (V,E) and an integer k, if there exists a clique of size k in G, that is a
set v1, . . . , vk of V such that {vi, vj} ∈ E for every i 6= j where k is the parameter
(see Section 1.2 for more details on graphs). More formally the parameter is
κ((G, k)) = k. Observe that by brute forcing over every subset of size k of V gives
a O(k2

(
n
k

)
) algorithm which is not FPT.

Definition 1.21. W[1] is the class of problems (L, κ) that are FPT-reducible to
k-CLIQUE. A problem (L, κ) is W[1]-hard if k-CLIQUE ≤ FPT(L, κ).

As for P 6= NP, it is believed that W[1] 6= FPT but these hypothesis are not
known to be equivalent. Having a W[1]-hard problem is an evidence that it is
unlikely to have FPT-algorithm. This hypothesis is not equivalent to P 6= NP and
no implication are know between the two hypothesis. However, we can show that
if W[1] = FPT, then it would give an algorithm that runs in 2o(n) to solve 3-SAT,
which would be a breakthrough in our understanding of the class NP.

Until now we have defined parametrized classes only for decision problems.
In this thesis, we will essentially present parametrized algorithms for counting
problems. A theory for parametrized counting complexity has been proposed

12 CHAPTER 1. PRELIMINARIES

1 2

3 4

Figure 1.1: A graph

by Flum and Grohe [FG04] and by McCartin [McC02] to prove the hardness of
parametrized counting problem. In this thesis however, every hard parametrized
counting problem we are interested in are already W[1]-hard for decision, thus
we do not need the whole theory. The interested reader may refer to Chapter 14
in [FG06] for more details on the subject. We only define parametrized counting
problems:

Definition 1.22. A parametrized counting problem is a pair (c, κ) where c :
{0, 1}∗ → N and κ is a parametrization. A parametrized counting problem (c, κ)
is computable in FPT time if there exists a computable function f , a polynomial p
and a machine M that computes c in time f(κ(n)) · p(n).

1.2 Graphs, hypergraphs and decompositions

Graphs and hypergraphs are common objects to represent the relations between
the elements of a finite set. In this section, we define these objects and introduce
the notations we will use toward this thesis. We also introduce the notion of graph
and hypergraph decompositions, a powerful tool to study the structure of graphs.
For more details on graphs, the interested reader may refer to [Die12].

1.2.1 Generalities on graphs and hypergraphs

Graphs. A graph G = (V,E) is given by a finite set V and a set E ⊆ {{u, v} |
u ∈ V, v ∈ V, u 6= v}. We call the vertices of G the elements of V and the edges
of G the elements of E. An edge e = {u, v} is uniquely defined by its endpoints u
and v. A graph is usually represented graphically as in Figure 1.1.

The neighborhood of a vertex u ∈ V , denoted by N (u), is defined to be
the vertices which are connected to u by an edge. Formally, N (u) = {v ∈ V |
{u, v} ∈ E}. The (open) neighborhood of a set W ⊆ V , denoted by N (W),
is defined to be the neighbors of elements of W that are outside W . Formally,
N (W) =

⋃
w∈W N (w) \W . The degree of a vertex u, denoted by d(u), is the size

of its neighborhood d(u) = |N (u)|. The degree of a graph is the maximal degree
of its vertices.

We now define the main notions on graphs we need in this thesis. A path of
length k from u ∈ V to v ∈ V is a sequence of distinct vertices v1, . . . , vk+1 such
that v1 = u, vk+1 = v and such that for all i ≤ k, {vi, vi+1} ∈ E. A cycle is a
path of length k > 1 from a vertex u ∈ V to u itself. In Figure 1.1, (1, 3, 4) is a
path of length to from 1 to 4 and (1, 2, 3, 1) is a cycle. A graph is connected if for

1.2. GRAPHS, HYPERGRAPHS AND DECOMPOSITIONS 13

every u ∈ V and v ∈ V , there exists a path from u to v. A connected component
is a set W ⊆ V of vertices such that for every u ∈ W and v ∈ V , there exists a
path from u to v if and only if v ∈W .

A vertex cover is a subset C ⊆ V of vertices such that for every e ∈ E,
C ∩ e 6= ∅, that is, every edge of G has at least one endpoint in C. In particular,
V is a vertex cover of G. In Figure 1.1, {1, 3} is a vertex cover.

A matching is a subset M ⊆ E of edges such that for every e, f ∈ M , if
e 6= f , then e ∩ f = ∅, that is, e and f do not share any endpoints. In Figure 1.1,
{{1, 2}, {3, 4}} is a matching.

We call a graph G′ = (V ′, E′) a subgraph of G if V ′ ⊆ V and E′ ⊆ E′. G′ is
said to be induced if E′ = {{u, v} ∈ E | u ∈ V ′, v ∈ V ′}. Given V ′ ⊆ V a subset
of vertices, we denote by G[V ′] the subgraph induced by V ′, that is, the graph
G′ = (V ′, E′) with E′ = {{u, v} ∈ E | u ∈ V ′, v ∈ V ′}.

A clique is a graph G = (V,E) such that for every u 6= v ∈ V , {u, v} ∈ E. For
n ∈ N, we denote by Kn the n-clique (also called the n-complete graph) defined
as Kn = ([n], {{i, j} | i < j ≤ n}). For example, the graph induced by {1, 2, 3} in
Figure 1.1 is a 3-clique.

A graph G = (V,E) is bipartite if there exists a partition X,Y of V such that
for all e = {u, v} ∈ E, u ∈ X and v ∈ Y . X and Y are called the colors of G. Given
X,Y two disjoint sets and E ⊆ X × Y , we denote by (X,Y,E) the corresponding
bipartite graph. Given a graph G = (V,E) and two subsets X,Y ⊆ V such that
X∩Y = ∅, we denote by G[X,Y] the bipartite graph induced by X and Y defined
as (X,Y, {e ∈ E | e ∩ X 6= ∅, e ∩ Y 6= ∅}). Intuitively, G[X,Y] is the bipartite
subgraph of G where we have kept only the edges that have one endpoint in X
and one endpoint in Y .

Trees. Trees are an important class of graphs and are omnipresent in this thesis
since we intensively use them for graph and hypergraph decompositions. A tree
is defined to be a connected acyclic graph, that is, a graph that has no cycle. A
forest is defined to be an acyclic graph. By definition, the connected component
of a forest are trees. A leaf is a vertex of degree 1. Every tree having more than
one node has at least two leaves. The set of leaves of a tree T is denoted by L(T).

A rooted tree is defined to be a tree T and a distinguished vertex r of T called
the root. Rooted trees are very handy to deal with since they naturally induce a
preorder on the vertices. Indeed, since T is acyclic and connected, for every u, v
there exists exactly one path from u to v (remember that a path is a sequence of
distinct vertices). Thus, for every u ∈ V , there exists a unique path from the root
r to u.

For u 6= r, we call the father of u the vertex that appears before u in the path
from r to u. The children of u are defined to be the neighbors of u that are not
its father. We say that a vertex u is an ancestor of v if the path from r to v goes
through u. We say that a vertex u is a descendant of v if v is an ancestor of u. If
every vertex of T has at most 2 children, we say that T is binary.

14 CHAPTER 1. PRELIMINARIES

1 2

3 4

Figure 1.2: A hypergraph

For a vertex v of T , the subtree of T rooted in v, denoted by Tv, is defined to be
the rooted subtree induced by v and its descendants, with v as the root. Observe
that if v1, . . . , vk are the children of v, Tv is the union of v and Tv1 , . . . , Tvk and if
v is a leaf different from the root, then Tv is the graph having one vertex {v} and
no edge.

Hypergraphs. A graph can be seen as a set of sets of size 2, the edges. A natural
generalization of graphs is to allow the edges to hold more than two elements. A
hypergraph H is a finite set of sets. An set e ∈ H is called an edge or a hyperedge.
The vertices of H, denoted by V (H), is defined to be the union of the sets in H,
that is, V (H) =

⋃
e∈H e. A hypergraph is usually represented graphically as in

Figure 1.2.

Many notions of graphs naturally translate in the framework of hypergraphs.
A path of length k from u ∈ V (H) to v ∈ V (H) is a sequence of distinct vertices
and edges of H v1, e1, . . . , vk, ek, vk+1 such that u = v1, v = vk+1 and for all i ≤ k,
ei ∈ H, vi ∈ ei and vi+1 ∈ ei. A hypergraph is connected if for every u, v ∈ V (H),
there exists a path from u to v. A connected component of H is a set W ⊆ V (H)
such that for every u ∈ W and v ∈ V (H), there exists a path from u to v if and
only if v ∈W .

The notion of cycle is more delicate to generalize to hypergraphs. We could
define a cycle to be a path of length k > 1 from u to u but this definition is
rarely relevant for applications. For example, (1, {1, 3}, 3, {1, 3, 4}, 1) is a cycle
of the hypergraph represented in Figure 1.2 but it is “simpler” than the cycle
(1, {1, 2, 3, 4}, 4, {2, 4}, 2, {1, 2, 3}, 1). In Section 1.2.3, we will formally define no-
tions of acyclicity for hypergraphs that formalize this notion of cycles.

One can naturally associate graphs to hypergraphs that describe their struc-
ture. The primal graph of a hypergraph H, denoted by Gprim(H), is defined to be
the graph having vertices V (H) where each edge e ∈ H is replaced by the clique on
the vertices in e. Formally, Gprim(H) = (V (H), {(u, v) | ∃e ∈ H, {u, v} ⊆ e}. Much
structure is lost in the primal graph. For example, if V (H) ∈ H, then Gprim(H) is
a clique of size |V (H)| independently from the rest of H.

The incidence graph of a hypergraph H, denoted by Ginc(H), is the bipartite
graph having the vertices of H on one side and the hyperedges of H on the other
side and such that there is an edge between a vertex v and a hyperedge e if and
only if v ∈ e. Formally, Ginc(H) = (H, V (H), {{v, e} | e ∈ H, v ∈ e}). The
incidence graph of a hypergraph has as much structure as the whole hypergraph

1.2. GRAPHS, HYPERGRAPHS AND DECOMPOSITIONS 15

since one can entirely reconstruct H from Ginc(H).

A hypergraphH′ is a subhypergraph ofH ifH′ ⊆ H. Given a subsetW ⊆ V (H),
the hypergraph induced by W , denoted by H is defined to be H[W] = {e∩W | e ∈
H} \ {∅}. For x ∈ V (H), we often use the notation H \ {x}) for H[V (H) \ {x}].

1.2.2 Graph measures and decompositions

Graph decomposition is a very general and handy technique that aims to under-
stand the structure of a complex graph. This has many applications, particu-
larly in parametrized complexity [FG06] where algorithms are designed to take
advantage of the input structure. The complexity of such decompositions is usu-
ally measured by an integer, which define a notion of graph measure, also called
width. Such graph width may be seen as a method to quantify the complexity of
the structure of a graph. In this thesis, we use graph decompositions to design
better algorithms for #SAT on CNF-formulas but the algorithmic applications go
far beyond this restricted framework.

Tree width. Tree width [Bod93b] is one of the most notorious graph measure.
Intuitively, it aims to measure the distance of a given graph to a tree. For example,
a cycle is “almost” a tree since it is sufficient to disconnect one edge to have a
tree. We will see that a cycle has tree width 2. Cliques on the other hand are
highly connected and intuitively they are very far from being a tree. We will see
that a k-clique has tree width k.

Tree width is based on a special kind of decomposition of graphs called tree
decomposition.

Definition 1.23. A tree decomposition of a graph G = (V,E) is a tree T where
each vertex t of T is labeled with a subset λ(t) of V , called a bag. Moreover, the
bags respect the following conditions:

• Connectedness: for every v ∈ V , the vertices of t such that v ∈ λ(t) form
a connected subtree of T . In symbols, for every v ∈ V , it holds that {t ∈
V (T) | v ∈ λ(t)} is a connected subtree of T .

• Completeness: for every e ∈ E, there exists a bag covering e. Formally,
there exists t ∈ V (T) such that e ⊆ λ(t).

It is easy to see that every graph has a least one tree decomposition: the tree
having one vertex t labeled by V is a tree decomposition of G.

Definition 1.24. Let G be a graph and (T, λ) be a tree decomposition of G. The
tree width of T , denoted by tw(T), is the size of the biggest bag in G minus one,
that is, maxt∈V (T) |λ(t)| − 1. The tree width of a graph G, denoted by tw(G), is
the minimal tree width over every tree decompositions of G.

16 CHAPTER 1. PRELIMINARIES

1

2 3

45

67

1, 5, 6

6, 7 1, 2, 3

1, 4, 3

Figure 1.3: A graph and a tree decomposition of width 2

Graph Tree Width

Trees 1

Cycles 2

k-cliques k − 1

(m× n) grids min(m,n)

Table 1.1: The tree width of some graphs

Table 1.1 gives the tree width of some graphs and Figure 1.3 gives an example
of a tree decomposition of width 2.

In order to ease heavy notations, we will often use tree decompositions without
explicitly mentioning the labeling function λ. By writing “let T be a tree decom-
position of G”, we implicitly assume that T is a labeled tree and we will often
speak of the label of a vertex t of T without explicitly mentioning λ(t).

Computing the tree width and the best tree decomposition of a graph is an
NP-hard problem. Fortunately, tree width can be computed efficiently in FPT
time, that is, we can decide in linear time if a graph is of tree width at most k,
for k a constant:

Theorem 1.25 ([Bod93a]). The problem of deciding whether the tree width of a
graph G is smaller than an integer k is NP-complete. There exists an algorithm
that given a graph G = (V,E) and an integer k outputs a tree decomposition of G
of width k if it exists and fails otherwise in time 2O(k)O(n + m) where n = |V |
and m = |E|.

Bodlaender [Bod06] has proved a useful characterization of tree width in terms
of elimination orders which helps to find new algorithmic techniques that can be
used on bounded tree width graphs. For a graph G = (V,E) and a vertex x ∈ V ,
we denote by G/x the graph obtained by removing x from V and replacing its
neighborhood by a clique. More formally G/x = (V ′, E′) is the graph with vertices
V ′ = V \{x} and edges E′ = {(u, v) ∈ E | u 6= x, v 6= x}∪{(u, v) ∈ N (x)2 | u 6= v}.

Definition 1.26. Let G = (V,E) be a graph. An elimination order of width k for
G is an ordering x1, . . . , xn of the vertices of G such that the degree of xi in Gi is
at most k where G1 = G and Gi+1 = (Gi/xi) for all i ≤ n− 1.

1.2. GRAPHS, HYPERGRAPHS AND DECOMPOSITIONS 17

Theorem 1.27 ([Bod06]). A graph G is of tree width k if and only if it has
an elimination order of width k. Moreover, given a graph G, one can find an
elimination of width tw(G) in time 2O(k)O(n + m) where n is the number of
vertices of G and m the number of edges.

Proof (sketch). Let G be a graph of tree width k. We find a vertex x of G of
degree at most k such that G/x is of tree width k. Let T be a tree decomposition
of G of tree width k. Let t be a leaf of T . We can assume that the bag Bt
of t is not included in its father, otherwise, we could remove this bag from the
tree decomposition. Thus, there is a vertex x in this bag that is nowhere else in
the graph, that is, the entire neighborhood of x is included in Bt. Thus x is of
degree at most |Bt| − 1 ≤ k. Now observe that T where we remove x from Bt is
a tree decomposition of G/x of tree width at most k. Indeed, it is clearly a tree
decomposition of tree width at most k since we only have removed a vertex that
appeared only in one bag, so we have not breaked the connectedness nor have
made any bag bigger. Moreover, every edge of G/x that are also in G are still
covered by a bag in T . Now, if we take an new edge of G/x, then it is between
two neighbors of x by construction. Thus this edge is covered by the bag where x
was.

For the other way around, assume we have a graph G, x of degree k in G and
a tree decomposition T of G/x of width at most k. We show how to construct
a tree decomposition of T of width k. We rely on a well-known property of tree
decomposition: if K is a clique of a graph G′, then for any tree decomposition T ′

of G′, there is a bag of T ′ that contains K. Applying this observation to G/x,
we know that there is a bag Bt of T that contains the clique with the neighbors
N (x) = {y1, . . . , yk} of x in G since they form a clique of G/x. Now, we connect
a bag B = {x, y1, . . . , yk} to t in T . This is a tree decomposition of G and it is of
tree width at most k.

On trees, Theorem 1.27 only states that one can get the empty graph by
iteratively removing leaves in a tree. In a cycle, observe that removing a vertex
from an n-cycle with n > 2 results in a (n− 1)-cycle. Since every vertex of a cycle
is of degree 2, this gives a proof that cycles are of tree width 2.

Clique width. We have seen that cliques have maximal tree width. However,
cliques are graphs having a very simple structure and are thus easy instances in
numerous problems: in such cases, tree width is thus not the right measure of the
structure of the graph. Clique width was introduced in [CER91] by Courcelle,
Engelfriet and Rozenberg to understand the structure of graphs even if they are
dense. It is not based on tree decomposition as tree width but on a set of algebraic
operations on colored graphs.

Let V be a finite set. A parse tree T of width k for V is a rooted tree whose
leaves are labeled by an element of v ∈ V and an integer i ≤ k, called the color of
v. Each v labels at most one leaf of T . The internal vertices of T are labeled with

18 CHAPTER 1. PRELIMINARIES

the operations ∪, ρi,j and ηi,j with i, j ≤ k. The colored graph Gt computed by a
vertex t of T is defined inductively by:

• if t is a leaf labeled by (v, i), then Gt is the singleton graph having one vertex
v colored with i,

• if t is labeled with ∪ then t has two children t1, t2 and Gt = Gt1 ∪Gt2 ,

• if t is labeled with ρi,j where i 6= j then t has one child u and Gt is obtained
by recoloring with j every vertex of Gu colored with i,

• if t is labeled with ηi,j where i 6= j then t has one child u and Gt is obtained
by connecting with edges all vertices of Gu colored with i to all vertices
colored j.

A graph G = (V,E) is of clique width at most k if there exists a parse tree T for
V of width k such that the root of T computes G with any coloring. The clique
width of a graph G, denoted by cw(G), is the minimal k such that G is of clique
width at most k.

It is easy to see that for every G = (V,E), cw(G) ≤ |V |. Indeed, it is sufficient
to construct the union of each vertex v ∈ V with a distinct color cv and then apply
ηcu,cv for each edge {u, v} ∈ E to add the edges.

Cliques are of clique width 2. Indeed, if Tn is a parse tree of width 2 for Kn,
then Tn+1 = η1,2(ρ2,1(T) ∪ (n + 1, 2)) is a parse tree of width 2 for Kn+1. This
shows that we can have an arbitrary large gap between tree width and clique width
since Kn is of tree width 2. In general, classes of graph where the tree width is
bounded also have bounded clique width by the following bound:

Theorem 1.28 ([CO00]). For every graph G, it holds that cw(G) ≤ 2tw(G)+1 +1.

In contrast to tree width, the computation of clique width is not known to
be FPT nor W[1]-hard. However, given a graph G and an integer k, it is NP-
complete to decide whether G is of clique width at most k [FRRS09]. We will
see in Chapter 2 how one can approximate clique-width by relating it to another
graph width, the rank-width.

Branch decompositions. Let G = (V,E) be a graph. A branch decomposition
of G is a rooted binary tree T and with a one-to-one correspondence between the
leaves L(T) of T and V . As usual, given a vertex v of T , we denote by Tv the
subtree of T rooted in v. Naturally L(Tv) denotes the set of vertices labeling the
leaves of Tv and L(Tv) denotes L(T) \ L(Tv) = V \ L(Tv). A vertex v induces
the natural partition of variables (L(Tv), L(Tv)). In this paragraph, we denote by
Xv = L(Tv) and Xv = L(Tv).

Branch decompositions is a handy tool for defining graph measures. A function
f : 2V → N is said to be symmetric if for every X ⊆ V , f(X) = f(X). Given a
symmetric function f and a branch decomposition T of G, we define the f -width

1.2. GRAPHS, HYPERGRAPHS AND DECOMPOSITIONS 19

of T to be max f(Xv) = max f(Xv) where v runs over the vertices of T . The f -
width of a graph G is the minimum of the f -widths of the branch decompositions
of G.

For example, let MM : 2V → N be the function that associates to X ⊆ V the
size of the biggest matching of G[X,X]. This is clearly a symmetric function since
G[X,X] = G[X,X]. The MM-width [Vat12] of a branch decomposition T of G is
the biggest matching one can find in the graphs G[Xv, Xv] for every vertex v in
T . We denote by mmw(G) the MM-width of G. MM-width is actually roughly
the tree width of G.

Lemma 1.29 ([Vat12]). Let G be a graph, then 1
3(tw(G) + 1) ≤ mmw(G) ≤

tw(G) + 1.

Another graph width defined on branch decompositions is the MIM-width.
MIM-width is defined to be the width associated to the symmetric function MIM :
2V → N that associates to X ⊆ V the size of the biggest induced matching of
G[X,X]. An induced matching of a graph G is a matching M such that G[V (M)]
is a matching. In other word, if {u, u′}, {v, v′} are two distinct edges of M , then
{u, v}, {u′, v′}, {u, v′} and {u′, v} are not edges of G. Classes of graphs with
bounded clique width have also bounded MIM-width by:

Lemma 1.30 ([Vat12]). Let G be a graph, then mimw(G) ≤ cw(G).

The complexity of computing a branch decomposition of optimal MIM-width
is still unknown.

1.2.3 Hypergraphs: acyclicity and decompositions

In Section 1.2.2, we have presented several graph widths that were helpful to char-
acterize the structure of graphs. Similar decompositions have been proposed for
hypergraphs to generalize tree width. In this section, we start by presenting how
acyclicity generalizes to hypergraph. This question is already insightful as we shall
see that many definitions of hypergraph acyclicity are possible, all leading to inter-
esting classes. We then present the main decomposition notion for hypergraphs:
the (generalized) hypertree width.

Acyclicity notions. Generalizing the notion of acyclicity to hypergraphs is
tricky as even the notion of cycle is not easy to generalize. Figure 1.4 pictures four
hypergraphs where there is a path from 1 to 3 that may be interpreted as a cycle for
at least one acyclicity notion we will present in this thesis. Most of these notions
were introduced by Fagin [Fag83] in order to find tractable database queries. An
overview of known results on hypergraph acyclicity with simplified proofs can be
found in a survey of Johann Brault-Baron [BB14] and a good introduction with
several results on the subject can be found in the thesis of Duris [Dur09].

A minimal requirement for any notion of hypergraph acyclicity is that when re-
stricted to graphs, the notion should coincide with the usual definition of acyclicity
for graphs.

20 CHAPTER 1. PRELIMINARIES

1 3

2

1 3

2

1 2

3

1 2

3

Figure 1.4: Which one is a cycle?

Berge acyclicity One of the most simple definition of hypergraph acyclicity
was given by Berge in [Ber85]. A hypergraph H is Berge-acyclic if and only if
Ginc(H) is acyclic. This notion is very restrictive and it is sufficient that it exists
e, f ∈ H such that e ⊆ f to induce a cycle in Ginc(H). For example, the first
hypergraph of Figure 1.4 is not Berge-acyclic. When restricted to graph, Berge
acyclicity collapses with graph acyclicity since the incidence graph of a graph is
the same graph when each edge e = {u, v} is split in two and a new vertex e is
introduced in between. However, we will not effectively use this acyclicity in this
thesis since it is too restrictive.

α-acyclicity A much more general notion of acyclicity is the α-acyclicity in-
troduced by Beeri, Fagin, Maier and Yannakakis in [BFMY83]. This notion is
inspired by notions of tree decompositions. Intuitively, a hypergraph is α-acyclic
if its edges may be organized in a tree. Formally, a join tree (T, λ) for a hypergraph
H consists of a tree T and a one-to-one mapping λ from the vertices of T and H
having the connectedness property: for every x ∈ V (H), {t ∈ V (T) | x ∈ λ(t)}
is a connected subtree of T . A hypergraph is said to be α-acyclic if it has a join
tree.

When restricted to graph, the notion of join tree collapses with the notion of
tree decomposition of width 1. Thus the notion of α-acyclicity collapses to the
notion of graph acyclicity too.

Other characterizations of α-acyclicity have been given and some of them led
to efficient algorithmic techniques to test if a hypergraph is α-acyclic. An α-
elimination order for H is an ordering x1, . . . , xn of V (H) such that the neigh-
borhood of xi+1 in H[xi+1, . . . , xn] is covered by an edge of H. We have the
following [TY84, BFMY83]:

Proposition 1.31. A hypergraph H is α-acyclic if and only if one of the following
holds:

1. Every clique of Gprim(H) is included in an edge of H and Gprim(H) is chordal.

2. There exists an α-elimination order of V (H).

The first characterization has been used by Yannakakis and Tarjan in [TY84]
to construct a non-trivial linear time algorithm for testing α-acyclicity:

Theorem 1.32 ([TY84]). There exists an algorithm that given H outputs an α-
elimination order for H if it exists and fails otherwise in time O(|H|+ |V (H)|).

1.2. GRAPHS, HYPERGRAPHS AND DECOMPOSITIONS 21

1, 2, 3

1, 2 1, 3 2, 3

Figure 1.5: A join tree for the third hypergraph of Figure 1.4

A very counter intuitive aspect of α-acyclicity is that this notion is not heredi-
tary. Indeed, it may be that a hypergraph H is α-acyclic when there exists H′ ⊆ H
that is not α-acyclic. As an example, consider the third hypergraph of Figure 1.4.
This hypergraph is acyclic and a join tree for it is given on Figure 1.5. However,
the subhypergraph obtained by removing the hyperedge {1, 2, 3} is a graph cycle
of length 3, thus it is not α-acyclic. This phenomenon actually appears a lot in
hypergraph, as stated in the following observation:

Observation 1. If V (H) ∈ H then H is α-acyclic. Indeed, the tree consisting of
a node labeled with V (H) connected to |H| − 1 other nodes, each labeled with an
edge of H is a join tree of H.

β-acyclicity. The notion of β-acyclicity is a notion of acyclicity that aims to
fix the counter-intuitive fact that subhypergraph of α-acyclic hypergraphs may
not be α-acyclic. The most natural way of doing so is simply to ask for every
subhypergraph to be α-acyclic as well:

Definition 1.33. A hypergraph H is β-acyclic if and only if for every H′ ⊆ H,
H′ is α-acyclic.

As α-acyclicity, when restricted to graphs, the notion of β-acyclicity collapses
with the notion of graph acyclicity since every subgraph of an acyclic graph are
also acyclic.

It can be checked that the first two hypergraphs of Figure 1.4 are β-acyclic.
The third one however is not β-acyclic since we have seen earlier that the graph
cycle of length 3 was one of its subhypergraph.

Definition 1.33 is not interesting since it is hard to use it algorithmically.
Fortunately, many natural equivalent characterizations of β-acyclic hypergraphs
have been given. One of the most useful is defined in terms of elimination order.
Let H be a hypergraph. A β-leaf in H is a vertex x ∈ V (H) such that Hx = {e ∈
H | x ∈ e} is ordered by inclusion, that is, Hx = {e1, . . . , em} with e1 ⊆ · · · ⊆ em.

A β-elimination order for H is an ordering x1, . . . , xn of V (H) such that for
every i ≤ n, xi is a β-leaf of H[{xi, . . . , xn}]. For example, 1, 3, 2 is a β-elimination
order of the second hypergraph of Figure 1.4. Such orders characterize β-acyclicity:

Theorem 1.34 ([BFMY83]). A hypergraph H is β-acyclic if and only if there
exists a β-elimination order for H.

22 CHAPTER 1. PRELIMINARIES

Theorem 1.34 provides an algorithm for testing if a hypergraph is β-acyclic.
Indeed, it is sufficient to look for β-leaves and to greedily eliminate them. One
can test if a vertex x is a β-leaf of H by just testing set inclusions, thus, it can
be done in polynomial time, thus, finding a β-elimination order can be done in
polynomial time.

This algorithm is not optimal and may be refined by using the right data
structures. The best known algorithms for testing β-acyclicity are those solving
the problem of double lexical ordering. A double lexical ordering of a {0, 1}-matrix
M is a permutation of its rows and it columns such both its rows and columns are
sorted in lexicographical order. It is observed in [Lub87] that if we are provided
a double lexical ordering of the adjacency matrix of a hypergraph H then we can
decide in linear time if it is β-acyclic. The best known algorithms for double
lexical ordering are due to Praigen and Tarjan [PT87] and Spinrad [Spi93]. This
gives the following:

Theorem 1.35 ([PT87]). Given the adjacency matrix of a hypergraph H, one can
decide if H is β-acyclic and, if so, compute a β-elimination order for H in time
O(min(mn, s log(n+m))) where m = |H|, n = |V (H)| and s = ‖H‖.

Given a cycle C = x1, . . . , xn in a graph G, we call a chord of C an edge
(xi, xj) where j 6= i+ 1 mod n. A graph G is said to be chordal if every cycle of
G of length more than 3 has a chord. If G is bipartite, then cycle of length 4 or
5 cannot have a chord. Thus, a graph G is said chordal bipartite if it is bipartite
and every cycle of length at least 6 has a chord. We can characterize β-acyclicity
in terms of its incidence graph which will prove useful when we want to compare
β-acyclicity, which is a hypergraph property, to other graph measures:

Theorem 1.36 ([ADM86]). A hypergraph is β-acyclic if and only if its incidence
graph is chordal bipartite.

γ-acyclicity. This notion of acyclicity is less general than β-acyclicity but still
more general than Berge-acyclicity. Several definitions exist in term of join tree
or in term of elimination order. We do not recall such definitions here since we
will not really need it in the rest of the thesis. The interested reader may refer to
the original paper of Fagin [BFMY83] or to this paper of Duris [Dur12]. We only
recall a result concerning how γ-acyclicity compares with other widths:

Theorem 1.37 ([GP04]). Let H be a γ-acyclic hypergraph then cw(Ginc(calH)) ≤
3.

We quickly recall how the different acyclicity notions compare:

Berge-acyclicity ⊆ γ-acyclicity ⊆ β-acyclicity ⊆ α-acyclicity.

1.2. GRAPHS, HYPERGRAPHS AND DECOMPOSITIONS 23

Hypertree width. Now that we have defined notions of acyclicity for hyper-
graph, it is natural to ask whether such notions can be turned into width measures
such as tree width. In this section, we define the notions of hypertree width and
of generalized hypertree width that were introduced by Gottlob, Leone and Scar-
cello [GLS99] to understand the complexity of answering database queries. The
interested reader may find more details in a survey by the same authors [GLS01b].
These notions are based on generalizations of the notion of tree decomposition to
the setting of hypergraph:

Definition 1.38. Let H be a hypergraph. A generalized hypertree decomposition
(T , λ) of H is a tree T together with a labeling function λ which associates to each
vertex of t a subset of V (H). Moreover, (T , λ) respects the following conditions:

• for every e ∈ H, there exists a vertex t of T such that e ⊆ λ(t),

• for every vertex x of H, the set {u | x ∈ λ(u)} is a connected subtree of T .

A generalized hypertree decomposition of a hypergraph H can actually be seen
as tree decomposition of Gprim(H). We however use another width measure on such
decomposition:

Definition 1.39. Let H be a hypergraph and (T , λ) a generalized hypertree decom-
position of H. The decomposition T is said to be of generalized hypertree width
at most k if for every vertex t of T , there exists S ⊆ H such that |S| ≤ k and
λ(t) ⊆

⋃
e∈S e. We denote by ghtw(T) the smallest k such that T is of generalized

hypertree width k. The generalized hypertree width of H, denoted by ghtw(H),
is the minimal generalized hypertree width of generalized hypertree decompositions
of H.

It is easy to see that a join tree is a generalized hypertree decomposition of
width 1. The converse is not true since a bag could cover more than one edge
but this can be actually transformed into a join tree. Thus, generalized hypertree
width 1 coincides with α-acyclicity:

Proposition 1.40. A hypergraph H is α-acyclic if and only if ghtw(H) = 1.

Unfortunately, computing the generalized hypertree width of a hypergraph is
NP-hard, even if we are only interested in deciding whether it is at most 3:

Theorem 1.41 ([GMS09]). Deciding whether a hypergraph has generalized hyper-
tree width at most 3 is NP-complete.

In order to overcome this difficulty, variants have been introduced. They
are also based on hypertree decompositions but the edges that can be used to
cover each bag are now more constrained which makes the width less general but
tractable.

24 CHAPTER 1. PRELIMINARIES

Definition 1.42. Let H be a hypergraph. A hypertree decomposition (T , λ, χ) of
H is a tree T together with a labeling function λ which associates to each vertex
of t a subset of V (H) and a labeling function χ which associates to each vertex of
t a subset of H. Moreover, (T , λ, χ) respects the following conditions:

• for every e ∈ H, there exists a vertex t of T such that e ⊆ λ(t),

• for every vertex x of H, the set {u | x ∈ λ(u)} is a connected subtree of T ,

• for every vertex t of T , λ(t) ⊆
⋃
e∈χ(t) e and,

• for every vertex t of T , for every vertex x ∈
⋃
e∈χ(t) e, if there exists a vertex

u of Tt such that x ∈ λ(u) then x ∈ λ(t).

The hypertree width of T , denoted by htw(T), is defined to be maxt |χ(t)| and
the hypertree width of a hypergraph H is the minimal hypertree width of hypertree
decompositions of H.

Hypertree width is much easier to deal with than generalized hypertree width
and can be computed in polynomial time.

Theorem 1.43 ([GLS99]). Let k ∈ N. There is a polynomial time procedure that
given H outputs a hypertree decomposition of H of width k if it exists and rejects
otherwise.

Fortunately, hypertree width is a good approximation of generalized hypertree
width.

Theorem 1.44 ([AGG07]). For every hypergraph H, it holds that

htw(H) ≤ 3 · ghtw(H) + 1.

Hypertree width however has the same counter-intuitive aspect as α-acyclicity:
a subhypergraph may have a hypertree width greater than the hypertree width
of the original one. Indeed, adding the edge V (H) to a hypergraph H makes it
α-acyclic but the hypertree width of H may be arbitrary large. We can define a
width that behaves more naturally with respect to inclusion by choosing the width
of the subhypergraph of maximal hypertree width.

Definition 1.45. The β-hypertree width of a hypergraph H denoted by β-htw(H)
is defined to be

β-htw(H) = max
H′⊆H

htw(H′).

From this definition, it is clear that a hypergraph is β-acyclic if and only if its β-
hypertree width is 1. Unlike β-acyclicity however, this is the only characterization
of β-hypertree width that is known so far. Thus we have a very poor understanding
of this measure and such definition is not convenient to be used algorithmically.
Some directions are given in Chapter 5 that may lead to other characterizations
of β-hypertree width in terms of elimination orders.

1.3. KNOWLEDGE COMPILATION 25

1.3 Knowledge compilation

There are many ways of representing a boolean function f : {0, 1}n → {0, 1}.
For example, we have seen in the previous section that a boolean function may
be represented by CNF-formula, that is, a conjunction of clauses. We have also
seen that deciding whether a CNF-formula has a satisfying assignments is NP-
complete. It is thus very unlikely that a polynomial time algorithm exists for
deciding whether a CNF-formula is satisfiable. If a boolean function is given as a
DNF however, it is easy to find a satisfying assignments. This suggests that the
complexity of deciding whether a boolean function is satisfiable strongly depends
on its representation and that going from one representation to another may be
hard or lead to a blow-up in the size of the representation. Indeed, if we could
transform quickly any CNF into an equivalent small DNF, then we could also solve
SAT quickly. Besides, it is possible to show that there are CNF formulas F such
that any equivalent DNF formula F ′ is of exponential size in the size of F .

One aim of knowledge representation is to understand how different represen-
tations of boolean functions compare with one another. For example, given two
representation languages L1 and L2, we say that L1 is more succinct that L2 if for
every boolean function f , the size needed to represent f with L1 is polynomially
bounded by the size needed to represent it in L2. For example, if we represent a
boolean function by a boolean circuit, then it is more succinct than to represent
it with a CNF or a DNF since both representations may be seen as a special kind
of boolean circuits.

The question of going from one representation of a function to another is the
main focus of knowledge compilation. The typical scenario where knowledge com-
pilation is useful is the following: suppose we have a fixed boolean function f that
has to be queried many times, with queries such as finding a satisfying assignment
or counting the satisfying assignment of f [x 7→ 1] for some variable x. If f is
given as a CNF, then each query is a hard problem to solve and may require an
exponential time to be answered. If we can find however a succinct representa-
tion of f where such queries can be answered in polynomial time, then the only
costly operation that remains is to compile f into this better representation. The
other queries will be then answered quickly. We thus have replaced several costly
operations by a phase of precomputation, which can be costly too, followed by a
sequence of easy operations.

In this section, we present different representations of boolean functions and
study their succinctness and the queries they support in polynomial time. A wider
overview of the different possible representations and their properties can be found
in [DM02].

1.3.1 Generalities

In this section, we will mention representation languages in a very informal way
since in the rest of this thesis, we will only deal with concrete representation lan-

26 CHAPTER 1. PRELIMINARIES

guages. The interested reader may find formal foundations for studying the theory
of compilability of problems in the work of Cadoli , Liberatore and Schaerf [CDLS02]
and Chen [Che05].

A representation language L is a way of representing boolean functions f ,
that is, it is a set together with an interpretation function J.K from L to the
boolean functions. For example, L can be thought as boolean circuits or CNF. A
representation language L comes with a notion of size sizeL : L → N to measure
the complexity of each element of L. For example, in the case of boolean circuits,
the interpretation function could be the function computed by the circuit and the
size could be the number of gates in the circuits. For a boolean function f , we
denote by L(f) the size of the smallest element C of L representing f that is
JCK = f . Given two representation languages L1 and L2, we say that L1 is more
succinct than L2 and we write L1 ≤ L2 if there exists a polynomial P such that
for every boolean function f , L1(f) ≤ P (L2(f)). For example, circuits are more
succinct than CNF. We say that L1 is not comparable with L2 if L1 6≤ L2. In other
words, there exists a family of boolean functions (fn)n∈N with limn→∞ L2(fn) =∞
such that for every polynomial P and every n ∈ N, there exists N0 such that
L1(fN0) > P (L2(fN0)). L2 is strictly more succinct than L1, denoted by L1 < L2,
if L1 ≤ L2 and L2 6≤ L1.

Given a problem, usually called a query , Q on boolean functions, we say that L
supports Q in polynomial time if given an element C of L, Q(JCK) can be solved
in polynomial time in sizeL(C). For example, the query of deciding whether a
boolean function has a satisfying assignment is supported in polynomial time by
DNF. The main queries we will be interested in are:

• Find a satisfying assignment of f .

• Count the number of satisfying assignments of f .

• Enumerate the satisfying assignments f .

A transformation O is a function that transform one or several boolean function
into another. For example, the negation O : f 7→ 1 − f or the conjunction
(f1, f2) 7→ f1 ∧ f2 are transformations. We say that a representation language
polynomially supports an operation if there exists a polynomial P such that for
every f , L(O(f)) ≤ P (L(f)) (or L(O(f1, . . . , fk)) ≤ P (L(f1), . . . , L(fk)) when
there are more than one function). The main operations we will be interested in
are:

• Negation, conjunction and disjunction of boolean functions.

• The conditioning of a boolean function by a partial assignment τ , that is
the operation that maps a boolean function f and a partial assignment τ of
its variables to f(τ).

• The universal/existential projection that is the operation that maps a boolean
function f and a variable x to ∃x.f .

1.3. KNOWLEDGE COMPILATION 27

Usually, there is a trade-off between the succinctness of a representation lan-
guage and the queries and transformations it supports in polynomial time. This
will be illustrated in Section 1.3.2 and Section 1.3.3 where we give concrete exam-
ples of representation languages and their supported queries and transformations.
Generally, the more succinct a language is, the more transformations it supports
with a polynomial increase in their size and the less queries it supports in poly-
nomial time.

1.3.2 Binary decision diagrams

In this section, we introduce representations based on binary decision diagrams.
Numerous results concerning such representations may be find in the book of
Wegener [Weg00].

Definition 1.46. A functional binary decision diagram on variable X, FBDD for
short, is a labeled directed acyclic graph G = (V,E) such that:

• there exists exactly one vertex s, the source, of in-going degree 0,

• there exists two vertices t0, t1 of out-degree 0 labeled with 0 and 1 respectively,

• each vertex but t0, t1 are labeled with a variable x ∈ X and has exactly two
outgoing edges, one labeled with 0 and the other with 1 and,

• for every path P from s to ti and x ∈ X, there is at most one node of P
labeled with x.

The size of G denoted by size(G) is |V |. The set of variables labeling the vertices
of G is denoted by var(G).

Let G be an FBDD on variables X. Given τ : X → {0, 1} and a node v of
G, the successor of v labeled with x ∈ X for τ is the node w such that (v, w) is
the edge going out of G and labeled with τ(x). The truth assignment τ defines
a path Pτ starting from s and following the successor of the current node for τ
until either t0 or t1 is reached. An truth assignment τ satisfies G if Pτ ends in t1.
The function computed by G is the boolean function on variables X that consists
of every satisfying assignments of G. See Figure 1.6 for an example of FBDD.

We will often identify the boolean function computed by G with G itself. For
example, we will denote ¬G the boolean function that is the negation of the
boolean function computed by G.

Since satisfying assignments of an FBDD are characterized by paths in a di-
rected graph, FBDD support many queries in polynomial time:

Theorem 1.47. The following queries a supported in polynomial time for FBDD:

• satisfiability in linear time,

• counting in linear time,

28 CHAPTER 1. PRELIMINARIES

x3

x1

x2

0

1

0

1 0

1

x2

0

0

1

x1

0 0

1

Figure 1.6: An FBDD F . In thick red, the path corresponding to the satisfying
assignment {x3 7→ 1, x2 7→ 0, x1 7→ 0}. F computes the boolean function (x3 ∧
¬x2 ∧ ¬x1) ∨ (¬x3 ∧ x2 ∧ ¬x1).

• enumeration with a O(|var(F)|) delay.

Similarly, it is easy to negate an FBDD by switching the labels of the leaves
labeled with 0 and 1. An FBDD can be conditioned by a partial assignment without
blow-up in size. Indeed, to force the value of a variable x to 1 in an FBDD, it is
sufficient to remove every outgoing edge labeled by 0 from nodes labeled with x.
It follows:

Theorem 1.48. Let F be an FBDD on variables X then

• there exists an FBDD F ′ such that size(F ′) = size(F) and F ′ ≡ ¬F and,

• for every partial assignment τ of X, there exists F ′ such that size(F ′) ≤
size(F) and F ′ ≡ F [τ].

However, transformations such as conjunctions, disjunctions or existential pro-
jection may lead to exponential blow-up of the size for FBDD (see Theorem 6.3.2
in [Weg00] or Chapter 6 for generalizations). A common way of making such
transformations possible is to add more structure to the representation language.
For FBDD, this is actually done by forcing the order of the variable along a path
to be always the same. Such representation are called OBDD:

Definition 1.49. An OBDD G on variables X is an FBDD on variables X such
that there exists an ordering x1, . . . , xn of X such that every path from the source
s to a node v of G testing xj only tests variables in {x1, . . . , xj−1}.

For example the FBDD given in Figure 1.6 is not an FBDD since there is a path
that tests x2 before x1 and a path that tests x1 before x2. An OBDD equivalent
to this FBDD is depicted in Figure 1.7.

1.3. KNOWLEDGE COMPILATION 29

x1 x2

x3

x3

1

0

0

0

1

0

1

1

0

Figure 1.7: An OBDD equivalent to the FBDD in Figure 1.6 with order x1, x2, x3.
The missing edges are assumed to go to the 0-node.

Since OBDD are FBDD, they still support in polynomial time the queries given
in Theorem 1.47. However, the transformation given in Theorem 1.48 may not be
supported anymore since it is not clear from the statement of Theorem 1.48 that
the order of variables are preserved by the transformation. As a matter of fact,
it is. Moreover, since OBDD are more structured, we can actually show that they
support even more transformation with only a polynomial increase:

Theorem 1.50. Let F be an OBDD on variables X with order x1, . . . , xn then

• there exists an OBDD F ′ such that size(F ′) = size(F) and F ′ ≡ ¬F and,

• for every partial assignment τ of X, there exists F ′ such that size(F ′) ≤
size(F) and F ′ ≡ F [τ]

• for every binary boolean function ⊗ : {0, 1}2 → {0, 1}, for every OBDD F ′

on variables X with order x1, . . . , xn, there exists an OBDD F ′′ of size less
than size(F) · size(F ′) computing F ⊗ F ′.

Observe that Theorem 1.50 states that the conjunction of two OBDD can be
represented efficiently if the two OBDD use the same underlying order. This is
actually crucial and it is even possible to construct functions that have small OBDD
using two different orders and such that their conjunction has no polynomial size
FBDD (see Theorem 6.2.13 in [Weg00] and Chapter 6 for generalizations).

1.3.3 DNNF and its restrictions

In this section, we introduce representations based on boolean circuits having nice
properties ensuring numerous queries in polynomial time.

Negation Normal Form. A boolean circuit C is in negation normal form,
NNFs in short, if it has conjunction and disjunction gates, labeled by ∧ and ∨
respectively, a distinguished gate called the output of C denoted by output(C)
and if its inputs are labeled by literals or constant 1 or 0. The size of an NNF C,
denoted by size(C), is the number of gates in C, its fan-in is the maximal in-degree
of its gate and its depth is the longest path from the root to the leaf.

We denote by var(C) the set of variables labeling the inputs of C. Given a
gate α, we denote by Cα the NNF whose circuit is the subcircuit of C rooted in

30 CHAPTER 1. PRELIMINARIES

α and whose output is α. The gates β such that there is a wire from β to α are
called the children or the inputs of α.

The boolean function on variables var(C) computed by a gate α of C is defined
inductively as:

• if α is an input then the boolean function computed by α is the boolean
function corresponding to its literal

• if α is an ∧-gate then the boolean function computed by α is the conjunction
of the boolean functions computed by its children

• if α is an ∨-gate then the boolean function computed by α is the disjunction
of the boolean functions computed by its children.

The function computed by an NNF C is the function computed by the gate
output(C). A CNF-formula F may be seen as an NNF of size 1 + |F | + size(F)
having one ∧-gate, the output, connected to |F | ∨-gates, one per clause, each of
them connected to inputs labeled by its literals. NNF are thus already too general
to support interesting queries such as finding a satisfying assignments. In the
following, we thus consider restrictions of NNF.

Observe that if α is the output of C, it does not necessarily means that Cα = C.
Indeed, it may be that some gates are not reachable from α. This gates could be
easily dropped as they do not really change the function computed by C. However,
we choose to allow them in the circuit anyway to avoid normalization when we
perform some operation such as disconnecting gates in C.

We extend most notations on CNF-formulas defined in Section 1.1.2 to NNF .
For example, given a NNF C, we denote by sat(C) the set of satisfying assignments
of C. Given an partial assignment τ : X ⊆ var(C) → {0, 1}, we denote by
C[τ] the boolean function on variables var(C) \X that is true on an assignment
τ ′ : var(C)\X → {0, 1} such that τ ∪τ ′ is a satisfying assignment of C. We denote
by τ |= C if C[τ] is a tautology.

Decomposable NNF. An ∧-gate α of an NNF C is said to be decomposable
if it holds that for every β, γ children of α, var(Cβ) ∩ var(Cγ) = ∅. An NNF D
is said to be a decomposable NNF, in short, DNNF if all the ∧-gates of D are
decomposable. Decomposability is a natural notion that arises independently in
the area of circuit complexity under the name of multilinearity.

DNNF are a generalization of DNF since a DNF-formula F may be seen as a
DNNF equivalent to F and of size 1 + |F |+ size(F) having one ∨-gate, the output,
connected to |F | decomposable ∧-gates, one per clause, each of them connected
to inputs labeled by its literals. As we may assume the variables of each literal of
a clause to be disjoint (or it would yield an unsatisfiable clause), the conjunction
are decomposable. Figure 1.8 represents DNNF for a DNF-formula.

DNNF were introduced and studied by Darwiche in [Dar01a]. They are re-
stricted enough to support conditioning, decision, existential projection and enu-
meration in polynomial time. However, since counting the number of satisfying

1.3. KNOWLEDGE COMPILATION 31

∨

∧ ∧ ∧

x1 x2 x3 ¬x1 ¬x2

Figure 1.8: A DNNF for (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (¬x1 ∧ ¬x2)

assignments of a DNF is already #P-complete, it is also #P-complete to count
the number of satisfying assignments of a DNNF. Before studying DNNF in more
details, we introduce the different restrictions of DNNF we will use in this thesis.

Determinism. DNNFs already support a large number of useful queries in poly-
nomial time but lack one of the most interesting one for our purpose of understand-
ing the complexity of #SAT: model counting. The main difficulty of counting the
number of satisfying assignments of a DNNF is to take into account the fact that
∨-gates may have common satisfying assignments. Therefore, one has to be care-
ful not to count the same satisfying assignment twice. To overcome this difficulty,
the notion of determinism has been introduced in [Dar01b]. Let D be a DNNF and
let α be an ∨-gate of D with children α1, . . . , αk. The gate α is said deterministic
if for every i 6= j, Dαi ∧Dαj is not satisfiable, that is, Dαi and Dαj have disjoint
models. A DNNF D is said deterministic, in short d-DNNF, if for every ∨-gate α
of D, α is deterministic.

For example, the DNNF given in Figure 1.8 is not deterministic since τ =
{x1 7→ 1, x2 7→ 1, x3 7→ 1} satisfies two children of the ∨-gate.

Decision. Contrary to decomposability, determinism is not a syntactic property
of the DNNF but a semantic property. Given an NNF, it is easy to check that it
is decomposable. This is not true for determinism. In Chapter 3, we will see
an algorithm constructing d-DNNF. The guarantee that they are deterministic
is given by the algorithm constructing it but we usually have no efficient way of
checking whether a given DNNF is deterministic or not.

A way of syntactically enforcing the determinism of an ∨-gate is to use only
decision nodes, a notion originating from binary decision diagrams [Bry92]. A
decision node in a DNNF is an ∨-gate having the form (x∧α)∨ (¬x∧β) where x is
a variable and α, β are gates in the DNNF. A decision node is clearly deterministic
since α ∧ (x ∧ ¬x) ∧ β is unsatisfiable. A decision DNNF, dec-DNNF for short, is
a DNNF such that every ∨-gate is a decision node. An example of a dec-DNNF is

32 CHAPTER 1. PRELIMINARIES

∨

∧ ∧

x3 ¬x3 ∨

∧∧

x2 x1 ¬x1 ¬x2

Figure 1.9: A dec-DNNF for (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (¬x1 ∧ ¬x2)

given in Figure 1.9.
A natural question is to ask if such a syntactic restriction is as expressive

as the semantic restriction of determinism. Unfortunately, it results in a loss
of succinctness. Deterministic DNNFs are strictly more succinct than dec-DNNF.
This separation can be found in [BLRS13] and is based on a lower bound on FBDD
from [Weg00] and on an efficient simulation of dec-DNNF by FBDD:

Proposition 1.51. There exists a family (Dn)n∈N of d-DNNF such that size(Dn) ≤
n2 and any decision DNNF computing Dn is of size at least 2Ω(

√
n).

dec-DNNF are however already more expressive than FBDD. Indeed, each node
of an FBDD may be replaced by a decision node:

Proposition 1.52. Let F be an FBDD. There exists a dec-DNNF D equivalent
to F of size at most 5 · size(F).

Structuredness. We have seen that some operation not supported in polyno-
mial time by FBDD such as conjunction can be enabled by forcing an order on
the variable. This idea can be generalized to DNNF by restricting the way the
∧-gate can partition the variables. Such restricted DNNF are called structured
DNNF [PD08]. A variable tree T for a set X, in short vtree, is a binary rooted
tree whose leaves are in one-to-one correspondence with X. From a graph point
of view, it can be seen as a branch decomposition of X. Given a vertex t of T , we
denote by var(Tt) ⊆ X the set of variables labeling the leaves of the subtree of T
rooted in t.

Given a fan-in 2 DNNF D on variables X and an ∧-gate α of D with children
β, γ, we say that α respects a vertex t of T if var(Dβ) ⊆ var(Tt1) and var(Dγ) ⊆
var(Tt2) where t1, t2 are the children of t in T . We say that a fan-in 2 DNNF D
respects a vtree T if for every ∧-gate α of D, there exists a vertex t of T such
that α respects t. We say that a DNNF D is structured if there exists a vtree T
such that D respects t. For example, the DNNF of Figure 1.8 respects the vtree
of Figure 1.10.

1.3. KNOWLEDGE COMPILATION 33

x1 x2 x3

Figure 1.10: A vtree for the DNNF of Figure 1.8

Supported queries and transformations. We now recall some known result
on DNNF and its restrictions. Most of these proofs can be found in [Dar01a]. An
overview of these results can be found in Table 1.2.

Since DNNF are boolean circuits, one can easily perform conditioning. Indeed,
to condition a DNNF by a partial truth assignment τ , it is sufficient to replace the
input literals by the right constant. This transformation preserves decision-nodes,
determinism and structuredness.

Proposition 1.53. Let D be a (structured, deterministic, decision) DNNF and
τ : X ⊆ var(D) → {0, 1}. There exists a (structured, deterministic, decision)
DNNF D′ equivalent to D[τ] of size at most size(D).

Proof (sketch). We relabel every input labeled by a literal ` such that var(`) ∈ X
by the constant τ(`).

It is easy to check by induction that for every gate α of D′, D′α computes Dα[τ]
where we identify the gate α of D′ with the corresponding gate in D. ∧-gate are
still decomposable in D′.

If a ∨-gate is a decision gate on variable x ∈ X, then one side of the decision
gate is equivalent to 0, thus we can remove the decision gate. That is, if D is a
decision DNNF, so is D′.

We have to show that ∨-gates are still deterministic. Let α be an ∨-gate of
D′ and let β, γ be two children of α. We have D′β ∧ D′γ ≡ Dβ[τ] ∧ Dγ [τ] ≡
(Dβ∧Dγ)[τ] which is not satisfiable since (Dβ∧Dγ) is not satisfiable by definition
of deterministic gates. Thus α is deterministic and if D is deterministic so is D′.

Finally, observe that for every gate α, var(D′α) ⊆ var(Dα) thus, if D respects
a vtree T then D′ also respects this tree.

Using the same idea, one can existentially project a variable. However, deter-
minism is not preserved by such existential projection.

Proposition 1.54. Let D be a DNNF and let x ∈ var(D). There exists a DNNF
D′ equivalent to ∃x.D of size at most size(D).

Proof (sketch). Replace each input labeled with x or ¬x by the constant 1.

As DNF, DNNF are restricted enough to support linear time decision [Dar01a]:

Proposition 1.55. Given a DNNF D, one can find a satisfying assignment of D
in time O(size(D)) and space O(size(D)|var(D)|).

34 CHAPTER 1. PRELIMINARIES

Proposition 1.55 and Proposition 1.53 yield an efficient enumeration algorithm,
Algorithm 1, by adapting an algorithm for enumerating monomial in a multilinear
circuit that can be found in [Str10]. An algorithm for enumerating satisfying
assignments of a DNNF was already given in [Dar01a]. We give here a more
accurate result taking into account the delay between two solutions.

Proposition 1.56. Given a DNNF D, one can enumerate the satisfying assign-
ments of D with delay O(size(D)|var(D)|) and using O(size(D)|var(D)|) space.

Proof. We use a well-known technique in enumeration called backtrack search.
The key observation is that given a partial truth assignment τ of var(D), one can
decide in time O(size(D)) if D[τ] is satisfiable. It is indeed sufficient to find a
satisfying assignment on the conditioned DNNF D, both operations being possible
in linear time by Proposition 1.55 and Proposition 1.53.

The invariant of Algorithm 1 is that at each step, τ contains a truth assignment
of {x1, . . . , xi−1} such that:

1. there exists τ ′ ' τ such that τ ′ ∈ sat(D),

2. for every τ ′ ∈ sat(D) such that τ ′ comes before τ in the lexicographical
order induced by {x1, . . . , xn}, τ ′ has already been enumerated.

This invariant holds at the beginning of the algorithm since we ensure that
sat(D) 6= ∅. Thus there exists τ ′ ∈ sat(D) such that τ ′ ' ∅ and since the empty
assignment is the smallest one for the lexicographical order, we have enumerated
every satisfying assignment of D smaller than ∅, that is, none.

Now assume i < |var(D)|. If D[τ ∪ {xi 7→ 0}] is satisfiable, then we set
τ ← τ ∪ {xi 7→ 0}. We have to check that τ ∪ {xi 7→ 0} respects items 2 and 1.
This trivially respects item 1. Moreover, if τ ′ ∈ sat(D) comes before τ ∪ {xi 7→ 0}
in the lexicographical order, then it also comes before τ , and by invariant, has
already been enumerated, thus τ ∪ {xi 7→ 0} still respects item 2.

If D[τ ∪ {xi 7→ 0}] is not satisfiable, then we set τ ← τ ∪ {xi 7→ 1}. Since τ
respects item 1 and D[τ∪{xi 7→ 0}] is not satisfiable, it means that D[τ∪{xi 7→ 1}]
has to be satisfiable, thus τ ∪ {xi 7→ 1} respects item 1. Moreover, if τ ′ ∈ sat(D)
comes before τ ∪{xi 7→ 1} in the lexicographical order, either it also comes before
τ , and by invariant, has already been enumerated or it comes between τ∪{xi 7→ 0}
and τ∪{xi 7→ 1}. That is τ ′ ' τ∪{xi 7→ 0}. SinceD[τ∪{xi 7→ 0}] is not satisfiable,
we know that such a τ ′ does not exist and then τ ∪ {xi 7→ 1} respects 2.

Finally, assume that i = |var(D)|. Since, by induction, τ respects item 1, we
know that τ ∈ sat(D) and we can output it. Now assume that

{j | τ(xj) = 0 and satDNNF(D[τ |x1,...,xj−1 ∪ {xj 7→ 1}]) 6= UNSAT} = ∅.

In this case, we stop the enumeration. We claim that we have enumerated every
satisfying assignment of D. Indeed, if there is a satisfying assignment that has not
been enumerated, then it comes after τ in the lexicographical order. But then, it

1.3. KNOWLEDGE COMPILATION 35

has to come after τ |x1,...,xi−1 ∪ {xi 7→ 1}] for some i such that τ(xi) = 0. Thus,
such assignment does not exist and we have enumerated all satisfying assignments
of D.

Now, if this set is not empty, let

i = max{j | τ(xj) = 0 and satDNNF(D[τ |x1,...,xj−1 ∪ {xj 7→ 1}]) 6= UNSAT}.

We update τ to be τ ′ = τ ∪ {xi 7→ 1}. By definition, D[τ ′] is satisfiable and then
τ ′ respects item 1. Now, let τ ′′ be a satisfying assignment coming before τ ′ in the
lexicographical order. Either it comes before τ and has already been enumerated.
Or it comes before τ ′ and after τ . That is, there exists j > i such that τ(xj) = 0,
τ ′′(xj) = 1. But then, since i is maximal, it means that D[τ ′′] is not satisfiable.
Thus τ ′ respect item 2.

It remains to show that the delay is O(|var(D)|size(D)). It is easy to observe
that we run procedure satDNNF at most 2|var(D)| times between two outputs: at
most |var(D)| times to backtrack to the last partial assignment that can still be
completed (the second while loop) and at most |var(D)| times to construct the next
solution. Since satDNNF can be executed in time O(size(D)), we have a delay of
O(|var(D)|size(D)). Finally, since we store only one extra partial assignment τ and
one integer i ≤ |var(D)|, we only need a space O(|var(D)|size(D)) to enumerate,
which corresponds to the space needed to execute satDNNF.

Since DNNFs are more general than DNFs and it is #P-complete to count
the number of satisfying assignments of a DNNF, it is very unlikely that DNNFs
support model counting in polynomial time. Determinism can however be used to
count the number of model of a d-DNNF in linear time:

Proposition 1.57. Given a d-DNNF D, one can count the satisfying assignments
of D in time O(size(D)).

Proof. See Algorithm 2. It is based on the observation that if f and f ′ are
boolean functions on disjoint variables then |sat(f ∧ f ′)| = |sat(f)| · |sat(f ′)| and
if f and f ′ are boolean functions having disjoint models, then |sat(f ∨ f ′)| =
2|var(f

′)\var(f)||sat(f)|+ 2|var(f)\var(f ′)||sat(f ′)|.

As for FBDD, the conjunctions of two DNNF may not be possible with only a
polynomial increase (see Chapter 6, Section 6.2.4). However, as for OBDD, adding
structure makes these transformations possible [PD08]:

Theorem 1.58. Let D1, D2 be two DNNF that respect the same vtree T . One
can construct in time O(size(D1) · size(D2)) a DNNF D that respects T such that
D ≡ D1 ∧D2 and size(D) ≤ size(D1) · size(D2).

We summarize the previous result in Table 1.2. In this thesis, we focus on a
small subset of queries. A complete overview of the queries supported in poly-
nomial time for the languages we have presented may be found in [DM02] and
[PD08]. In Chapter 6, we use unconditional separations of languages to prove
that some of the conditional results of Table 1.2 actually hold unconditionally.

36 CHAPTER 1. PRELIMINARIES

Algorithm 1: An algorithm enumDNNF to enumerate the satisfying assign-
ments of a DNNF

Data: A DNNF D
begin

Give an arbitrary order {x1, . . . , xn} to var(D) ;
if satDNNF(D) =UNSAT then

return STOP ;

τ ← ∅ ;
i← 1 ;
while 1 = 1 do

if i < |var(D)| then
if D[τ ∪ {xi 7→ 0}] 6= UNSAT then

τ ← τ ∪ {xi 7→ 0} ;
else

τ ← τ ∪ {xi 7→ 1} ;

i← i+ 1 ;

else
OUTPUT(τ) ;
while i > 0 do

if τ(xi) = 0 and satDNNF(D[τ |x1,...,xi−1 ∪ {xi 7→ 1}]) 6=
UNSAT then

τ ← τ |x1,...,xi−1 ∪ {xi 7→ 1} ;
i← i+ 1 ;
break ;

i← i− 1 ;

return STOP ;

1.3. KNOWLEDGE COMPILATION 37

Algorithm 2: An algorithm #d-DNNF to count the satisfying assignments
of a d-DNNF

Data: A d-DNNF D
begin

α← output(D) ;
if α is labeled with a literal or constant 1 then

return 1

if α is labeled with 0 then
return 0

if α is labeled with ∧ then
n← 1 ;
for β child of α do

n← n×#d-DNNF(Dβ);

return n ;

if α is labeled with ∨ then
n← 0 ;
for β child of α do

n← n+ 2|var(Dα)\var(Dβ)| ·#d-DNNF(Dβ);

return n ;

DNNF d-DNNF dec-DNNF

Decision Linear Linear Linear

Counting • Linear Linear

Enumeration delay O(ns) delay O(n) delay O(n)

Conditioning Yes Yes Yes

∃-projection Yes • •

Table 1.2: The queries supported in polynomial time by DNNF. • means that the
query is not possible unless P = NP. n stands for the number of variables and s
for the size of the DNNF.

38 CHAPTER 1. PRELIMINARIES

Normal form. We finish this section by presenting a useful normal form of
DNNF. We say that a DNNF D is in normal form if it is of fan-in 2, if output(D) is
the only gate ofD of fan-out 0 and if no input is labeled by a constant. Fortunately,
every DNNF computing a non-trivial function can be transformed into a DNNF
in normal form with only a polynomial increase in its size. The transformation
preserves determinism and structuredness.

Proposition 1.59. Let D be a (structured, decision, deterministic) DNNF of fan-
in k. There exists a (decision, deterministic) DNNF D′ equivalent to D, having
fanin 2, and such that size(D′) ≤ (k − 1)size(D) ≤ size(D)2.

Proof (sketch). Replace each gate α of fan-in k > 2 in D by a binary tree having
k leaves, each node of the tree being labeled as α. This preserves decomposability,
determinism and structuredness (for structured DNNF, observe that, by definition,
∧-gates are already of fan-in 2 so only ∨-gates are modified). The resulting DNNF
has size at most (k − 1)size(D) ≤ size(D)2 since k ≤ size(D).

We say that a DNNFD is constant free if no input of D is labeled by a constant.

Proposition 1.60. Let D be a (decision, deterministic, structured) DNNF com-
puting a non-trivial function. There exists a DNNF D′ such that size(D′) ≤ size(D)
and D′ is constant free. Moreover, the fanin of D′ is smaller than the fanin of D.

Proof. We iteratively propagate the constants by using the following rules 0∨f ≡
f , 1 ∨ f ≡ 1, 0 ∧ f ≡ 0 and 1 ∧ f ≡ f until there is no constant in the circuit.

We can then prove the normal form theorem of DNNF:

Theorem 1.61. Let D be a DNNF. There exists a DNNF D′ in normal form,
equivalent to D such that size(D′) ≤ size(D)2.

Proof. Start by transforming D into a fan-in 2 DNNF using Proposition 1.59 and
then remove constants using Proposition 1.60 and gates of fan-out 0.

The following feature of DNNF in normal form will be useful:

Proposition 1.62. Let D be a DNNF in normal form and let α be an ∧-gate of
D with children α1, α2. The subcircuits Dα1 and Dα2 are disjoint.

Proof. Assume the contrary and let β be a common gate. By definition, Dβ is
contained in both Dα1 and Dα2 . However, since var(Dα1)∩ var(Dα2) = ∅, we have
var(Dβ) = ∅. Since D is constant free, it is a contradiction.

Chapter 2

Structural restrictions of #SAT

The problem #SAT, which is given a CNF-formula, counting its satisfying assign-
ments, is, unsurprisingly, a #P-complete problem [Val79a]. It is well-known that
clause restrictions such as 2-SAT or Horn-SAT yield tractable classes for SAT and
the complexity of such restrictions is well-understood, since Schaeffer [Sch78] ex-
hibited a dichotomy: such restriction either yields a tractable class of instances
or an NP-complete one. The picture however differs significantly for #SAT: com-
puting and even approximating the number of solutions of a monotone 2-CNF is
already as hard as the general case [Rot96]. A similar dichotomy is known for
counting [CH96]: it states that the only tractable class such restrictions yield is
the class of problem having affine clauses, which boils down to counting the num-
ber of solutions of a linear system over Z/2Z, which is a very restricted class of
instances.

Hence, in order to discover tractable families of formulas for #SAT, it is not
relevant to restrict the clauses individually. A successful line of research focuses on
so-called structural restrictions of #SAT: contrary to 2-SAT, it is not the clauses
that are independently restricted but the way they interact with one another.
In order to quantify this interaction, a graph or a hypergraph representing the
structure of a given formula is constructed and parameters from graph theory,
such as tree width, are used to measure it [PSS13, SS13, SS10, STV14].

In this chapter, we review the main results concerning the complexity of struc-
tural restrictions of #SAT. Section 2.1 is focused on giving the main tools and
definitions. In Section 2.2, we illustrate how one can take advantage of the un-
derlying structure of a formula to discover new tractable classes by presenting
results from [CDM14] on disjoint branches acyclicity. This serves as an example
of a typical scenario of the discovery of new tractable classes of #SAT based on
structural restrictions. Finally, we review in Section 2.3 all tractability results
known prior to this thesis concerning structural restrictions of #SAT, including
hardness results.

39

40 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

x1

x2

x3

x4

x5 x6

x7

Figure 2.1: The primal graph Gprim(Fex) of Fex

2.1 Structure of a CNF-formula

We explain in this section what we intend by “structure” of a formula. We present
and compare different graphs and hypergraphs associated to formulas and explain
how tools from graph theory presented in Section 1.2 can be used in this frame-
work. We illustrate each definition on the same example

Fex = (x1∨x2∨¬x3)∧(x1∨x2∨x3)∧(x3∨x4∨¬x5)∧(x1∨x5∨x6)∧(x1∨¬x3∨x5∨x7).

We denote the clauses of Fex by C0 = (x1 ∨ x2 ∨ ¬x3), C1 = (x1 ∨ x2 ∨ x3), C2 =
(x3 ∨ x4 ∨ ¬x5), C3 = (x1 ∨ x5 ∨ x6) and C4 = (x1 ∨ ¬x3 ∨ x5 ∨ x7).

2.1.1 Primal and dual graphs

One of the most basic and first studied graph associated to a formula is the so-
called primal graph. Given a CNF-formula F , the primal graph of F denoted by
Gprim(F) is defined as the graph whose vertices are the variables of F and for
which there is an edge between a pair of variables if and only they both appear
in a clause of F . The negations on variables from the CNF-formula do not appear
in the primal graph. Formally, Gprim = (var(F), E) where E = {{x, y} | ∃C ∈
F, {x, y} ⊆ var(C)}. Figure 2.1 pictures the primal graph of the formula Fex.

A closely related graph is the dual graph of the formula. The dual graph of
a formula F , denoted by Gdual(F), is the graph whose vertices are the clauses of
F and there is an edge between two clauses if and only if they share a variable.
Formally, Gdual = (F,E) where E = {{C1, C2} ∈ F | var(C1) ∩ var(C2) 6= ∅}.
Figure 2.2 pictures the dual graph of the formula Fex.

One of the main disadvantage of primal and dual graphs is that they forgot
many information on the structure of the formula. A well-known observation is
that if F is a CNF-formula, then adding only a clause C = {var(F)} containing
every variables of F transforms the primal graph into an n-clique where n =
|var(F)|. In this case, the internal structure of F is completely lost in Gprim(F),
therefore primal graph is not the best tool to understand the structure of a formula.
The same observation goes for the dual graph: adding a fresh variable x in every
clauses of a CNF-formula F transform the dual graph into a clique. In the next

2.1. STRUCTURE OF A CNF-FORMULA 41

C0

C1
C2

C3

C4

Figure 2.2: The dual graph Gdual(Fex) of Fex

x1

x2

x3

x4

x5

x6

x7

C0

C1

C2

C3

C4

Figure 2.3: The incidence graph Ginc(Fex) of Fex

section, we introduce another graph, the incidence graph, which characterizes the
structure of the formula more accurately.

2.1.2 Incidence graph and hypergraph

The incidence graph of a formula is a bipartite graph whose vertices are both the
variables and the clauses of the formula. There is an edge between a variable x
and a clause C if and only if the variable x is in var(C). Again, the negations on
the variables do not appear in the incidence graph anymore. We denote this graph
Ginc(F). Formally, Ginc(F) = (var(F), F, E) where E = {{x,C} | x ∈ var(F), C ∈
F, x ∈ var(C)}. Figure 2.3 pictures the incidence graph of the formula Fex.

The hypergraph of a formula, denoted by H(F), is the hypergraph whose ver-
tices are the variables of F and the hyperedges are the variables of each clauses.
Formally, H = {var(C) | C ∈ F}. Figure 2.4 pictures the hypergraph of formula
Fex.

Observe that the incidence graph ofH(F) is very close to Ginc(F) but if F holds
clauses C1, C2 having the same variables, that is var(C1) = var(C2), it generates
only one hyperedge in H(F) but two different vertices having the same neigh-

42 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

x1 x2 x3

x4

x5

x6

x7

x1 x2 x3

x4

x5

x6

x7

Figure 2.4: The hypergraph H(Fex) of Fex

borhood for C1, C2. In graph theory, two vertices having the same neighborhood
are called modules. Our observation is equivalent to say that the incidence graph
of the hypergraph H(F) is obtained by contracting every module of Ginc(F) that
corresponds to clauses of F .

This is illustrated in Fex: clauses C0 and C1 have the same variables {x1, x2, x3}
but H(Fex) has only one hyperedge {x1, x2, x3} when Ginc(Fex) has two modules
C0, C1.

Most of the graph decompositions we will be interested in for formulas are
stable by contracting modules so it is usually equivalent to use the hypergraph or
the incidence graph of a formula but one has to be careful since they do not quite
define the same object.

A closely related notion is the signed incidence graph of a formula. It is an
oriented version of the incidence graph, where an edge between a variable and a
clause is oriented depending on the sign of the variable in this clause. Formally, the
signed incidence graph G+

inc(F) of a CNF-formula F is the oriented bipartite graph
G+
inc(F) = (var(F), F, E) where E = {(x,C) | x ∈ lit(C)} ∪ {(C, x) | ¬x ∈ lit(C)}.

Figure 2.5 illustrates the signed incidence graph of Fex.

Observe that no information on the formula is lost in the signed incidence
graph. Indeed, one can easily reconstruct the formula given only G+

inc(F) and which
subset of variables corresponds to the clauses of F . However, this graph is less
useful for studying structural restrictions of #SAT since most well-studied graph
measures concern non-oriented graphs. Signed clique-width of the signed incidence
graph has however been used to design an FPT-algorithm for #SAT [FMR08] and
it is not excluded that progress in graph measures for directed graphs may yield
new tractable classes for #SAT.

2.1.3 Structural restriction of CNF-formulas

We now have the tools needed to explain more precisely what we intend by struc-
tural restriction of a CNF-formula. These restrictions will be defined by structural
conditions on one of their associated graphs (primal, dual, incidence, hypergraph).

2.1. STRUCTURE OF A CNF-FORMULA 43

x1

x2

x3

x4

x5

x6

x7

C0

C1

C2

C3

C4

Figure 2.5: The signed incidence graph G+
inc(Fex) of Fex

Given a graph width p, we will refer to the primal (resp. dual, incidence) p-width
of a CNF-formula as the p-width of its primal (resp. dual, incidence) graph. Given
a hypergraph width p, the p-width of the formula is the width p of its hypergraph.
Given a hypergraph property P, we refer to a formula F having the property P if
P is true on H(F).

For instance, the primal tree width of a CNF-formula F is defined to be the
tree width of the primal graph of F , in symbols tw(Gprim(F)) and the incidence
tree width of F is the tree width of its incidence graph, in symbols tw(Ginc(F)).
Similarly, a formula F is said β-acyclic if H(F) is β-acyclic.

The primal tree width of Fex is 3 since Gprim(F) contains a 4-clique and
the decomposition having bag {x1, x3, x5, x7} connected to the bags {x3, x4, x5},
{x1, x5, x6} and {x1, x2, x3} is a tree decomposition of Gprim(F) of width 3. It can
be shown similarly that the dual tree width and the incidence tree width of Fex are
also 3. The incidence tree width of a formula is however usually smaller than its
primal and dual tree width. The most striking example is the formula having only
one clause of n variables. Its primal graph is an n-clique, therefore, the primal
tree width of the formula is n. However its incidence graph is a tree and thus the
incidence tree width of this formula is 1. More generally, the following holds:

Theorem 2.1. For all CNF-formula F , the incidence tree width of F is smaller
than its primal tree width and its dual tree width.

Proof. Let F be a CNF-formula of primal tree width k and let (x1, . . . , xn) be an
elimination order of var(F) of width k, given by Theorem 1.27. Let (C1, . . . , Cm) be
an arbitrary order on F . We claim that (C1, . . . , Cm, x1, . . . , xn) is an elimination
order of Ginc(F) of width a most k. Indeed, by removing a clause C in Ginc(F),
the only edges that are added are {(x, y) | x, y ∈ var(C)}. Thus after removing
every clauses in Ginc(F), we end up with the primal graph of F .

44 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

Moreover, when we remove a vertex corresponding to a clause C, its degree in
the graph is |C| since we never add new edges incident to clauses (only edges be-
tween variables). Thus, the width of (C1, . . . , Cm, x1, . . . , xn) is max(max{|C| |
C ∈ F}, k). Since each clause C ∈ F induces a |C|-clique in Gprim(F), we
have k ≥ max{|C| | C ∈ F}, that is, (C1, . . . , Cm, x1, . . . , xn) is of width k and
tw(Ginc(F)) ≤ k = tw(Gprim(F)).

The proof for dual tree width is symmetric. It is sufficient to remove the
variables of F first in Ginc(F) and then use an elimination order of Gdual(F) of
width k on the clauses.

#SAT is said to be tractable on a class C of formulas if there exists a polynomial
time algorithm that given a formula F rejects if F /∈ C and outputs #F otherwise.
In a context of structurally defined classes of formulas, proving that a class C is
tractable is often done in two steps: first, it is shown that if F ∈ C, then there
exists a decomposition of the formula that can be used to count its number of
satisfying assignments in polynomial time. Then it is shown that there exists a
polynomial time algorithm that given a formula decides if F ∈ C and if so, outputs
the needed decomposition for the algorithm to work. This scenario is illustrated
in more details in Section 2.2, where we give a complete study of the tractability
of #SAT on so-called disjoint branches formulas as an example. In Section 2.3.1,
we give a very broad class of formulas for which one can show that, if provided
a good decomposition of the formula, one can count its satisfying assignments
in polynomial time. However, for this class, the problem of deciding if one can
construct such a decomposition is still open.

2.2 A first tractable class: disjoint branches

In this section, we introduce a hypergraph acyclicity (see [Dur12]), called dis-
joint branches acyclicity, which fits between γ-acyclicity and β-acyclicity. We first
present its definition and its relations to other hypergraph acyclicity notions and
give a dynamic programming algorithm to perform model counting on disjoint
branches formulas. Finally, we give a polynomial time algorithm which accepts
and outputs a disjoint branches decomposition of the input hypergraph if it exists,
and rejects otherwise.

The model counting algorithm presented here is superseded by results from
Section 2.3.1 or Chapter 4. We choose however to explain it here as an easy illus-
tration of how one can use such decompositions to solve #SAT in polynomial time.
Indeed, most of the known algorithms for #SAT, presented in Section 2.3 perform
this kind of dynamic programming on the formula and this example may help the
reader to grasp the main techniques used in this area. The reader only interested
in state of the art results may safely skip to Section 2.3. Section 2.2.3 presents
however a result of independent interest since it gives an algorithm to compute
a new hypergraph decomposition that could be used for different problems. All
results of this section are adapted from [CDM14].

2.2. A FIRST TRACTABLE CLASS: DISJOINT BRANCHES 45

1 234

1, 3

1, 2, 3

1, 23, 4

Figure 2.6: A disjoint branches acyclic hypergraph

1 23

4

Figure 2.7: A β-acyclic hypergraph that is not disjoint branches acyclic.

2.2.1 Disjoint branches hypergraphs

Disjoint branches decompositions were introduced in [Dur12] as follows:

Definition 2.2. A disjoint branches decomposition of a hypergraph H is a join
tree (T , λ) such that for every two nodes t and t′ appearing on different branches
of T we have λ(t) ∩ λ(t′) = ∅.

A hypergraph with a disjoint branches decomposition is called disjoint branches
acyclic. Figure 2.6 pictures a disjoint branches acyclic hypergraph and a disjoint
branches decomposition of this hypergraph.

Disjoint branches acyclic hypergraphs are obviously α-acyclic since a disjoint
branches decomposition is a join tree. Duris showed in [Dur12] that such a hy-
pergraph is even β-acyclic. It can be easily seen as follows: in a given branch
decomposition, if one removes a bag and connects all its children to its father,
then one gets a new disjoint branches decomposition. If one removes the root and
connects its first child to all its other children, then again, one gets a new disjoint
branches decomposition. Thus, the property of having a disjoint branches decom-
position is hereditary. In particular, every subhypergraph of a disjoint branches
acyclic hypergraph are α-acyclic, that is, every disjoint branches acyclic hyper-
graph is β-acyclic. The converse is not true however. The hypergraph H depicts
in Figure 2.7 is β-acyclic since (2, 3, 4, 1) is a β-elimination order of H. Moreover,
assume that there exists a disjoint branches decomposition of H. Since 1 is in all
edges, this decomposition has to be a path of length 4. On this path, at least
one edge {1, i} for i = 2, 3, 4 is not a neighbor of the edge {1, 2, 3, 4}. Assume
this is {1, 2} (the other cases are symmetric). Since the only edges holding 2 are

46 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

{1, 2} and {1, 2, 3, 4} and since they are not neighbors, 2 is not connected in the
decomposition. Therefore H is not disjoint branches acyclic.

Duris [Dur12] also showed an intriguing connection between γ-acyclicity and
disjoint branches decompositions: a hypergraph H is γ-acyclic if and only if for
all edge e ∈ H, there exists a disjoint branches decomposition rooted in this edge.
Thus γ-acyclic hypergraphs are also disjoint branches acyclic. The converse is not
true however and it can be proved that the hypergraph depicted in Figure 2.6 is
not γ-acyclic. This shows how disjoint branches decompositions are sensible to
the choice of root, a problem which is particularly challenging when it comes to
constructing a disjoint branches decomposition of a given hypergraph, as explained
in Section 2.2.3.

2.2.2 Model counting of disjoint branches formula

In this section we will show that #SAT restricted to hypergraphs with a disjoint
branches decomposition can be solved in polynomial time. In the following, we
let F be a disjoint branches acyclic formulas and (T , λ) a disjoint branches de-
composition of H(F). The principle of the algorithm is as follows: we associate
a subformula Ft of F to each vertex t of the decomposition and then describe a
dynamic programming on T to infer the number of solution of Ft from the number
of solutions of Ft1 , . . . , Ftk , where t1, . . . , tk are the children of t in T .

We now define the notations that we will use to describe the algorithm. We
recall that given a hyperedge e ∈ H(F), there may be more than one clause C of
F such that var(C) = e. This makes the notations a bit heavier. For a vertex t
of T , we denote Ct =

∧
C∈F,var(C)=λ(t)C the set of clauses corresponding to the

bag λ(t). We denote Ft =
∧
u∈V (Tt)Cu, the subformula of F that has all clauses

corresponding to bags in the subtree of T rooted in t. Observe that if t has children
t1, . . . , tk in T , then Ft = Ct ∧

∧k
i=1 Fti and by disjointness, for all i < j ≤ k, we

have var(Fti) ∩ var(Ftj) = ∅. We denote by Vt = var(Ft) =
⋃
u∈Tt λ(u). For a

clause C ∈ F , we denote by aC : var(C) → {0, 1} the only assignment of var(C)
that do not satisfy C. That is aC(x) = 0 if x ∈ C and aC(x) = 1 if ¬x ∈ C.

We recall that for truth assignments a, b, we denote by a ' b if a(x) = b(x)
for every x where they are both defined. We also denote by a ⊆ b if a ' b and if
every variable that is assigned by a is also assigned by b. Given a formula G and
X ⊇ var(G) and an assignment b of Y ⊆ X, we denote by satX(G, b) = {a : X →
{0, 1} | a |= G and a ' b} the set of satisfying assignments of G on variables X
that are compatible with b. If b is the empty assignment, we only write sat(G).
We omit the subscript X when X = var(G). We have the following:

Lemma 2.3. Let F1, . . . , Fk be CNF-formulas such that for all i 6= j, var(Fi) ∩
var(Fj) = ∅. Let V =

⋃k
i=1 var(Fi), X ⊇ V , Y ⊆ X and a : Y → {0, 1}. Then

|satX
(
(

k∧
i=1

Fi, a)
)
| = 2|X\(V ∪Y)|

k∏
i=1

|sat(Fi, a)|.

2.2. A FIRST TRACTABLE CLASS: DISJOINT BRANCHES 47

Proof. Observe that if two CNF-formulas A and B do not share variables then
sat(A∧B) = {c∪d | c ∈ sat(A), d ∈ sat(B)}. Hence, since var(Fi[a])∩var(Fj [a]) = ∅
for i 6= j, we have |sat(

∧k
i=1 Fi, a)| =

∏k
i=1 |sat(Fi, a)|. Now the variables that do

not appear in Y nor in V are free and their values do not influence the satisfiability
of Fi. Thus

|satX(
k∧
i=1

Fi, a)| = 2|X\(V ∪Y)|
k∏
i=1

|sat(Fi, a)|.

Lemma 2.4. Let t be a vertex of T with children t1, . . . , tk. Let Y ⊆ λ(t) and let
b : Y → {0, 1}. Let W = Vt \ (Y ∪

⋃k
i=1 Vti). We have

|sat(Ft, b)| = 2|W |
k∏
i=1

|sat(Fti , b)| −
∑
C∈Ct
b⊆aC

k∏
i=1

|sat(Fti , aC)|.

Proof. To ease notation, denote G =
∧k
i=1 Fti . We have Ft = Ct ∧G. We start by

counting the number of satisfying assignments of G compatible with b and remove
from them the satisfying assignments of G that do not satisfy Ct.

For all i 6= j, we have var(Fti)∩var(Ftj) = ∅ since the decomposition is disjoint
branches. Thus by Lemma 2.3:

|satVt(G, b)| = 2|W |
k∏
i=1

|sat(Fti , b)|.

Now it is sufficient to count the assignments a ∈ satVt(G, b) such that a /∈
sat(Ft, b). Let a be in satVt(G, b)\ sat(Ft, b). In particular b ⊆ a. Moreover since a
already satisfies G, it means a 6|= Ct, that is, there exists C ∈ Ct such that aC ⊆ a.
Again by disjointness, the number of assignments of satVt(G) that verifies aC ⊆ a
is, by Lemma 2.3:

k∏
i=1

|sat(Fti , aC)|.

Finally, for all C,C ′ ∈ Ct, if C 6= C ′ then aC 6= aC′ since var(C) = var(C ′).
Thus if aC ⊆ a then aC′ 6⊆ a. That is, the number of assignments a such that
a |= G, b ⊆ a and a 6|= Ct is:

∑
C∈Ct
b⊆aC

k∏
i=1

|sat(Fti , aC)|.

Lemma 2.4 can be used to compute the number of satisfying assignments
of a disjoint branches formula by dynamic programming if a disjoint branches
decomposition is given as shown by the following theorem:

48 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

λ(t)

· · ·

λ(u) a 6|= C, var(C) = λ(u)

t1 . . . tk

Figure 2.8: Notations for the proof of Theorem 2.5

Theorem 2.5. Given F a disjoint branches formula and (T , λ) a disjoint branches
decomposition of H(F), one can compute |sat(F)| in polynomial time.

Proof. We compute the number of satisfying assignments of Ft for all vertices t
of T on well-chosen partial truth assignments by dynamic programming. More
precisely, for every vertex t of T , for every ancestor u of t in T and for every C ∈ F
such that var(C) = λ(u), we compute the value

∣∣satVt(Ft, aC |λ(t))
∣∣ and |sat(Ft)|.

Figure 2.8 represents the notations used in this proof.
If we manage to compute these values for all t, then choosing t to be the root

of the tree leads to F = Ft and then |sat(Ft)| = |sat(F)| is computed. Moreover,
for each t, we have to compute at most O(|F |) values and there are at most |F |
such t. Thus, we have at most O(|F |2) values to compute. It is thus enough to
show that each value can be computed in polynomial time to prove the theorem.

We do this by induction. If t is a leaf then Ft is the conjunction of clauses
having the same variables λ(t). For each clause C of Ft, there exists exactly one
assignment of λ(t) that do not satisfy C. Thus, the number of assignments of λ(t)
that do not satisfy Ft is exactly |Ft|. That is |sat(Ft)| = 2|λ(t)| − |Ft|. Similarly,
if u is an ancestor of t and C ∈ F such that var(C) = λ(u), then let a = aC |λ(t).
We just have to go over all clauses of Ft to detect the assignments of λ(t) which
do not satisfy Ft and deduce |sat(Ft, a)| from it. This initialization can be done
in polynomial time.

Now let t be a vertex of T with children t1, . . . , tk and assume that all values
have been precomputed for the other vertices of Tt. See Figure 2.8. We denote by
W = Vt \ (

⋃k
i=1 Vti). By Lemma 2.4,

|sat(Ft)| = 2|W |
k∏
i=1

|sat(Fti)| −
∑
C∈Ct

k∏
i=1

|sat(Fti , aC)|. (2.1)

Let i ≤ k. Observe that Vti ∩ λ(t) ⊆ λ(ti) by connectedness of variables in
T . Since for all C ∈ Ct, aC assigns variables in λ(t), we have sat(Fti , aC) =
sat(Fti , aC |Vt∩Vti) = sat(Fti , aC |λ(ti)). Since t is an ancestor of ti, each term in
Equation 2.1 has been precomputed and one can thus compute |sat(Ft)| with
O(k|Ct|) arithmetic operations.

2.2. A FIRST TRACTABLE CLASS: DISJOINT BRANCHES 49

Now let u be an ancestor of t and D ∈ Cu. We denote by Y = λ(t)∩ λ(u) and
W = Vt \ (Y ∪

⋃k
i=1 Vti) the vertices of λ(t) that appear neither in the labels of its

children nor in those of u. Let b = aD|λ(t). The domain of b is Y ⊆ λ(t), thus by
Lemma 2.4 again,

|sat(Ft, b)| = 2|W |
k∏
i=1

|sat(Fti , b)| −
∑
C∈Ct
aC⊆b

k∏
i=1

|sat(Fti , aC)|. (2.2)

Let i ≤ k. As before sat(Fti , aC) = sat(Fti , aC |λ(ti)), and thus, the cardi-
nal of this set has already been computed. Moreover, Vti ∩ λ(u) ⊆ λ(t) ∩ λ(ti)
by connectedness of variables in T . Thus aD|Vti = aD|λ(t)∩λ(ti) = b|λ(ti). Thus
sat(Fti , b) = sat(Fti , b|λ(ti)) is a precomputed value. Thus each term in Equa-
tion 2.2 has been precomputed and one can thus compute |sat(Ft, b)| with O(k|Ct|)
arithmetic operations.

In the end, one can compute the number of satisfying assignments of F in
polynomial time by dynamic programming.

We do not exhibit the exact runtime of the algorithm given in Theorem 2.5
nor do we try to improve it since this result is generalized in Chapter 4 with a
better algorithm for a larger class of formula. Our purpose here is only to give
an illustration of the type of algorithms used for the tractability results reviewed
in Section 2.3, hence we rather like presenting the main ideas of the dynamic
programming than optimizing the runtime of the algorithm.

2.2.3 Finding a disjoint branches decomposition

Theorem 2.5 gives an algorithm that computes the number of satisfying assign-
ments of a disjoint branches CNF-formula if a disjoint branches decomposition is
given in the input. Theorem 2.5 is however not enough to ensure the tractability
of #SAT on disjoint branches instances because a disjoint branches decomposition
may still be NP-hard to compute. This section is dedicated to the proof of The-
orem 2.13 that states that one can construct a disjoint branches decomposition
in polynomial time. The tractability of #SAT on disjoint branches instances thus
follows from combining both Theorem 2.5 and Theorem 2.13.

Our decision algorithm relies on a precise understanding of the structure of
disjoint branches decomposition (described in Theorem 2.11) and on PQ-trees, a
powerful data structure, introduced by Booth and Lueker [BL76], to decide the
existence of join paths having nice properties (see Theorem 2.10).

To the best of our knowledge it is the first polynomial time algorithm for con-
structing disjoint branches decompositions of hypergraphs. Gavril [Gav75] has
proposed an algorithm for recognizing intersection graphs of directed paths in di-
rected trees, a related notion that has been used successfully for quickly answering
queries in probabilistic databases [KGS13]. The intersection graph associated to a
directed tree T and V a set of paths in T is the graph on vertices V such that v, w

50 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

are connected by an edge if and only if the paths v and w intersect. This is re-
lated to disjoint branches: given a disjoint branches decomposition T of H, V (H)
naturally defines a set of paths in T that are for each x ∈ H, the path of vertices
of T holding x. The intersection graph of such a family is the primal graph of H.
However, this is not an equivalence since every clique is an intersection graph of
such family. However, the primal graph of the hypergraph of Figure 2.7 is a clique
and the hypergraph is not disjoint branches acyclic. Thus, the work of Gavril is
not appropriate in our settings.

Join paths. Our algorithm relies on a notion close to join tree: join paths. A
join path for a hypergraph H is a join tree whose underlying tree is a path. More
formally, a join path for H is a path P together with a labeling function λ from
the vertices of P to H such that:

• for every e ∈ H, there exists a unique vertex p of P such that λ(p) = e and,

• for every x ∈ V (H), the set of vertices p of P such that x ∈ λ(p) is a
connected subpath of P.

Observe that if we have a disjoint branches decomposition T of H, then for every
x ∈ V (H), the edges that contain x are on the same path of T , hence, the edges
of H that contains x have a join path.

Outline of the algorithm. Our recognition algorithm works roughly as follows:
we start by choosing an edge e of the input hypergraph H and try to construct
a disjoint branches decomposition of H rooted in e. For this, we characterize the
disjoint branches decomposition ofH rooted in e: we pick x ∈ e and observe that in
such a decomposition, the edges ofHx = {f ∈ H | x ∈ f} lie on a join path starting
from e and increasing for a certain preorder. On this path, disjoint branches
decompositions of the different connected components H1, . . . ,Hk of H \ Hx are
grafted. More importantly, we can find unique edges f1, . . . , fk in Hx that have
to be used as roots for these decompositions, allowing us to recursively call the
algorithm on each Hi. Figure 2.9 pictures the structure of such decompositions.

There is one remaining difficulty: we have to find join paths increasing for a
given preorder. This is achieved by using PQ-trees, a powerful data structure
which can be efficiently computed [BL76] and used to encode every join path of
a hypergraph. We then extract from this representation a join path respecting a
given preorder.

PQ-trees. PQ-trees are a data structure [BL76] originally defined to check ma-
trices for the so-called consecutive ones property. This problem can be refor-
mulated as follows in our setting: given a hypergraph H, is there an ordering
(e1, . . . , em) of the edges such that if v ∈ ei ∩ ej , then for all i ≤ k ≤ j, v ∈ ek? In
other words, is there a join path for H that is, a join tree whose underlying tree
is a path?

2.2. A FIRST TRACTABLE CLASS: DISJOINT BRANCHES 51

e

f1

•

fk
•

Hx
...

T1

Tk

Figure 2.9: An illustration of the decomposition given by Theorem 2.11

We now give the definition of PQ-trees and the properties we will be interested
in.

Definition 2.6. Let H be a hypergraph. A PQ-tree for H is an ordered tree with
leaf set H such that

1. the internal nodes are labeled with P or Q

2. the P -nodes have at least two children, and

3. the Q-nodes have at least three children.

PQ-trees will be used to encode sets of permutations of the edge set of a
hypergraph that have certain properties. We write these permutations simply as
(ordered) lists. To this end, we define some notation for lists and sets of lists. The
concatenation of two ordered lists `1, `2 will be denoted by `1`2. If L1, L2 are two
sets of lists, we denote by L1L2 the set {`1`2 | `1 ∈ L1, `2 ∈ L2}.

Definition 2.7. The frontiers F(T) of a PQ-tree T for H are a set of ordered
list of elements of edges defined inductively by

• if T is a leaf e ∈ H, then F(T) = {e},

• if T is rooted in t, having children t1, . . . , tk, then

– if t is a Q-node then F(T) = (F(T1) . . .F(Tk)) ∪ (F(Tk) . . .F(T1)),

– if t is a P -node then F(T) =
⋃
σ∈Sk(F(Tσ(1)) . . .F(Tσ(k))) where Sk is

the set of permutations of [k],

where Ti is the subtree of T rooted in ti.

For example, the frontier of the PQ-tree depicted in Figure 2.10 is:

F(T) = {(e1, e2, e3, e4), (e2, e1, e3, e4), (e4, e3, e2, e1), (e4, e3, e1, e2)}.

52 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

Q

P

e1 e2

e3 e4

Figure 2.10: A PQ-tree

Observe that a PQ-tree is a handy way of representing a set of size possibly
exponential with a structure that is polynomial in the number of edges in the
hypergraph.

We recall the main theorem of [BL76], which allows to represent all possible
join paths of a hypergraph in polynomial time.

Theorem 2.8 ([BL76]). Given a hypergraph H, one can compute a PQ-tree T in
time O(|H| · |V (H)|) such that F(T) is exactly the set of join paths for H.

We say that a PQ-tree T represents the join paths of H if F(T) is exactly
the set of join paths of H. Theorem 2.8 states that one can easily find, given a
hypergraph, a PQ-tree representing H.

Our main concern for computing disjoint branches decompositions of hyper-
graph is to find join paths having the additional property of respecting a given
preorder. More precisely, let H be an hypergraph and ≺ be a preorder on H.
We say that a join path (e1, . . . , em) for H is compatible with ≺ if for all i < j,
(ej 6≺ ei). Fortunately, extracting compatible join paths from a PQ-tree can be
done in polynomial time.

We need some notations. Given a PQ-tree T representing a hypergraph H and
a vertex t of T , we denote by H(t) ⊆ H the labels of the leaves of Tt. Moreover,
given a preorder ≺ on H, A ⊆ H and B ⊆ H, we write A � B if for all a ∈ A and
b ∈ B, ¬(a ≺ b).

Lemma 2.9. Let H be a hypergraph, ≺ a preorder on H such that there exists a
join path P of H compatible with ≺ and T a PQ-tree representing H. Then for
any non-leaf vertex t of T with children t1, . . . , tk, the following holds:

• if t is a P -node, then there exists a permutation σ of [k] such that for all
i < j, H(tσ(i)) � H(tσ(j))

• if t is a Q-node, then either for all i < j, H(ti) � H(tj) or for all i < j,
H(tj) � H(ti).

Proof. Since T represents all join paths of H, P ∈ F(T). For each node t of T , we
choose a permutation σt of its children (among the identity or the reverse order)
such that the resulting path is P. We let P(t) be the join path for H(t) it defines.

Let t be a P -node and let σ be the chosen permutation of its children. We
have P(t) = P(tσ(1)) . . .P(tσ(k)). We claim that P(t) is a compatible join path

2.2. A FIRST TRACTABLE CLASS: DISJOINT BRANCHES 53

of H(t). Indeed if there exists e, f in P(t) with e appearing before f in P(t) and
f ≺ e, then e appears before f in P and f ≺ e, contradicting the fact that P is
a compatible join path. Thus, for all i < j, e ∈ H(tσ(i)) and f ∈ H(tσ(j)), since e
appears before f in P(t), we have ¬(e ≺ f). That is H(tσ(i)) � H(tσ(j)).

The case where t is a Q-node is similar, since we also have a permutation of its
children, only here, the permutation is either the identity or the reverse order.

Theorem 2.10. Let H be a hypergraph and ≺ a preorder on H. One can decide
if a join path of H compatible with ≺ exists and, if so, construct it in polynomial
time.

Proof. We start by constructing in polynomial time a PQ-tree T such that F(T)
is exactly the set of join paths of H, which is possible by Theorem 2.8.

We then check for all vertices t of T that it respects the properties listed
in Lemma 2.9. This can be done in polynomial time. Indeed, if t has children
t1, . . . , tk, we start by deciding ifH(ti) � H(tj) for all i < j. For Q-nodes, we check
that for every i < k, H(ti) � H(ti+1) or that for every i < k, H(ti+1) � H(ti).
For P -nodes, we try to do a topological sort of Hi according to �.

If we find a vertex t in T which does not meet these conditions, then by
Lemma 2.9, there exists no join path for H compatible with ≺. Hence we return
an error and fail.

Otherwise, we inductively construct bottom-up a join path compatible for ≺.
More precisely, for all node t of T , we construct a join path for H(t) compatible
with ≺.

If t is a leaf labeled with e ∈ H, then we return (e). It is obviously a join path
of Ht = {e} compatible with ≺. If t has children t1, . . . , tk, we first construct by
induction compatible join paths P1, . . . ,Pk for H(t1), . . . ,H(tk).

Now, if t is a P -node, we know that there exists a permutation σ of [k] such
that for all i < j, H(tσ(i)) � H(tσ(j)). We then return the join path Pt =
(Pσ(1) . . .Pσ(k)). It is a compatible path for H(t). Indeed, let e, f be two edges
of Pt and assume that e appears before f in Pt. Let i ≤ j be the such that e is
in Pσ(i) and f is in Pσ(j). If i = j, then e appears before f in Pσ(i) and since
Pσ(i) is compatible with ≺, we know that ¬(e ≺ f). Otherwise, if i < j, then
by construction of σ, Hσ(i) � Hσ(j), that is, by definition, ¬(e ≺ f). Thus Pt is
compatible. Since σ has been precomputed, we can do this step in polynomial
time.

The case where t is a Q-node is similar. It is sufficient to observe that it is
the same case where the permutation is either the identity or the reverse order of
[k].

Rooted decompositions. We now turn to the main algorithm of this section,
which computes disjoint branches decompositions of a hypergraph. To do so, we
first explain how we can reduce this question to the computations of join paths.
For a hypergraph H and a vertex x ∈ V (H), we denote by Hx = {e ∈ H | x ∈ e}

54 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

the set of edges holding x. Given e ∈ H, we say that H is db-rootable in e if there
exists a disjoint branches decomposition of H such that the label of the root is
e. Moreover, given H′ ⊆ H, we define a relation ≺H′ on H′ as for all e, f ∈ H′,
e ≺H′ f if and only if there exists a connected component C of H \ H′ such that
∅ 6= e ∩ V (C) (f ∩ V (C).

Theorem 2.11. Let H be a connected hypergraph, e ∈ H and x ∈ V (H). H is
db-rootable in e if and only if the following holds:

1. for every connected component C of H\Hx, C∪{V (Hx)∩V (C)} is db-rootable
in {V (Hx) ∩ V (C)},

2. for all f, g ∈ Hx, if there exists a connected component C of H \ Hx such
that f ∩ g ∩ V (C) 6= ∅ then either f ∩ V (C) ⊆ g or g ∩ V (C) ⊆ f ,

3. the transitive closure (≺∗Hx) of (≺Hx) is a preorder,

4. there exists a join path for Hx compatible with (≺∗Hx) starting with e.

Proof. We start by proving that if H is db-rootable in e then items (1)-(4) hold.
Let (T , λ) be a disjoint branches decomposition of H rooted in e. Since T is
disjoint branches, exactly one branch of T contains the edges holding x. Since
x ∈ e and e is at the root of T , we have a join path for Hx going down from e in
T .

Let {T1, . . . , Tk} be the connected component of the forest resulting from re-
moving from T the vertices labeled by an edge of Hx, that is, we remove from
T the set {u ∈ V (T) | x ∈ λ(u)}. Let C be a connected component of H \ Hx.
We show that there exists i such that Ti is a disjoint branches decomposition of
C. We denote by Ei the set of edges labeling the vertices of Ti. Observe that
H \ Hx =

⊎k
i=1Ei. Moreover, for i 6= j, Ti and Tj are hanged on two different

branches of T . Thus, V (Ei)∩V (Ej) = ∅. Thus each Ei contains disjoint connected
components of H \Hx. That is there exists i such that C ⊆ Ei.

Now we show that we actually have C = Ei. Indeed, assume there exists
f ∈ Ei \ C. Let C′ be the connected component of H \Hx such that f ∈ C′. From
what precedes, C′ ⊆ Ei too. Moreover, V (C′) ∩ V (C) = ∅ since they are different
connected components. Let ei be the label of the root of Ti. Assume ei ∈ C.
By connectedness in T , it means that V (C′) ∩ V (Hx) = ∅ since V (C′) ∩ ei = ∅.
Thus C′ is a connected component of H. Since H is connected, we have C′ = H,
contradiction. Thus, Ei = C.

We have shown that T can be decomposed as in Figure 2.9: a join path
for Hx rooted in e on which disjoint branches decompositions for each connected
component ofH\Hx are grafted. For a given connected component C ofH\Hx, we
denote by TC the subtree of T corresponding to a disjoint branches decomposition
of C and we let fC ∈ Hx be the father of the root of Ti, that is, the edge of Hx from
which TC hangs. By connectedness, for every connected component C of H \ Hx,
we have fC ∩ V (Hx) = V (C) ∩ V (Hx). Thus, C ∪ {V (C) ∩ V (Hx)} is db-rootable

2.2. A FIRST TRACTABLE CLASS: DISJOINT BRANCHES 55

in V (C)∩ V (Hx) since replacing fC by V (C)∩ V (Hx) in the tree whose root is fC
attached to TC yields the desired decomposition. This proves item 1.

Let C be a connected component of H\Hx and g ∈ Hx such that g∩V (C) 6= ∅.
We prove that g is an ancestor of fC . Indeed, if g is a descendant of fC then it
lies on a branch of T different from the branch of TC . Thus we have two disjoint
branches in T having non-disjoint variable sets, contradiction.

Now let f, g ∈ Hx such that there exists a connected component C of Hx such
that f ∩ g ∩ V (C) 6= ∅. Assume f is an ancestor of g. Then f ∩ V (C) ⊆ g. Indeed,
they are both ancestor of fC . Thus, if y ∈ f ∩ V (C), y ∈ g by connectedness of y
since y ∈ fC . This proves item 2.

Finally, observe that if f ≺Hx g then f is an ancestor of g in T . Indeed,
by definition, there exists a connected component C of H \ Hx such that ∅ 6=
f ∩ V (C) (g ∩ V (C). From what precedes, if f is a descendant of g in T then
g ∩ V (C) ⊆ f ∩ V (C), contradiction. Thus, f is an ancestor of g. From this, we
get that (≺∗Hx) is a preorder. Indeed, it is transitive by definition and if e ≺∗Hx f
and f ≺∗Hx e then e is an ancestor of f and f is an ancestor of e, that is e = f .
This proves item 3. Now let P be the join path of Hx induced by the branch of
T containing Hx. From what precedes, if f is after e in P, then ¬(e ≺∗Hx f), that
is P is compatible with (≺∗Hx), which concludes the first part of the proof.

We now prove that if items (1)-(4) hold then H has a disjoint branches de-
composition rooted in e. Let P be a join path of Hx rooted in e compatible with
(≺∗Hx). We root P in e. Let C be a connected component of H\Hx. We define fC
to be the last edge of Hx on P to have a non-empty intersection with C. Observe
that by item 2, fC ∩ V (C) = V (Hx) ∩ V (C). Let TC be the disjoint branches de-
composition of C ∪ {V (Hx)∩ V (C)} rooted in V (Hx)∩ V (C). We replace the root
of TC by fC to have a disjoint branches decomposition of C ∪ fC that we graft on
P on fC . It is readily verified that the decomposition of H constructed is disjoint
branches and rooted in e.

We are now ready to give a polynomial time algorithm that decides, given a
hypergraph H and e ∈ H, if there exists a disjoint branches decomposition of H
rooted in e.

Proposition 2.12. Algorithm 3 is correct and runs in polynomial time.

Proof. First, observe that since H is connected, if it is not reduced to e, then we
can find x ∈ e such that |Hx| > 1. Now observe that we always call the procedure
on strictly smaller connected hypergraphs since |Hx| > 1.

Moreover, we call the procedure at most |H| times since we always call it
on disjoint smaller hypergraphs and each step of the procedure can be done in
polynomial time: it is well-known that we can compute connected components
of a hypergraph in polynomial time. Moreover, computing a join path for Hx
compatible with a preorder can be done in polynomial time by Theorem 2.10.
Thus, Algorithm 3 runs in polynomial time.

56 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

The correctness of Algorithm 3 follows from Theorem 2.11 since we construct
the decomposition as in the proof of this theorem.

Algorithm 3: An algorithm to construct disjoint branches decompositions

Data: A connected hypergraph H and e ∈ H
begin

if H = {e} then
return e

else
Choose x ∈ e such that |Hx| > 1 ;
Compute the connected components C1, . . . , Ck of H \Hx ;
Check that for all e, f ∈ Hx and i ≤ k:

if e ∩ f ∩ V (Ci) 6= ∅, then e ∩ V (Ci) ⊆ f or f ∩ V (Ci) ⊆ e ;
if there exists e, f that do not respect these conditions then

Rejects;

Compute ≺∗Hx ;

if ≺∗Hx is not antisymetric then

Rejects;

if there exists a join path P for Hx compatible with ≺∗ then
T ← P, as a tree rooted in e ;
for i = 1, ..., k do

Compute recursively Ti a disjoint branches decomposition of
Ci ∪ {V (Ci) ∩ V (Hx)} rooted in V (Ci) ∩ V (Hx) ;
gi ← the deepest edge f of T such that f ∩ Vi = ∅ ;
Hang Ti to gi ;

return T ;

else
Rejects

Theorem 2.13 ([CDM14]). Given H, one can decide in polynomial time if it has
a disjoint branches decomposition.

Proof. IfH is connected, then we can try to compute a disjoint branches decompo-
sition of H rooted in e for every e ∈ H using Algorithm 3. This runs in polynomial
time.

If H is not connected, then we start by computing the connected components
{C1, . . . , Cm} of H and use what precedes to find for all i ≤ m a disjoint branches
decomposition Ti of Ci. We plug to the root of T1 the decompositions Ti for i ≥ 2.
Since each connected component have disjoint vertices, this results in a disjoint
branches decomposition of H.

2.3. TRACTABILITY FRONTIER 57

γ-acyclicity

disjoint branches

β-acyclicity

α-acyclicity

PS-width

Incidence
MIM-width

Incidence
clique-width

Modular inci-
dent treewidth

Neighborhood
diversity

Signed incidence
clique-width

Incidence treewidth

Primal treewidth

β-hypertreewidth

Hypertreewidth

PTIME or FPT XP and W[1]-hard

Intractable

W[1]-hard

Figure 2.11: Structural restriction of #SAT

2.3 Tractability frontier

In this section, we review results concerning the complexity of structural restric-
tions of #SAT that are depicted in Figure 2.11. An arrow between two restrictions
means that if a family of formula satisfies the first restriction, then it also satisfies
the second. For example, a family of γ-acyclic formulas has also bounded incidence
clique-width, since a γ-acyclic formulas has clique-width at most 3 [GP04].

A dashed arrow between two parameters means that if the first parameter is
bounded for a CNF-formula F , then the second is bounded by a polynomial (whose
degree may depend on k) in size(F).

All known efficient algorithms for structural restrictions of #SAT are perform-
ing a dynamic programming algorithm along a decomposition of the formula, as
it is done for disjoint branches formulas in Theorem 2.5. It turns out that they
can be summarized as one unique dynamic programming algorithm proposed by
Sæther, Telle and Vatshelle in [STV14] on a very general kind of decomposition

58 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

of the formula. In the first section, we explain this result and show why it en-
compasses every tractable restriction of #SAT known so far, save the tractability
of β-acyclic formulas which are intensively studied in Chapters 4 and 5. In a
second section, we give hardness results, by showing both NP-completeness or
W[1]-hardness of SAT for some parameters of CNF-formulas. Both sections aim
to understand where the frontier of tractability for structural restriction of #SAT
lie.

2.3.1 Parametrized polynomial time algorithms

In this section, we review the result of [STV14] concerning the tractability of
#SAT on the so-called bounded PS-width instances and its consequences on the
complexity of structural restrictions of this problem. We start by giving the defi-
nition of PS-width. We then show that the tractability of #SAT given a bounded
PS-width decomposition of the formula explains almost every known tractability
results on #SAT known so far.

The main concept of PS-width , introduced in [STV14], is that of projections.
Given a CNF F and an assignment τ of X ⊆ var(F), we define the projection of
F on τ , denoted by F/τ , as the set of clauses that are satisfied by τ , that is,

F/τ = {C ∈ F | τ |= C}.

Given X ⊆ var(F), we denote by proj(F,X) = {F/τ | τ : X → {0, 1}} the set of
projections of F . Given a branch decomposition T of Ginc(F) and a vertex v of T ,
we denote by Fv the set clauses of F such that the corresponding vertex of Ginc(F)
appears in the leaves of Tv and by Xv the set of variables of F that similarly
appear in the leaves of Tv. We denote by Fv = F \Fv and Xv = var(F) \Xv. The
PS-width of T is defined to be

psw(T) = max
v∈V (T)

max(|proj(Fv, Xv)|, |proj(Fv, Xv)|).

The PS-width of a formula is the minimum PS-width of a branch decomposition
of var(F) ∪ F . That is:

psw(F) = min{psw(T) | T is a branch decomposition of F ∪ var(F)}.

Example 2.14. We illustrate the concept of PS-width on an example. Let

C0 = x1 ∨ x2 ∨ x3,

C1 = x1 ∨ x2 ∨ ¬x3,

C2 = ¬x1 ∨ x3 ∨ x4,

F = C0 ∧ C1 ∧ C2.

Figure 2.12 gives a branch decomposition of F ∪var(F). We show how to com-
pute the PS-width of v. We have Xv = {x1, x2} and Fv = {C2}. Thus we also have

2.3. TRACTABILITY FRONTIER 59

x1 x2 C2 C0 C1 x3

x4

v

w

Figure 2.12: A branch decomposition for F = C0∧C1∧C2 with C0 = x1∨x2∨x3,
C1 = x1 ∨ x2 ∨ ¬x3 and C2 = ¬x1 ∨ x3 ∨ x4.

Xv = {x3, x4} and Fv = {C0, C1}. We have proj(Fv, Xv) = proj({C0, C1}, {x1, x2}).
If τ = {x1 7→ 0, x2 7→ 0}, then Fv/τ = ∅ since neither C0 nor C1 are satisfied
by τ . For any other τ : {x1, x2} → {0, 1}, we have Fv/τ = {C0, C1}. Thus
proj(Fv, Xv) = {∅, {C0, C1}}. Similarly, we have proj(Fv, Xv) = {∅, {C2}}. Thus,
the width of v is 2.

We now show how to compute the PS-width of w. We have Xw = ∅ and Fw =
{C0, C1}. Thus we also have Xw = {x1, x2, x3, x4} and Fw = {C2}. Since Xw = ∅,
it holds that proj(Fw, Xw) = {∅}. Now let τ : Xw = {x1, x2, x3, x4} → {0, 1}. If
τ(x1) = 1 or τ(x2) = 1 then Fw/τ = {C0, C1}. Now, if τ(x1) = τ(x2) = 0, then
either τ(x3) = 1 and in this case Fw/τ = {C0} or τ(x3) = 0 and in this case
Fw/τ = {C1}. Thus, we have proj(Fw, Xw) = {{C0}, {C1}, {C0, C1}}. Hence the
width of w is 3.

It can be verified all nodes of the branch decomposition in Figure 2.12 have
width at most 3. Thus, the PS-width of this branch decomposition is 3.

We now recall the main theorem of [STV14] concerning the complexity of
#SAT parametrized by PS-width.

Theorem 2.15. Given a formula F having n variables, m clauses of size at most
s and a branch decomposition T of F ∪ var(F) of PS-width k, one can find the
number of satisfying assignments of F in time k3 ·O(s(n+m)).

We do not provide a proof of Theorem 2.15. We however prove later a more
general result on the compilation of bounded PS-width CNF-formulas in d-DNNF
which directly implies Theorem 2.15 (see Theorem 3.9 in Chapter 3).

Observe that the dependence in PS-width in the complexity of the algorithm of
Theorem 2.15 is polynomial. This is a bit unusual in the setting of parametrized
complexity where we are more used to dealing with exponential dependence in
parameter that are polynomial in the size of the input. In this case, we have a
polynomial dependence in the parameter but the parameter can be exponential in
the size of the input.

60 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

The strength of Theorem 2.15 is that we can show that almost all known
tractability results for structural restrictions of #SAT boils down to constructing
a branch decomposition of small PS-width and use the algorithm of Theorem 2.15.

For instance, we will show that every disjoint branches formula with m clauses
has PS-width at most m2. Thus, if we are able to construct an optimal branch
decomposition of such formulas, the algorithm of Theorem 2.15 will solve #SAT
on disjoint branches formulas in time O((m2)3s(n + m)) = O(m6s(n + m)) on
a formula having n variables and m clauses of size at most s. Therefore, the
tractability of #SAT on disjoint branches formulas boils down to the construction
of a branch decomposition of small PS-width. Fortunately, the proof we give of the
fact that disjoint branches formulas have small PS-width is constructive, that is,
given a disjoint branches decomposition, we are able to transform it into a branch
decomposition of PS-width at most m2 in polynomial time (see Lemma 2.26).
Since we know how to construct disjoint branches decompositions in polynomial
time by Theorem 2.13, the tractability of #SAT on such formulas follows.

This scenario works for all structural restrictions in the green zone of Fig-
ure 2.11 but β-acyclicity. This singularity is discussed in details in Chapter 4.
We now show the relations between PS-width and various graph parameters and
explain how Theorem 2.15 implies tractability results.

Incidence tree width. As an example, we show how to use Theorem 2.15 to
prove the result of [SS10, FMR08] on the tractability of bounded incidence tree
width formulas.

Proposition 2.16. A formula of incidence tree width k has PS-width at most
2k+1.

Proof. Let F be a formula and let T be a tree decomposition of its incidence
graph of width k. Without lost of generality, we can assume T to be binary. This
can be achieved by duplicating bags. We construct a branch decomposition T ′ of
F ∪ var(F) as illustrated on Figure 2.13. We start by adding a vertex r as the
father of the root of T . Then for every element x ∈ var(F)∪F , let t be the closest
vertex to the root of T such that x appears in the label of t. We hang a leaf
labeled with x on the edge between t and its father. We then forget the labels
of T and remove the leaves that have no label. The resulting tree T ′ is binary
and for every element of F ∪ var(F), there exists exactly one leaf labeled with this
element. This is thus a branch decomposition of F ∪ var(F). We claim that the
PS-width of T ′ is at most 2k+1.

Indeed, let t′ be a vertex of T ′ then t′ was introduced between a vertex t of
T and its father u in T (u may be the new root r). By construction, the leaves
of T ′t′ are labeled with variables and vertices that appears in the labels of Tt only.
Moreover, we have introduced each element x of F ∪ var(F) as leaf such that x
does not appear in the labels of T \Tt. Thus, the leaves of T ′ \T ′t′ are labeled with
variables and vertices that appears in the labels of T \ Tt or in the label of t.

2.3. TRACTABILITY FRONTIER 61

r

x1

x2

C1

C2 x3

C3

C5

x1, x2, C1

x1, x2, C2 x3, C1, C3

x3, C5

r

x1

x2

C1

C2 x3

C3

C5

Figure 2.13: Transforming a tree decomposition into a small PS-width branch
decomposition. We hang the leaves (dashed edges) and forget the bag labels and
non-labeled leaves.

Now assume there is a variable x in L(T ′t′) that is in a clause C of L(T ′)\L(T ′t′).
We claim that C appears on the label of t in T . Assume the contrary. By the
previous observation, C only appears in T \ Tt and x only appears in the label of
Tt. In particular, x and C never appear in the same bag. But since {x,C} is an
edge of Ginc(F), such a bag has to exist. Contradiction. Similarly, we show that if
a clause C in L(T ′t′) contains a variable x of L(T ′) \ L(T ′t′) then x has to appear
in the label of t.

Thus, let F ′ be the clauses in L(T ′t′) and X ′ be the variables of L(T ′) \L(T ′t′).
From what precedes, the variables of X ′ that are in clauses of F ′ must be in the
bag labeling t. Thus, there is at most k+ 1 such variables. That is, proj(F ′, {X ′})
has at most 2k+1 elements. Similarly, proj(F \F ′, var(F) \ {X ′}) has at most 2k+1

elements, thus the PS-width of T ′ is at most 2k+1.

Combining Proposition 2.16 and Theorem 2.15, we obtain the following result.

Corollary 2.17. #SAT can be solved in time 2O(k)O(s(m+ n)) on a formula F
of incidence tree width k having n variables and m clauses of size at most s.

Proof. Compute a tree decomposition of tree width k of Ginc(F) using Theo-
rem 1.25, then transform it into a branch decomposition of PS-width 2k+1 with
Proposition 2.16 and use the algorithm of Theorem 2.15.

MIM-width. We now show that PS-width and MIM-width are nicely related.
This relation is already known from [STV14] but we give an alternative proof by
proving a min-max theorem on the size of maximum induced matchings of bipartite

62 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

graph that is interesting in itself and that we will use later in Section 2.3.3. This
relation is mainly used to connect PS-width with other graph measures.

Given a graph G = (V,E), we say that G is k-covered if for every W ⊆ V , there
exists W ′ ⊆ W such that |W ′| ≤ k and N (W) = N (W ′). Observe in particular
that G is |V |-covered. We define the cover-value of G, denoted cv(G), to be the
minimum k such that G is k-covered. The cover-value of a graph is equal to the
size of its biggest induced matching:

Theorem 2.18. Let G = (X,Y,E) be a bipartite graph and let k be the size of its
biggest induced matching. It holds:

cv(G) = k.

Proof. We start by showing cv(G) ≤ k. Let W ⊆ X and let W ′ ⊆ W such that
N (W ′) = N (W) and W ′ is of minimal size. Since W ′ if minimal, for all x ∈ W ′,
N (W ′ \ {x}) (N (W). Thus, there exists yx ∈ N (W) such that for all x′ ∈ W ′,
if x′ 6= x, then yx is not a neighbor of x′. We claim that M = {(x, yx) | x ∈W} is
an induced matching of G. Indeed, for all x, x′ ∈W ′, (x, x′) /∈ E and (yx, yx′) /∈ E
since G is bipartite. Moreover, by construction, (x′, yx) /∈ E and (x, yx′) /∈ E.
Thus M is an induced matching of G, that is, |W ′| = |M | ≤ k. That is cv(G) ≤ k.

We now show that k ≤ cv(G). Let M be an induced matching of G of size k
and let W = V (M)∩X. We claim that for all W ′ (W , N (W ′) 6= N (W). Indeed,
let W ′ (W and let x ∈ W \W ′. Let y ∈ V (M) be the only neighbor of x in M ,
that is, (x, y) ∈M . We have y ∈ N (W). Since M is an induced matching, we have
for all z ∈W \ {x}, (z, y) /∈M . That is, y /∈ N (W ′). Thus, the only set W ′ ⊆W
such that N (W ′) = N (W) is W itself. That is cv(G) ≥ |W | = |M | = k.

The following theorem follows easily from Theorem 2.18:

Theorem 2.19. Let F be a CNF-formula, G = Ginc(F) and let T be a branch
decomposition of G of MIM-width k. Then PS-width(T) ≤ |F |k. In particular,

psw(F) ≤ |F |mimw(G).

Proof. Let v be a vertex of T . We want to show that |proj(Fv, Xv)| ≤ |F |k and
|proj(Fv, Xv)| ≤ |F |k. We show the first inequality, the other case being completely
symmetric to the first one.

By definition of MIM-width, the biggest inducted matching of G[Xv, Fv] is at
most k and by Theorem 2.19, cv(G[Xv, Fv]) ≤ k. That is for every W ⊆ Fv, there
exists W ′ ⊆W such that |W ′| ≤ k and var(W ′) = var(W).

Let C, C′ ∈ proj(Fv, Xv) with C 6= C′. Let τ, τ ′ be such that C = Fv/τ and
C′ = Fv/τ

′. Let D = Fv \ C and D′ = Fv \ C′. Observe that D 6= D′, and assume
without lost of generality that D 6⊆ D′. By definition, D is the set of clauses of Fv
that are not satisfied by τ . Let W ⊆ D such that |W | ≤ k and var(W) = var(D).
Let W ′ ⊆ D such that |W ′| ≤ k and var(W ′) = var(D). τ |var(D) is the unique
assignment that do not satisfy any clause of D and hence of W . Since D 6⊆ D′,

2.3. TRACTABILITY FRONTIER 63

there exists a clause of D that is satisfied by τ ′, that is, τ ′var(D) 6= τvar(D). Thus

there also exists a clause of W that is satisfied by τ ′, that is W 6= W ′.

We can then map an assignment τ to a subset W (τ) of Fv of size at least k
such that if F/τ 6= F/τ ′, then W (τ) 6= W (τ ′). Since there is at most |Fv|k ≤ |F |k
such subset, we have |proj(Fv, Xv)| ≤ |F |k which is what we wanted.

This settles the relation between MIM-width and PS-width. Unfortunately, to
the best of our knowledge, computing decomposition of small MIM-width is not
known to be doable in FPT nor XP time. This relation is thus not sufficient to
explain the tractability of #SAT on bounded clique-width.

Incidence clique-width. We explain how one can use the algorithm of Theo-
rem 2.15 to actually solve #SAT on bounded incidence clique-width. The main
remaining problem is to compute a branch decomposition of small incidence clique-
width in parametrized time. This can be achieved by computing a decomposition
of small rank-width . Rank-width is defined on branch decomposition from the
symmetric function rank which associate to a subset X of vertices, the rank of the
incidence matrix of G[X,X]. Rank-width decomposition can be computed in FPT
time and relates nicely to clique-width:

Theorem 2.20 ([HO08]). Let k ∈ N. For a graph G = (V,E), we can output a
branch decomposition of rank-width at most k or confirm that the rank-width of G
is larger than k in time f(k) ·O(n3) for a computable function f .

Theorem 2.21 ([OS06]). For every graph G = (V,E) it holds that

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

Moreover, it can be observed that the rank-width of a branch decomposition
is an upper bound of its MIM-width:

Proposition 2.22. Given a graph G = (V,E) and a branch decomposition T of
G it holds that mimw(T) ≤ rw(T).

Proof. Let v be a vertex of T and let M = {(x1, y1), . . . , (xk, yk)} be an induced
matching of G[V (Tv), V \V (Tv)]. We show that k ≤ rw(T). Indeed, since M is an
induced matching, for all i 6= j, xi is not a neighbor of yj . Thus, in the adjacency
matrix, it yields k independent column vectors. That is the rank of the matrix is
at least k, hence k ≤ rw(T).

Combining these results yields the following:

Corollary 2.23. #SAT on a formula F of incidence clique-width k having n
variables and m clauses of size at most s can be solved in time f(k) · O((n +
m)3) +m3k ·O(s(m+ n)) for a computable function f .

64 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

Proof. First compute a branch decomposition of Ginc(F) of rank-width at least k
using Theorem 2.20 and the fact that rw(G) ≤ cw(G) ≤ k by Theorem 2.21.
This can be computed in time f(k) · O((n + m)3) for a computable function f
by Theorem 2.21 again. By Proposition 2.22, this decomposition has MIM-width
at most k thus PS-width at most mk by Theorem 2.19. Using the algorithm of
Theorem 2.15 solves #SAT for F on decomposition T in time m3kO(s(m+n)).

Signed incidence clique width. We explain now the result of Fischer, Makowski
and Ravve [FMR08] concerning the parametrized complexity of #SAT on bounded
signed clique-width. Observe that Figure 2.11 exhibits a relation between signed
incidence clique width and incidence clique width. However, this is not sufficient to
use this relation to explain the FPT algorithm for bounded signed incidence clique
width of [FMR08] since we only have an XP algorithm for bounded incidence clique
width formulas. In this paragraph, we show direct connection between PS-width
and signed incidence clique width.

The set of CNF-formulas of signed clique-width at most k is defined as the
set of formulas whose signed incidence graph G+

inc(F) can be obtained by the
following operations over graphs whose vertices are colored by {1, . . . , k}, starting
from singleton graphs.

1. Disjoint union.

2. Recoloring: For a vertex colored signed bipartite graph G, we defined ρi,j(G)
to be the graph that results from recoloring with j all vertices that were
previously colored with i.

3. Vertices to clauses edge creation: For a vertex-colored signed bipartite graph
G, we define η+

i,j(G) to be the graph that results from connecting all clause-
vertices colored i to all variable-vertices colored j, with edges going from the
variables side to the clauses side.

4. Clauses to vertices edge creation: Similarly to above, we define η−i,j(G) to be
the graph resulting from connecting all clause-vertices colored with i to all
variable-vertices colored with j, with edges going from clauses to variables.

The signed clique-width of a CNF-formula is the minimum k such that it has
signed clique-width at most k.

A parse tree for the signed clique-width of a formula F is the rooted tree
whose leaves hold singleton graphs, whose internal vertices are colored with the
operations of the definitions above (so a vertex corresponding to a disjoint union
has two children, and vertices corresponding to other operations have one child),
and whose root holds the graph G+

inc(F) (with any vertex coloring).

Given a signed parse tree of a formula F , we construct iteratively a branch
decomposition. We assume w.l.o.g. that whenever we make a union, the graphs
whose union we take have only disjoint colors in their vertex coloring. This can

2.3. TRACTABILITY FRONTIER 65

be easily achieved by at most doubling the number of colors used. Furthermore,
we assume that in the end all vertices have the same color.

We construct the branch decomposition along the parse tree iteratively. To
this end, we assign a tree Tτ to each sub-parse tree τ . To a singleton v representing
a variable of F , we assign a singleton vertex labeled with v. For τ = η+

i,j(τ
′) and

τ = η−i,j(τ
′) we set Tτ := Tτ ′ . For τ = ρi,j(τ

′) we again let Tτ := Tτ ′ . Finally,
for τ = τ1 ∪ τ2 we introduce a new root and connect it to Tτ1 and Tτ2 . Observe
that Tτ is essentially the tree we get from τ by forgetting internal labels and
contracting all paths to edges. Observe that the result (T, δ) is obviously a branch
decomposition.

Lemma 2.24. (T, δ) has PS-width at most 22k.

Proof. Let v be a vertex of T . Let τ be the sub-parse tree which is rooted by the
union that led to the introduction of v.

We first show that |proj(Fv, Xv)| ≤ 22k. Observe that when two variables
x, x′ ∈ Xv have the same color in τ , then they must always appear together in
every clause in Fv and their sign must be the same. Call Xi the set of variables
in Xv that are colored by i. Then for every assignment of Xv the set of satisfied
clauses depends only on if there is a variable in Xi that is set to true if Xi appears
positively or if there is a variable in Xi set to false if Xi appears negatively.
So to get the same projection set, we can delete all but two variables from Xi

from Fv. It follows that Fv has the same projection set as a formula with 2k
variables. But there are only 22k assignments to 2k variables, so it follows that
|proj(Fv, Xv)| ≤ 22k.

We now show that |PS(Fv, Xv)| ≤ 22k. To this end observe that if two clauses
C,C ′ in τ have the same color i, then they will contain the same variables in
Xv and moreover C|Xv = C ′|Xv . Thus Fv only has k different clauses containing

variables of Xv, so trivially |proj(Fv, Xv)| ≤ 22k.

Corollary 2.25 ([FMR08]). #SAT on a formula of signed incidence clique-width
k having n variables and m clauses of size at most s can be solved in time
2O(k)O(s(n+m)) assuming that we are provided a parse tree of width k.

Note that the runtime bound in [FMR08] cannot be easily compared, because
the runtime in [FMR08] depends on the size of the parse tree directly and not on
the formula. But both results are fixed-parameter results that singly exponentially
depend on k, so they are at least very close.

Disjoint branches. We finally explain how results from Section 2.2.2 may be
explained by Theorem 2.15. To do this, we turn a disjoint branches decomposition
of the hypergraph of a formula into a branch decomposition of MIM-width at most
2.

66 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

Lemma 2.26. Given a hypergraph H and a disjoint branches decomposition of
H, we can in polynomial time compute a branch decomposition of Ginc(H) of
MIM-width at most 2.

Proof. Let (T , λ) be a disjoint branches decomposition of H. We construct a
branch decomposition (T, δ) of H as follows: The vertices of T form the internal
vertices of T . For every v ∈ V we introduce a new leaf u labeled by δ(u) = v
connecting it to the vertex of T that corresponds to the edge containing v that
is farthest from the root of T . Observe that this choice is unique because T has
disjoint branches and thus vertices v ∈ V only appear along a path from the root
to a leaf. Furthermore, we add a new leaf u for each e ∈ E labeled by δ(u) = e,
connecting it to the vertex x of T with λ(x) = e.

We now make T binary: For any internal vertex x, we introduce a binary tree
Tx having as leaves the leaf children of x and connect it to x. After that, for
every vertex x having more than two children, we introduce again a binary tree T ′x
having the children of x as its leaves and connect it to x. The result is a branch
decomposition (T, δ) of the incidence graph of H.

We claim that (T, δ) has MIM-width at most 2. So let v be a cut vertex with
cut (X,X). First assume that v lies in one of the Tx. Let e = λ(x) be the single
e ∈ E that appears as label of a leaf of Tx. Observe that all u ∈ V ∩X lie in e.
Also, all u ∈ V ∩X that lie in an edge different from e must lie in a common edge
e′ ∈ E that corresponds to the parent of e in T . Since e′ /∈ X only one vertex in
X ∩V can contribute to an independent matching in Ginc(H)[X,X]. Furthermore,
e is the only edge in E ∩X, and it follows that the MIM-width of the cut (X,X)
is at most 2.

If v does not lie in any Tx—that is v lies in a T ′y or is a vertex y ∈ V (T)—then

the cut (X,X) corresponds to cutting subtrees T1, . . . , Ts from a vertex x in T .
Every vertex u ∈ X ∩V lies in an edge e ∈ X ∩E which is the label λ(x′) for some
vertex x′ in a Ti. Now if u is also in an edge e′ ∈ X ∩ E, then u ∈ λ(x) ∈ X ∩ E.
Consequently, only one vertex u ∈ X ∩ V can be an end-vertex of an induced
matching in Ginc(H)[X,X]. Furthermore, no vertex u in X ∩ V is in an edge
e ∈ X ∩ E, because we connected u to the vertex y farthest from the root in the
construction of T and thus cutting outside Tx we cannot be in a situation where
u /∈ X. Consequently, the MIM-width of the cut (X,X) is at most 1.

Corollary 2.27 ([CDM14]). #SAT on hypergraphs with disjoint branches decom-
positions can be solved in polynomial time.

Proof. Given a CNF-Formula F , compute a disjoint branches decomposition with
Theorem 2.13. Then apply the construction of Lemma 2.26 to get a branch de-
composition of MIM-width at most 2. Now combining Theorem 2.19 and Theorem
2.15 yields the results.

2.3. TRACTABILITY FRONTIER 67

2.3.2 Hardness results

In this section, we review hardness result from the literature, explaining the red
and light green parts of Figure 2.11.

Intractability results. We first investigate hardness results, which show that
some restriction of #SAT are already as hard as the general case. We show that
SAT on α-acyclic hypergraphs is NP-complete. Since α-acyclic hypergraphs are the
hypergraphs of hypertree width 1, it shows that #SAT is intractable for bounded
hypertree width instances, even when this hypertree width is 1.

Theorem 2.28. It is NP-hard to decide if an α-acyclic CNF-formula is satisfiable.

Proof. We reduce the problem to SAT. Let F be a CNF-formula. Let y be a fresh
variable, that is y /∈ var(F). We let F ′ = F ∪ {var(F)∪ {y}}. We claim that F ′ is
α-acyclic and F is satisfiable if and only if F ′ is satisfiable.

The fact that F ′ is α-acyclic directly follows from Observation 1 since there
is an edge in H(F ′) that covers every variables of F ′. Now let τ be a satisfying
assignment of F ′. We clearly have τ |var(F) |= F since F is a subformula of F ′. If
τ is a satisfying assignment of F then τ ′ := τ ∪{y 7→ 1} is a satisfying assignment
of F ′ since τ ′ |= {var(F) ∪ {y}} and τ ′ |= F by definition.

This yields the following corollary:

Corollary 2.29. Let k ∈ N. It is NP-hard to decide if a CNF-formula F such
that H(F) is of hypertree width at most k is satisfiable.

W[1]-hardness results. We now investigate hardness results, which show that
some restrictions of #SAT for which XP algorithms exist are very unlikely to have
FPT algorithms. This concerns parameters in the light green part of Figure 2.11.
Observe that if we are given two parameters p1 and p2 of CNF-formulas such that
for all F , if p1(F) is bounded then p2(F) is bounded too, then it is enough to show
the W [1]-hardness of SAT for parameter p1. Thus, showing W[1]-hardness of SAT
for neighborhood diversity is enough to show W[1]-hardness of modular incident
tree width, clique-width and MIM-width.

Neighborhood diversity was introduced in [Lam10] and the W[1]-hardness of
SAT parametrized by neighborhood diversity was shown in [DKL+15] where its
relation with modular incident tree width was observed too. A graph G = (V,E)
has neighborhood diversity k if there exists a k-partition V1, . . . , Vk of V such that
for every v ∈ V and i ∈ [k], either v is adjacent to every vertex of Vi or v is adjacent
to no vertex of Vi. Observe that every Vi is either a clique or an independent set
of G. The neighborhood diversity of a graph G, denoted by nd(G), is the smallest
k such that G has neighborhood diversity k.

The neighborhood diversity of a CNF-formula is the neighborhood diversity
nd(Ginc(F)) of the incidence graph of F . A formula F of neighborhood diversity k

68 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

can be seen as a formula for which there exist at most k different kind of variables
and at most k kind of clauses where two clauses of the same kind have the same
variables and variables of the same kind are in the same clauses. The relation
between modular incident tree width and neighborhood diversity becomes clearer:

Theorem 2.30. For every CNF-formula F , the modular incident tree width of F
is at most its neighborhood diversity.

Proof. Let F be a CNF-formula such that k = nd(F). There are at most k kinds
of variables. Variables of the same kind are in the same clauses, that is, they are
modules in the incidence graph. Similarly there are at most k kinds of clauses
having the same variables, that is, they are modules. Thus, after contracting the
modules of Ginc(F), we have a bipartite graph having at most k vertices in each
side, that is, having tree width at most k. Thus the modular incident tree width
of F is at most k.

Even if neighborhood diversity is a very restrictive parameter of CNF-formulas,
SAT is already W[1]-hard for this measure:

Theorem 2.31 ([DKL+15]). SAT parametrized by nd is W[1]-hard.

The W[1]-hardness of numerous parameters follows from Theorem 2.31:

Corollary 2.32. SAT parametrized by neighborhood diversity, modular incident
tree width, clique-width, MIM-width or β-hypertree width is W[1]-hard.

Proof. All of these results follows from the fact that each of these measures are
smaller that neighborhood diversity. For modular tree width, it follows from
Theorem 2.30. For clique-width, it follows from the fact that clique-width is
stable by contracting modules and from the relation between clique-width and tree
width (see [PSS13]). The relation between MIM-width and clique-width follows
from Theorem 2.22 and Theorem 2.21. Finally, the proof that β-hypertree width
is smaller than clique-width can be found in [GP04]. We actually prove a more
general result in the next section (Theorem 2.33) by directly proving a relation
between MIM-width and β-hypertree width.

2.3.3 Unknown complexity hardness

We conclude this chapter with a few words on the status of β-hypertree width.
Few is known on the complexity of #SAT, and even SAT, on classes of bounded
β-hypertree width. As mentioned in Corollary 2.32, #SAT parametrized by β-
hypertree width is W[1]-hard so we cannot hope for an FPT algorithm (it follows
from the fact that β-hypertree width is more general than clique width [GP04]).
However, it is an intriguing open question to know if this problem is at least in
XP.

We show in Chapter 4 and Chapter 5 that for the case of β-acyclicity, that is,
β-hypertree width 1, #SAT is tractable. The algorithmic techniques that we use

2.3. TRACTABILITY FRONTIER 69

here differ widely from the classical dynamic programming approach on branch
decompositions and we have evidences that such approaches do not work in general
on β-acyclic instances. In Section 5.3.2, we give some directions that may lead to
an XP algorithm for #SAT on bounded β-hypertree width instances by generalizing
the algorithmic techniques that were used for β-acyclic instances. However, our
lack of understanding of the structure of hypergraphs of β-hypertree width k makes
the use of such techniques difficult.

In this section, we prove a new result showing that β-hypertree width is more
general than MIM-width. This is interesting since it shows that if we can prove that
#SAT parametrized by β-hypertree width is in XP, then it would give an unified
explanation of the tractability of #SAT on β-acyclic instances and on bounded
incidence MIM-width instances:

Theorem 2.33. For every hypergraph H, it holds:

β-htw(H) ≤ 6 ·mimw(Ginc(H)) + 1.

Theorem 2.33 follows from Lemma 2.34 and Lemma 2.35. The former states
that the MIM-width of a hypergraph is greater than the MIM-width of its subhy-
pergraphs. The later states that MIM-width is greater than generalized hypertree
width. Applying Theorem 1.44 that states that htw(H) ≤ 3ghtw(H) + 1 yields
the theorem.

Lemma 2.34. Let G = (X,Y,E) be a bipartite graph of MIM-width k and let
Y ′ ⊆ Y . The MIM-width of G′ = G[X,Y ′] is at most k.

Proof. Let T be a branch decomposition of G of MIM-width k. We transform T
into a branch decomposition T ′ of G′ by removing leaves labeled with vertices in
Y \ Y ′. We claim that the MIM-width of T ′ is at most k. For a vertex t of T ,
we denote by Xt = X ∩ L(Tt), Xt = (L(T) \ L(Tt)) ∩ X and Yt = Y ∩ L(Tt),
Yt = (L(T) \ L(Tt)) ∩ Y .

Let t′ be a vertex of T ′ and let t be its corresponding vertex in T . It is clear
that Xt = Xt′ and Xt = Xt′ . Moreover, Yt′ = Yt ∩ Y ′ and Yt′ = Yt ∩ Y ′. Now
let M be an induced matching of G[Xt′ , Yt′]. M is also an induced matching of
G[Xt, Yt] since G[Xt′ , Yt′] is a graph induced from G[Xt, Yt]. Thus M is of size at
most k. The case where M is a matching of G[Xt′ , Yt′] is symmetric. It follows
that the MIM-width of T ′ is at most k, so the MIM-width of G′ is also at most
k.

Lemma 2.34 states in particular that if H is a hypergraph and H′ ⊆ H, then
the MIM-width of Ginc(H′) is smaller than the MIM-width of Ginc(H). Thus, it
remains to prove that generalized hypertree width is bounded by MIM-width:

Lemma 2.35. For every hypergraph H, it holds:

ghtw(H) ≤ 2mimw(Ginc(H)).

70 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

Proof. Let G = Ginc(H), k = mimw(G) and let (T, δ) be a branch decomposition
of G of MIM-width k. For a vertex t of T , we denote by Vt = V (H) ∩ L(Tt), Vt =
V (H) \Vt, Et = H∩L(Tt), Et = H\Et. We construct a hypertree decomposition
(T , λ(t)) of H from T as follows: the underlying tree of T is T . Moreover for each
vertex t, let

Wt = (var(Et) ∩ Vt) ∪ (var(Et) ∩ Vt).

For every vertex t of T , we define λ(t) as follows:

• if t is a leaf then λ(t) = Wt

• otherwise let t1, t2 be the children of t. We define λ(t) = Wt ∪ (Wt1 ∩Wt2).

We claim that T is a branch decomposition of H and that it is of generalized
hypertree width at most 2k. First, we have to show that for every e ∈ H, there
exists t such that e ⊆ λ(t). Let e ∈ H and let te be the leaf of T such that δ(te) = e.
Then λ(te) ⊇ e since Ete = {e} and Vte = V (H) and thus var(Ete) ∩ Vte = e.

Moreover, let v ∈ V (H). We claim that the set of vertices t of T such that
v ∈ λ(t) is connected in T . Let t1 and t2 be two vertices of T such that t ∈
λ(t1) ∩ λ(t2).

First assume that there exists t0, t1, t2 such that x ∈ λ(t0), t1 is a child of t0
and x /∈ λ(t1) and t2 is a descendant of t1 with x ∈ λ(t2). Since x /∈ Wt1 and
x ∈ λ(t0), we have x ∈ Wt0 . Now assume that x is in L(Tt1). Then x is also
in L(Tt0) and since x ∈ Wt0 , there exists e ∈ Et0 such that x ∈ e. But then
e ∈ Et1 and then x ∈ Wt1 , which is a contradiction. Now if x is not in L(Tt1),
then it is not in L(Tt2) too. We can assume w.l.o.g that no child u of t2 verifies
x ∈ λ(u) by selecting t2 to be the deepest vertex of Tt0 having this property. Now
since x ∈ λ(t2), it means that x ∈ Wt2 . That is, there exists an edge e ∈ L(Tt2)
such that x ∈ e. But e ∈ L(Tt1) too and since x ∈ Vt1 , it would imply x ∈ Wt1 ,
contradiction.

We thus have shown that if t0 and t2 are on the same branch of T and if
v ∈ λ(t0)∩λ(t2), then for every vertex t1 between t0 and t2, it holds v ∈ λ(t1). Now
assume that t0 and t2 are not on the same branch of T and that v ∈ λ(t0)∩λ(t2).
Let t1 be the father of t0. We show that v ∈ λ(t1).

Assume first that v /∈ Vt1 . In this case, since v ∈ λ(t0) we have that either
v ∈ Wt0 or v ∈ Wu for u a child of t0. In any case, it means that there exists an
edge e ∈ L(Tt0) such that v ∈ e. Then v ∈ L(Tt1) too and then since v ∈ Vt1 , we
have v ∈Wt1 , that is, v ∈ λ(t1).

Now assume that v ∈ Vt1 . There are two cases. First assume that t2 is not a
descendant of t1. In this case, there exists e ∈ L(Tt2) such that v ∈ e. But then, if
t2 is not a descendant of t1, we also have e ∈ Et1 and then v ∈ λ(t1). Now assume
t2 is a descendant of t1. It is not a descendant of t0 since we have assumed t0 and
t2 to be on two different branches. Let u be the other child of t1. We claim that
x ∈ Wt0 ∩Wu. Indeed, since v ∈ Vt1 , we either have x ∈ Vt0 or x ∈ Vu. If x ∈ Vu
then there exists e ∈ Et0 such that x ∈ e since x ∈ λ(t0). And then x ∈Wt0 ∩Wu.

2.3. TRACTABILITY FRONTIER 71

Similarly, if x ∈ Vt0 then e ∈ Et2 ⊆ Eu such that x ∈ e since x ∈ λ(t2) and then
again x ∈Wt0 ∩Wu.

We thus have shown that if v ∈ λ(t0) ∩ λ(t2) and if t0 and t2 are not on the
same branch of T , then v ∈ λ(t1) where t1 is the father of t0. But then we can
apply this to t1 and t2. By induction, we get that v ∈ λ(t) for t the least common
ancestor of t0 and t2. Thus we have shown that T is a tree decomposition.

It remains to show that T is of hypertree width at most 2k that is, for every
vertex t, there exists S ⊆ H such that λ(t) ⊆

⋃
f∈S f and |S| ≤ 2k. We show that

for every t, there exists S ⊆ H such that Wt ⊆
⋃
f∈S f and |S| ≤ k. The desired

result follows since λ(t) ⊆Wt ∪Wu where u is a child of t.
Let t be a vertex of T . By definition of MIM-width, we know that any induced

matching in G′ = G[L(Tt), L(Tt)] is of size at most k. Let E be the edges of H that
are neighbors of Wt in G′. Every vertex of Wt has at most one neighbor in G′ by
definition of Wt. Thus the neighborhood in G′ of E contains Wt. By Theorem 2.18,
the cover-value of G′ is also k, that is, there exists E′ ⊆ E with |E′| ≤ k and such
that the neighborhood of E′ in G′ is the same as the neighborhood of E in G′,
that is, E′ covers Wt and is of size at most k.

72 CHAPTER 2. STRUCTURAL RESTRICTIONS OF #SAT

Chapter 3

Parametrized compilation of
CNF-formulas

Most of the practical tools existing for #SAT are based on a common algorithm
called exhaustive DPLL. In [HD05], Darwiche and Huang observed that such tools
were implicitly constructing a decision DNNF equivalent to the input formula,
whose size was roughly the runtime of the algorithm. This remark of Huang
and Darwiche does however not apply to the algorithms presented in Chapter 2
for structural restrictions of CNF formulas. Indeed, we have seen in Chapter 2
that all these algorithms perform a dynamic programming algorithm on a well-
chosen decomposition of the CNF-formula, an approach that is quite different from
exhaustive DPLL.

In this chapter, we show that the observation of Darwiche and Huange can
be extended to the structure-based algorithm for #SAT. More precisely, we show
that the trace of the algorithm of [STV14] for #SAT can be seen as a compila-
tion algorithm from a CNF-formula into a structured deterministic DNNF. As in
Chapter 2, we can show that this general compilation algorithm yields compilation
algorithms for most of the tractable structural restrictions of #SAT presented in
Figure 2.11. This result allows us to lift the results on structural restrictions of
CNF-formulas for #SAT to other important problems on CNF-formulas such as
enumeration or weighted model counting. We also show how we can use this com-
pilation algorithm to solve MaxSAT, a result that was already presented in [STV14]
for bounded PS-width as a separated algorithm.

Structural restrictions of CNF have already been used to compile formulas effi-
ciently. Darwiche[Dar01b] have shown that formulas of bounded primal tree width
can be compiled efficiently into d-DNNF, a result later generalized with Pipatsri-
sawat to the compilation into structured DNNF [PD08] and to the compilation into
structured d-DNNF for bounded dual tree width instances [PD10a]. In [RP13],
Razgon and Petke have shown that boolean circuits whose underlying graph is
of bounded clique-width can be efficiently transformed into DNNF. This may be
used as a compilation algorithm for CNF formulas of bounded signed clique-width

73

74 CHAPTER 3. PARAMETRIZED COMPILATION OF CNF-FORMULAS

into DNNF. All these results are explained and generalized in this chapter since
we have shown in Chapter 2 that PS-width generalizes all these parameters. Other
parameters have been introduced by Umut Oztok and Adnan Darwiche for CNF-
formulas such as CV-width [OD14a] and Decision-width [OD14b] for which they
can have efficient compilation algorithms into d-DNNF and dec-DNNF respectively.
We do not know how PS-width relates with such widths however.

This chapter is organized as follows. We start by presenting the compilation
algorithm that constructs a small d-DNNF from a formula F and a branch de-
composition of F of small PS-width. We then show how to use this algorithm
for known structural classes of formulas and how we use it to solve optimization
problems such as MaxSAT.

3.1 Compilation of bounded PS-width formulas

We start by presenting the compilation algorithm for bounded PS-width CNF-
formulas. The algorithm is a strengthening form of the counting algorithm of
[STV14]. The results of this section were published in [BCMS15].

3.1.1 Shapes

To compile bounded PS-width formulas into d-DNNF, we perform a dynamic pro-
gramming algorithm along a branch decomposition of F ∪ var(F) of small width.
In this section, we present the records that are dynamically propagated by the
algorithm. We rely on the notion of shape that was introduced in [SS13].

Let F be a formula, let T be a branch decomposition of F ∪ var(F), and let v
be a node of T . A shape (for v, with respect to T) is a pair ~S = (S, S′) of subsets
of F such that S ∈ proj(Fv, Xv) and S′ ∈ proj(Fv, Xv). We say that an assignment
τ : Xv → {0, 1} has shape ~S if

1. Fv/τ = S, that is, S is the set of clauses of Fv that are satisfied by τ ,

2. (Fv/τ)∪S′ = Fv that is S′ contains every clauses of Fv that are not satisfied
by τ .

The intuition behind the notion of shape is that if τ : Xv → {0, 1} has shape
(S, S′) then it can be extended to a satisfying assignment of Fv by combining it
with τ ′ : Xv → {0, 1} such that Fv/τ

′ – the clauses of Fv that are satisfied by τ ′

– is S′.
We write NT

v (~S) for the set of assignments of shape ~S or simply Nv(~S) if
T is clear from the context. Observe that if T is of PS-width k, then there is
at most k2 different shapes for v. However, NT

v does not partition the set of
assignments. Indeed, an assignment τ can have more than one shape. If τ has
shape ~S1 = (S1, S

′
1) and shape ~S2 = (S2, S

′
2), then it only implies S1 = S2 = Fv/τ .

We now explain how shapes for an inner node can be related to shapes for
its child nodes. Let ~S = (S, S′) be a shape for an inner node v of T , and let

3.1. COMPILATION OF BOUNDED PS-WIDTH FORMULAS 75

~S1 = (S1, S
′
1), ~S2 = (S2, S

′
2) be shapes for its children v1 and v2, respectively. We

say that ~S1 and ~S2 generate ~S if

(a) S = (S1 ∪ S2) ∩ Fv,

(b) S′1 = (S′ ∪ S2) ∩ Fv1 , and

(c) S′2 = (S′ ∪ S1) ∩ Fv2 .

The following result relates the shapes for an inner node to the generating shapes
for its children.

Lemma 3.1. Let F be a formula, let T be a branch decomposition of F ∪ var(F),
and let v be an inner node of T with children v1 and v2. Let ~S be a shape for v,
and let G denote the set of pairs of shapes ~S1 for v1 and ~S2 for v2 such that ~S1

and ~S2 generate ~S. Then

Nv(~S) =
⊎

(~S1,~S2)∈G

{τ1 ∪ τ2 | τ1 ∈ Nv1(~S1), τ2 ∈ Nv2(~S2)}.

Lemma 3.1 is an easy consequence of the following two lemmas that can be
found in [SS13].

Lemma 3.2. Let v be a node of T with children v1 and v2. Let ~S1 = (S1, S
′
1) be a

shape for v1, let ~S2 = (S2, S
′
2) be a shape for v2, and let ~S = (S, S′) be a shape for v

generated by ~S1 and ~S2. If τ1 ∈ Nv1(~S1) and τ2 ∈ Nv2(~S2) then τ1 ∪ τ2 ∈ Nv(~S).

Proof. Let τ1 ∈ Nv1(~S1) and τ2 ∈ Nv2(~S2). As Fv ⊆ Fv1 ∪ Fv2 , Fv1/τ1 = S1 and
Fv2/τ2 = S2, we get Fv/(τ1∪τ2) = (S1∪S2)∩Fv = S. This shows that Condition 1
is satisfied.

Consider a clause C ∈ Fv and assume without loss of generality that C ∈ Fv1 .
Suppose C /∈ Fv/(τ1∪ τ2). In particular, τ1 does not satisfy C that is, C /∈ Fv1/τ1.
By condition 2, (Fv1/τ1 ∪ S′1) = Fv1 , thus C ∈ S′1.

Moreover τ2 does not satisfy C either, so C /∈ S2. The shapes ~S1 and ~S2

generate ~S, so S′1 ⊆ S′ ∪ S2 and thus C ∈ S′ by Condition (b). This proves that
Fv/(τ1 ∪ τ2) ∪ S′ = Fv, that is Condition 2 is satisfied. We conclude that τ1 ∪ τ2

has shape ~S as claimed.

Lemma 3.3. Let v be a node of T with children v1 and v2, let ~S = (S, S′) be a
shape for v, and let τ ∈ Nv(~S). Let τ1 and τ2 denote the restrictions of τ to Xv1

and Xv2, respectively. There is a unique pair of shapes ~S1 for v1 and ~S2 for v2

generating ~S such that τ1 ∈ Nv1(~S1) and τ2 ∈ Nv2(~S2).

Proof. Let

• S1 = Fv1/τ1,

• S2 = Fv2/τ2,

76 CHAPTER 3. PARAMETRIZED COMPILATION OF CNF-FORMULAS

• S′1 = (S′ ∪ S2) ∩ Fv1 and,

• S′2 = (S′ ∪ S1) ∩ Fv2 .

Observe that S′1 ∈ proj(Fv1 , Xv1). Indeed, let τ ′ : Xv → {0, 1} be such that
Fv/τ

′ = S′, it holds that Fv1/(τ
′ ∪ τ2) = (S2 ∪S′)∩Fv1 = S′1. Similarly, Fv2/(τ

′ ∪
τ1) = (S1∪S′)∩Fv2 . It follows that ~S1 = (S1, S

′
1) is a shape for v1 and ~S2 = (S2, S

′
2)

is a shape for v2. By definition, ~S1 and ~S2 generate ~S.
Observe that Fv1 = (Fv1/τ1) ∪ S′1. It is clear that (Fv1/τ1) ∪ S′1 ⊆ Fv1 since

S′1 ⊆ Fv1 and Fv1/τ ⊆ Fv1 by definition. Moreover, if C ∈ S′1 \ (Fv1/τ) then by
definition is not satisfied by τ1. We have two cases:

• either C is satisfied by τ2 and in this case, C ∈ S2 that is, C ∈ S′1,

• or C is not satisfied by τ2 and in this case, it is not satisfied by τ = τ1 ∪ τ2,
and since τ has shape (S, S′) we have C ∈ S′, that is, C ∈ S′1.

Since S1 = Fv1/τ1 by definition, τ1 has shape ~S1. Similarly, we have Fv2 =
(Fv2/τ2) ∪ S′2 and since S2 = Fv2/τ2 by definition, τ2 has shape ~S2.

Finally, we prove the uniqueness of ~S1 and ~S2. Let ~R1 = (R1, R
′
1) and ~R2 =

(R2, R
′
2) be shapes for v1 and v2 such that ~R1 and ~R2 generate ~S and such that τ1 ∈

Nv1(~R1) and τ2 ∈ Nv2(~R2). We have R1 = Fv1(τ1) = S1 and R2 = Fv2(τ2) = S2 by
Condition 1. As ~R1 and ~R2 generate ~S, we further have R′1 = (S′ ∪R2)∩Fv1 and
R′2 = (S′∪R1)∩Fv2 . That is, R′1 = S′1 and R′2 = S′2, so ~R1 = ~S1 and ~R2 = ~S2.

3.1.2 Constructing a Structured d-DNNF

Lemma 3.1 can be turned into a recurrence for determining the model count of F
by dynamic programming [SS13, STV14]. It can also be used to construct a
structured d-DNNF for F .

To simplify matters, for the remainder of this section let F be an arbitrary,
but fixed, formula, and let T be an arbitrary, but fixed, branch decomposition of
F ∪var(F). Starting at the leaves of T , we are going to construct a d-DNNF ϕv(~S)
for each node v and each shape ~S for v. The intending meaning of ϕv(~S) is that
the satisfying assignment of ϕv(~S) are exactly the assignments of Nv(~S).

For a leaf node v of T , we have to consider two cases:

1. Suppose δ(v) = x for a variable x of F . For ` ∈ {x,¬x}, let τ` denote the
assignment τ` : {x} → {0, 1} such that τ(`) = 1. The pairs ~Sx = (F/τx, ∅)
and ~S¬x = (F/τ¬x, ∅) are the only shapes for v, and Nv(~Sx) = {τx} as well
as Nv(~S¬x) = {τ¬x}. Accordingly, we let ϕv(~Sx) ≡ x and ϕv(~S¬x) ≡ ¬x.

2. Let δ(v) = C for a clause C ∈ F . The pairs ~S⊥ = (∅, ∅) and ~S> = (∅, {C})
are the only shapes for v. Since Xv = ∅ it suffices to determine whether
the empty assignment ε : ∅ → {0, 1} has one of these shapes. Because the
empty assignment does not satisfy any clause we get Nv(~S>) = {ε} and
Nv(~S⊥) = ∅, so we define ϕv(~S⊥) ≡ 0 and ϕv(~S>) ≡ 1.

3.1. COMPILATION OF BOUNDED PS-WIDTH FORMULAS 77

Let v be an inner node of T with children v1 and v2, and assume we have con-
structed ϕv1(~S1) for each shape ~S1 for v1 and ϕv2(~S2) for each shape ~S2 for v2.
Let ~S be a shape for v and let G denote the set of pairs of shapes ~S1 for v1 and
~S2 for v2 that generate ~S. We construct ϕv(~S) as

ϕv(~S) ≡
∨

(~S1,~S2)∈G

ϕv1(~S1) ∧ ϕv2(~S2). (3.1)

That is, we create an AND node conjoining every pair ϕv1(~S1) and ϕv2(~S2) such
that ~S1 and ~S2 generate ~S, and then add an OR node that has an incoming edge
from each AND node thus created. We assume that the resulting DNNF has been
simplified by propagating constants.

Lemma 3.4. For each node v of T and shape ~S for v, ϕv(~S) is a d-DNNF such
that var(ϕv(~S)) ⊆ Xv and such that an assignment τ : Xv → {0, 1} satisfies ϕv(~S)
if, and only if, τ ∈ Nv(~S).

Proof. It is easy to check that the statement holds for each leaf node v of T . Let v
be an inner node and suppose the statement holds for its children v1 and v2. Let ~S
be a shape for v. By assumption, var(ϕv1(~S1)) ⊆ Xv1 and var(ϕv2(~S2)) ⊆ Xv2 for
every shape ~S1 for v1 and every shape ~S2 for v2. We have Xv = Xv1 ∪ Xv2

and since Xv1 and Xv2 are disjoint it follows that ϕv(~S) is a DNNF satisfying
var(ϕv(~S)) ⊆ Xv. Let τ : Xv → {0, 1} be a satisfying assignment of ϕv(~S), and let
τ1 and τ2 denote the restrictions of τ to Xv1 and Xv2 , respectively. By definition
of ϕv(~S), there is a pair of shapes ~S1 and ~S2 generating ~S such that τ satisfies
the disjunct ϕv1(~S1)∧ϕv2(~S2). By assumption, the lemma holds for v1 and v2. In
particular, var(ϕv1(~S1)) ⊆ Xv1 and var(ϕv2(~S2)) ⊆ Xv2 , so τ1 satisfies ϕv1(~S1) and
τ2 satisfies ϕv2(~S2), which in turn implies that τ1 ∈ Nv1(~S1) and τ2 ∈ Nv2(~S2). It
now follows from Lemma 3.1 that τ has shape ~S.

In addition, Lemma 3.1 tells us that (~S1, ~S2) is the unique pair of shapes
generating ~S such that τ1 has shape ~S1 and τ2 has shape ~S2. Thus ϕv1(~S1) ∧
ϕv2(~S2) is the unique disjunct satisfied by τ . By assumption, ϕv1(~S′1) and ϕv2(~S′2)
are deterministic DNNFs for each shape ~S′1 for v1 and ~S′2 for v2, so ϕv(~S) is
deterministic as well.

Now let τ : Xv → {0, 1} be an assignment of shape ~S, and let τ1 and τ2 denote
its restrictions to Xv1 and Xv2 , respectively. By Lemma 3.1, there has to be a
pair (~S1, ~S2) of shapes ~S1 for v1 and ~S2 for v2 generating ~S such that τ1 ∈ Nv1(~S1)
and τ2 ∈ Nv2(~S2). It follows from our assumption that the lemma holds for v1

and v2 that τ1 satisfies ϕv1(~S1) and that τ2 satisfies ϕv2(~S2). Thus τ satisfies
ϕv1(~S1) ∧ ϕv2(~S2), hence τ satisfies ϕv(~S).

To show that ϕv(~S) is a structured DNNF, we have to provide a vtree respected
by ϕv(~S). For a node v of T , let vtree(T, v) = T ′, where T ′ is the tree obtained
from the subtree Tv by deleting all leaves w labeled by a clause of F , followed—if
necessary—by a sequence of operations to make the resulting tree binary. Verify

78 CHAPTER 3. PARAMETRIZED COMPILATION OF CNF-FORMULAS

x1 x2 x3C1 C2 C3 C4 x1 x2 x3

Figure 3.1: The tree on the left is a branch decomposition of a formula F =
{C1, C2, C3, C4} with var(F) = {x1, x2, x3}. To obtain the vtree on the right, we
first delete each leaf node associated with a clause, as well inner nodes turned into
leaf nodes by these deletions (the corresponding vertices are shown in gray). The
resulting tree is turned into a binary tree by contracting edges incident to nodes
of degree two (these edges are represented by dashed lines).

that vtree(T, v) is a branch decomposition of Xv and hence a vtree. We illustrate
this construction in Figure 3.1.

Lemma 3.5. For each node v of T and shape ~S for v, the DNNF ϕv(~S) respects
vtree(~T , v).

Proof. The lemma trivially holds for each leaf node v of T and shape ~S for v,
as ϕv(~S) does not contain any AND nodes. Let v be an inner node of T with
children v1 and v2, and assume the lemma holds for v1 and v2 and their respective
shapes. Let ~S be a shape for v. By construction, each AND node introduced in
ϕv(~S) computes a conjunction ϕv1(~S1) ∧ ϕv2(~S2), where ~S1 and ~S2 are shapes for
v1 and v2, respectively, that generate ~S. Since we assume ϕv(~S) to be simplified,
both Xv1 and Xv2 have to be nonempty: otherwise, one of the conjuncts ϕvi(

~Si)
for i ∈ {1, 2} would satisfy var(ϕvi(

~Si)) = ∅ by Lemma 3.4 and would have been
simplified to a constant, which in turn would have been propagated through the
AND node. Let vtree(T, v) = T ′, let vtree(T, v1) = T1, and let vtree(T, v2) = T2.
As both Xv1 and Xv2 are nonempty, T ′ is a binary tree whose principal subtrees
are T1 and T2. By Lemma 3.4, the conjuncts satisfy var(ϕv1(~S1)) ⊆ Xv1 and
var(ϕv2(~S2)) ⊆ Xv2 . In combination with the assumption that the DNNF ϕvi(

~S′i)

respects vtree(T, vi) for each i ∈ {1, 2} and shape ~S′i for vi, this implies that ϕv(~S)
respects vtree(T, v).

Let r denote the root of T and let ~∅ = (∅, ∅). We now prove that our construc-
tion yields a structured d-DNNF representation of F .

Lemma 3.6. The pair ~∅ is the only shape for r and ϕr(~∅) is a structured d-DNNF
computing F .

Proof. The first part follows from the fact that Xr = var(F) and Fr = F , so

that Xr = ∅ and Fr = ∅. By Lemma 3.4 and Lemma 3.5, ϕr(~∅) is a structured

3.1. COMPILATION OF BOUNDED PS-WIDTH FORMULAS 79

d-DNNF such that an assignment τ : var(F) → {0, 1} satisfies ϕr(~∅) if, and only

if, τ ∈ Nr(~∅). Condition 2 states that if an assignment τ : var(F) → {0, 1} has

shape ~∅ then (F/τ) ∪ ∅ = F that is τ satisfies every clauses of F . In other words,

Nr(~∅) is the set of satisfying assignments of F .

Let n be the number of variables of F , let m be the number of clauses in F , and
let k denote the PS-width of T . The size of the structured d-DNNF constructed
for F can be bounded as follows.

Lemma 3.7. The DNNF ϕr(~∅) has size at most (5k3 + 2)(n+m).

Proof. We can assume without loss of generality that T contains at least one
inner node. Let v be an inner node of T with children v1 and v2. Consider the
DNNFs ϕv1(~S1) for shapes ~S1 for v1 and ϕv2(~S2) for shapes ~S2 for v2. We claim
that all DNNFs ϕv(~S) for shapes ~S of v can be constructed from these DNNFs by
introducing at most 5k3 new nodes and edges. If ~S is a shape for v and ~S1 and ~S2

are shapes for v1 and v2 that generate ~S, we have to introduce an AND node and
two edges to construct the DNNF computing ϕv1(~S1) ∧ ϕv2(~S2), as well an edge
from this AND node to the OR node that will eventually compute ϕv(~S). In the
worst case, we have to create this OR node first. In total, we have to introduce
at most 5 nodes and edges for each triple (~S, ~S1, ~S2) of shapes such that ~S1 and
~S2 generate ~S. How many such triples are there? For any three projections
S1 ∈ proj(Fv1 , Xv1), S2 ∈ proj(Fv2 , Xv2), and S′ ∈ proj(Fv, Xv), the projections
S′1 ∈ proj(Fv1 , Xv1), S′2 ∈ proj(Fv2 , Xv2), and S ∈ proj(Fv, Xv) such that ~S1 =
(S1, S

′
1) and ~S2 = (S2, S

′
2) generate ~S = (S, S′) is uniquely determined. As there

are at most k3 such projections, we have to introduce at most 5k3 nodes and edges.
The tree T has exactly n + m − 1 inner nodes, so we need at most 5k3(n + m)

nodes and edges to construct the DNNF ϕr(~∅) from the DNNFs constructed for
leaves of T . For each leaf node there at most two DNNFs consisting of a single
node and there are n + m leaves, so we require at most (5k3 + 2)(n + m) nodes
and edges in total.

Since we did not make any assumptions about the formula F and the branch
decomposition T , Lemma 3.6 and Lemma 3.7 yield the following result.

Theorem 3.8. A CNF formula with n variables, m clauses, and PS-width k can
be compiled into a structured d-DNNF of size O(k3(n+m)).

The above construction leads to an algorithm which, given a formula F and a
branch decomposition T of F ∪ var(F), computes a structured d-DNNF represen-
tation of F . The pseudo code listed as Algorithm 4 provides the outlines of this
procedure.1 We can show that Algorithm 4 runs in time O(k3m(n+m)) making
Theorem 3.8 effective: not only a small d-DNNF exists but it can be computed
efficiently:

1To enhance readability, we suppress double brackets around shapes, writing, for instance,
ϕv(S, S

′) instead of ϕv((S, S
′)).

80 CHAPTER 3. PARAMETRIZED COMPILATION OF CNF-FORMULAS

Theorem 3.9. A CNF formula with n variables, m clauses, and PS-width k can
be compiled into a structured d-DNNF of size O(k3(n+m)) in time O(k3m(n+m)).

Proof. We have to show that Algorithm 4 runs in time O(k3m(n + m)). If for
every vertex v of T we have precomputed every shape ~S for v and the shapes
for its children v1, v2 that generates it, then the construction of the d-DNNF can
easily be done in time O(k3(n+m)).

Thus the only remaining step if to compute the shapes, that is, the sets
proj(Fv, Xv) and proj(Fv, Xv) for every vertex v of T . It is shown in [STV14]
that it can be done in time O(k3m(n+m)) which completes the proof.

Theorem 2.15 from [STV14] stating that #SAT is tractable on bounded PS-width
instances can be seen as a corollary of Theorem 3.9: compile a d-DNNF D for F
in time O(k3m(n + m)) and then use Proposition 1.57 to count its number of
satisfying assignments in time O(size(D)) = O(k3(n+m)).

Observe that we need roughly the same time for constructing the determin-
istic DNNF than what is needed to count the number of satisfying assignments
in [STV14] but the size of the resulting DNNF is smaller by a factor of m. This may
be of interest if the formula is queried many times for counting after conditioning.

The question of the optimality of such a compilation algorithm is still open.
It would be interesting to understand if deterministic d-DNNF is the best repre-
sentation language we can hope for. In particular:

Open question 1. Can we compile formulas of small PS-width into succinct
dec-DNNF?

In our compilation algorithm, determinism is ensured by the fact that our
assignments have different projections on some subformula which seems stronger
than the way dec-DNNF ensured determinism. To be able to compile formulas of
small PS-width into succinct dec-DNNF would require a better understanding of
the structure of the formula.

3.2 Consequences of the compilation algorithm

3.2.1 Compilation for other graph measures

In Section 2.3.1, we used Theorem 2.15 to prove that #SAT was tractable for
many graph parameters. The same can be done for compilation into structured
d-DNNF using Theorem 3.8 and the relations between PS-width and the other
graph parameters we have shown in Section 2.3.1.

Corollary 3.10. A formula with n variables, m clauses, and incidence tree-
width k can be compiled into a structured d-DNNF of size O(8k(n+m)).

Corollary 3.11. A formula with n variables, m clauses, and incidence clique-
width k can be compiled into a structured d-DNNF of size O(m3k(n+m)).

3.2. CONSEQUENCES OF THE COMPILATION ALGORITHM 81

Algorithm 4: Compiling CNFs into structured d-DNNFs.

Input: a CNF F and a branch decomposition (T, δ) of F ∪ var(F)
Output: a structured d-DNNF computing F
// initialization, precomputing shapes
for v in T

compute proj(Fv, Xv) and proj(Fv, Xv)
// compilation, leaf nodes
for v in L(T)

if δ(v) in var(F)
x = δ(v)
Sx = {C ∈ F | x ∈ C}
S¬x = {C ∈ F | ¬x ∈ C}
ϕv(Sx, ∅) = x
ϕv(S¬x, ∅) = ¬x

else
C = δ(v)
ϕv(∅, {C}) = 1
ϕv(∅, ∅) = 0

mark v as processed

// compilation, inner nodes
while T contains an unprocessed node

let v be an unprocessed node whose children v1 and v2 have been
processed

for (S1, S2, S
′) in proj(Fv1 , Xv1)× proj(Fv2 , Xv2)× proj(Fv, Xv)

S = S1 ∪ S2

S′1 = S′ ∪ S2

S′2 = S′ ∪ S1

if ϕv(S, S
′) has not been created

// initialize ϕv(S, S
′)

ϕv(S, S
′) = 0

ϕv(S, S
′) = ϕv(S, S

′) ∨ (ϕv1(S1, S
′
1) ∧ ϕv2(S2, S

′
2))

propagate constants in ϕv(S, S
′)

mark v as processed
return ϕr(∅, ∅)

82 CHAPTER 3. PARAMETRIZED COMPILATION OF CNF-FORMULAS

Corollary 3.12. A formula with n variables, m clauses, and directed incidence
clique-width k can be compiled into a structured d-DNNF of size O(64k(n+m)).

Consequently, every query supported in polynomial time by d-DNNF can be
shown to be tractable for these structural restrictions. For example, we can di-
rectly use Corollary 3.10 together with Proposition 1.56 to show that the satisfying
assignments of CNF-formula F of tree width k can be enumerated with a prepro-
cessing of O(8k(n + m)m) and a delay of O(8k(n + m)n) where n is the number
of variables of F and m the number of clauses of F .

3.2.2 Solving MaxSAT

It is shown in [STV14] that MaxSAT is tractable on instances of bounded PS-width.
This result is proven along the same lines of Theorem 2.15, using a modified version
of the dynamic programming algorithm. Since the structure of the CNF-formula
is lost during the compilation, Theorem 3.8 does not imply this result directly.
However, we can still use Theorem 3.8 to compute MaxSAT and other optimization
problems on bounded PS-width CNF-formula. The idea is to add a new variable
for each clause that will preserve the structure of F during compilation without
increasing its PS-width.

Let F be a CNF formula and let Y = {yC | C ∈ F} be a set of variables disjoint
from var(F) of size |F |. We denote by F̂ = {C ∪ {yC} | C ∈ F}. Transforming F
into F̂ does not increase the PS-width of F :

Lemma 3.13. Let F be a CNF-formula. Then PS-width(F̂) ≤ PS-width(F).

Proof. Let T be a branch decomposition of F∪var(F) of PS-width k. We construct
a branch decomposition T ′ of F̂ ∪ var(F̂) by replacing each leaf of T labeled by a
clause C ∈ F with two leaves labeled by yC and C ∪{yC} ∈ F̂ . To ease notations,
we denote by F ′ = F̂ . We claim that the PS-width of T ′ is k.

As usual, for a vertex t of T , we denote by Ft = L(Tt)∩F , Xt = L(Tt)∩var(F),
Ft = F \ Ft, Xt = var(F) \ Xt. Similarly, for a vertex t of T ′, we denote by
F ′t = L(T ′t) ∩ F ′, X ′t = L(T ′t) ∩ var(F ′), F ′t = F ′ \ F ′t , X ′t = var(F ′) \X ′t.

By identifying every vertex t of T that is not a leaf with it corresponding vertex
t in T ′, we have F ′t = Ft and F ′t = Ft, if we identify the clauses of F with those
of F ′. Moreover, X ′t = Xt ∪ {yC | C ∈ Ft} and X ′t = Xt ∪ {yC | C ∈ F ′t}. In
particular, for every clause C of F , every variables yC is on the same side of T ′t as
its corresponding clause in F ′.

If τ is a truth assignment of X ′t, then the projection F ′t/τ does not depend on
the value of τ on variables yC for C ∈ F ′t since these variables are not in F ′t . Thus,
F ′t/τ = Ft/(τ |Xt). Similarly, if τ is a truth assignment of X ′t, F

′
t/τ = Ft/(τ |Xt).

Thus PS-width(T ′) = PS-width(T) that is PS-width(F ′) ≤ PS-width(F).

Lemma 3.13 can be combined with Theorem 3.8 to efficiently compile F̂ for a
formula F of PS-width k into a deterministic DNNF. Such a DNNF still contains
information on the structure of F that can be exploited to solve new problems on

3.2. CONSEQUENCES OF THE COMPILATION ALGORITHM 83

F . For example, if F ′ ⊆ F , then we can transform a DNNF D for F̂ into a DNNF
for F̂ ′ by simply conditioning D on {yC 7→ 1 | C /∈ F ′}.

The satisfying assignments of F̂ relate nicely with the maximum number of
clauses that can be satisfied in F . Given a boolean function f , a satisfying as-
signment τ ∈ sat(f) is said minimal w.r.t X ⊆ var(f) if for every τ ′ ∈ sat(f),
|τ−1(0) ∩X| ≥ |τ ′−1(0) ∩X|.

Lemma 3.14. Let F be a CNF formula. Let τ ∈ sat(F̂) be a minimal satisfying
assignment of F̂ w.r.t Y = {yC | C ∈ F}. It holds that

MaxSAT(F) = |τ−1(0) ∩ Y |.

Proof. Let µ be a truth assignment of var(F) that satisfies m = MaxSAT(F)
clauses. Let µ′ be the truth assignment of var(F̂) that agrees with µ on var(F)
and such that µ′(yC) = 1 if µ 6|= C and µ′(yC) = 0 otherwise. Then µ′ is clearly
a satisfying assignment of F̂ and thus m = |µ′−1(0) ∩ Y | ≤ |τ−1(0) ∩ Y | since τ is
minimal w.r.t Y . Moreover observe that for every C ∈ F such that τ(yC) = 0 we
have τ |var(F) |= C. In other words, |τ−1(0)∩Y | ≤ m. That is m = |τ−1(0)∩Y |.

As observed in [Dar01a], minimal satisfying assignments of a DNNF can easily
be found.

Proposition 3.15. Let D be a DNNF and let X ⊆ var(D). A minimal satisfying
assignment of D w.r.t X can be found in time O(size(D)).

Proof (Sketch). The key observation is that if D = D1 ∧ D2 with var(D1) ∩
var(D2) = ∅, and if τi is a minimal satisfying assignment of Di w.r.t. var(Di) ∩X
for i ∈ {1, 2}, then τ1 ∪ τ2 is minimal for D w.r.t. X.

Moreover, if D = D1 ∨D2, we let τi be a minimal satisfying assignment of Di

w.r.t var(Di)∩X for i ∈ {1, 2}. Assume w.l.o.g that |τ−1
1 (1)∩X| ≤ |τ−1

2 (1)∩X|.
Then τ1 ∪ {x 7→ 0 | x ∈ var(D) \ var(D1)} is a minimal satisfying assignment of D
w.r.t x.

Dynamically propagating this satisfying assignment from the input of D to its
output can be done in time O(size(D)).

Proposition 3.15 combined with Lemma 3.14 yields the following:

Theorem 3.16. MaxSAT can be solved in time O(k3m(n+m)) on CNF formulas
with n variables and m clauses.

84 CHAPTER 3. PARAMETRIZED COMPILATION OF CNF-FORMULAS

Chapter 4

Compilation of β-acyclic
formulas

CNF-formulas whose underlying hypergraph is β-acyclic remained a singularity
among the tractable families for SAT for a while. For the tractable families
presented in Chapter 2, the algorithm for decision [Sze04] could easily be gen-
eralized to counting [SS10] or even directly designed for counting [SS13, PSS13,
CDM14, STV14] and later, as we have seen in Chapter 3, generalized to compi-
lation [BCMS15] which uniformly explains why almost the same algorithm works
for other queries as well. All such structure-based algorithms perform a dynamic
programming algorithm along a branch decomposition of small width. This simi-
larity is explained in Chapter 2 since the structural restrictions they are using have
bounded PS-width. In contrast, only decision of β-acyclic formulas was known to
be tractable [OPS13]. Every attempt at solving #SAT using the classical dynamic
programming approach failed. The main reason is that no characterization of β-
acyclicity in terms of branch decomposition were known. Moreover, the algorithm
proposed by Ordyniak, Paulusma and Szeider is based on resolution, a well-known
algorithm for SAT that does not generalize to counting.

In this chapter, we settle the complexity of #SAT on β-acyclic formulas by
giving an efficient compilation algorithm of such formulas into dec-DNNF. In
addition, we show that for every n there exist β-acyclic formulas of size Ω(n)
whose PS-width is 2Ω(n). This deviation from the framework of [STV14] is an
evidence that the classical dynamic programming approach is unlikely to work on
such instances.

This chapter is organized as follows. In a first section, we show the exponential
lower bound on the PS-width of β-acyclic formulas which motivates the quest for a
compilation algorithm different from the one of Chapter 3 by using new techniques.
The second section proves new results on the structure of β-acyclic hypergraph
that will be used for our algorithm but are of independent interest. Finally we
present the compilation algorithm of β-acyclic formulas into succinct dec-DNNF
and give some immediate corollaries of the existence of such algorithm.

85

86 CHAPTER 4. COMPILATION OF β-ACYCLIC FORMULAS

4.1 Incomparability with other measures

In this section, we construct β-acyclic formulas which have a PS-width exponential
in their size. This result can be found in [BCM15]. PS-width is not a usual
structural parameter since it does not only depend on the incidence graph of the
formula thus, to compare β-acyclicity with PS-width, we need to relate PS-width
with a graph parameter. The following connects PS-width (of monotone formulas)
and MIM-width:

Lemma 4.1. For every bipartite graph G there is a monotone CNF-formula F
such that F has the incidence graph G and psw(F) ≥ 2mimw(G)/2.

Proof. We construct F by choosing arbitrarily one color class of G to represent
clauses and the other one to represent variables. This choice then uniquely yields
a monotone formula where a clause C contains a variable x if and only if x is
connected to C by an edge in G.

Let (T, δ) be a branch decomposition of G and F . Let t be a vertex of T with
cut (A,A). Set X := var(F) ∩ A, X := var(F) ∩ A, C := F ∩ A and C := F ∩ A.
Moreover, let M be a maximum induced matching of G[A,A] and let VM be the
end vertices of M .

First assume that |C ∩VM | ≥ |C ∩VM |. Let C1, . . . , Ck be the clauses in C ∩VM
and let x1, . . . , xk be variables in X ∩ VM . Note that k ≥ |M |/2. Since M is an
induced matching, every clause Ci contains exactly one of the variables xj , and
we assume w.l.o.g. that Ci contains xi. Let a be an assignment to the xi and
let a′ be the extended assignment of X that we get by assigning 0 to all other
variables. Then a′ satisfies in FX,C exactly the clauses Ci for which a(xi) = 1

since the formula is monotone. Since there are 2k assignments to the xi, we have
|PS(FX,C)| ≥ 2k ≥ 2|M |/2.

For |C ∩ VM | ≤ |C ∩ VM | it follows symmetrically that |PS(FX,C)| ≥ 2|M |/2.

Consequently, we have in either case that the PS-width of F is at least 2|M |/2

and the claim follows.

We now give a way of transforming a graph G into a chordal bipartite graph
whose MIM-width is linearly related to the tree width of G. We then choose the
right graph G to obtain the desired lower bound.

Given a graph G = (V,E), we define a graph G′ = (V ′, E′) as follows:

• for every v ∈ V there are two vertices xv, yv ∈ V ′,

• for every edge e = uv ∈ E there are four vertices pe,u, qe,u, pe,v, qe,v ∈ V ′,

• for every u, v ∈ V we add the edge xvyu to E′, and

• for every edge e = uv ∈ E we add the edges pe,uqe,u, pe,vqe,v, xupe,u, yvqe,u,
xvpe,v, yuqe,v.

These are all vertices and edges of G′. Figure 4.1 illustrates the transformation.

4.1. INCOMPARABILITY WITH OTHER MEASURES 87

qe,vxuxvqe,u

pe,v yuyv pe,u

Figure 4.1: The construction of G′: transforming the edge uv of G

Lemma 4.2. G′ is chordal bipartite.

Proof. We have to show that every cycle C in G′ of length at least 6 has a chord.
We consider two cases: Assume first that C contains no vertex pe,v and conse-
quently no qe,v either. Then all vertices of C are xv or yv and so C is a cycle in
the complete bipartite graph induced by the xv and yv. Clearly, C has a chord
then.

Now assume that C contains a vertex pe,v and consequently also qe,v. Let
e = uv. Then C must also contain xv and yu, so xvyu ∈ E′ is a chord.

Lemma 4.3. Let G be bipartite. Then tw(G) ≤ 6mimw(G′).

Proof. Let (T ′, δ′) be a branch decomposition of G′. Let A,B ⊆ V (G) be the two
color classes of G. We construct a branch decomposition (T, δ) of G by deleting
the leaves labeled with pe,u, qe,u, pe,v, qe,v, and those labeled xv for v ∈ A or with
yv for v ∈ B. Then we delete all internal vertices of T ′ that have become leaves
by these deletions until we get a branch decomposition T with the leaves xv for
v ∈ B and yv for v ∈ A. For the leaves of T we define δ(t) := v where v ∈ V is
such that δ′(t) = xv or δ′(t) = yv. The result (T, δ) is a branch decomposition of
G.

Let t be a vertex of T with the corresponding cut (X,X). Let M ⊆ E be a

matching in G[X,X]. Let (X ′, X
′
) be the cut of t in (T ′, δ′). Let e = uv ∈ M ,

then xu and yv are on different sides of the cut X ′ and they are connected by
the path xupe,uqe,uyv. Consequently, there is at least one edge along this path in

G′[X ′, X
′
]. Choose one such edge arbitrarily.

Let M ′ be the set of edges we have chosen for the different edges in M . Let
M ′x be the set of edges in M ′ that do not have an end vertex yv and let M ′y be the
set of edges in M ′ that do not have an end vertex xv. Let M ′′ be the bigger of
these two sets. Since e′ ∈M ′ can only have an end vertex xv or yu but not both,
we have |M ′x|+ |M ′y| ≥ |M ′| and thus |M ′′| ≥ |M ′|/2.

We claim that M ′′ is an induced matching in G′. Clearly, M ′ is a matching
because M is one. Consequently, M ′′ ⊆ M ′ is also a matching. We now show
that M ′′ is also independent. By way of contradiction, assume this were not true.
Then there must be two adjacent vertices u, v ∈ V ′ that are end vertices of edges
in M ′′ but not in the same edge in M ′′. If u = pe′,w for some e′ ∈ E and w ∈ V ,
then v must be xw. But then by construction of M ′, the vertex w must be incident

88 CHAPTER 4. COMPILATION OF β-ACYCLIC FORMULAS

to two edges in M which contradicts M being a matching. Similarly, we can rule
out that v is qe,w. Thus, u must be xw or yw and v must be xw′ or yw′ . Since xw
and xw′ are in the same col-our class of G′, they are not adjacent. Similarly yw
and yw′ are not adjacent. Consequently, we may assume that u = xw and v = yw′ .
But then they cannot both be an endpoint of an edge in M ′′ by construction of
M ′′. Thus M ′′ is independent.

By Lemma 1.29 we know that there is a t ∈ T with cut (X,X) such that we

can find a matching M of size at least tw(G)
3 in G[X,X]. By the construction

above the corresponding cut (X ′, X
′
) yields an induced matching of size tw(G)

6 in

G′[X ′, X
′
]. This completes the proof.

Using the connection between vertex expansion and tree width (see [GM09])
the following lemma is easy to show.

Lemma 4.4. There is a family G of graphs and constants c > 0 and d ∈ N such
that for every G ∈ G the graph G has maximum degree d and we have tw(G) ≥
c|E(G)|.

Corollary 4.5. There is a family G′ of chordal bipartite graphs and a constant c
such that for every graph G ∈ G we have mimw(G) ≥ c|V (G)|.

Proof. Let G be the class of Lemma 4.4. We first transform every graph G ∈ G
into a bipartite one G1 by subdividing every edge, i.e., by introducing for each
edge e = uv a new vertex we and by replacing e by uwe and wev. It is well-
known that subdividing edges does not decrease the tree width of a graph (see
e.g. [Die12]), and thus tw(G) ≤ tw(G1). Moreover, |E(G1)| = 2|E(G)|, and
thus tw(G1) ≥ 1

2c|E(G1)|. Now let G′ = {G′1 | G ∈ G}. Then the graphs in G′
are chordal bipartite by Lemma 4.2 and the bound on the MIM-width follows by
combining Lemma 4.4 and Lemma 4.3.

We can now easily prove the main result of this section.

Corollary 4.6. There is a family of monotone β-acyclic CNF-formulas of MIM-
width Ω(n) and PS-width 2Ω(n) where n is the size of the formula.

Proof. Let F be the class of monotone CNF-formulas having the class G′ of Corol-
lary 4.5 as its incidence graphs. By Theorem 1.36 the formulas in F are β-acyclic.
Combining the bound on the MIM-width of G′ with Lemma 4.1 then directly yields
the result.

Since MIM-width is smaller than cliquewidth, the incomparability of β-acyclicity
with cliquewidth or incidence tree width follows from Corollary 4.6. Observe
that the incomparability of β-acyclicity and cliquewidth was already known from
[GP04].

We conclude this section by observing that the family of formulas we construct
to get the lower bound has large clauses. We show that it is indeed necessary.

4.2. STRUCTURE OF β-ACYCLIC HYPERGRAPHS 89

Indeed, β-acyclic k-CNF have small primal tree width. This is even true for α-
acyclic k-CNF formulas:

Theorem 4.7. Let F be an α-acyclic k-CNF. Then its primal tree width is at
most k − 1.

Proof. Let (T , λ) be a join tree of H(F). We see T as a tree decomposition where
for every vertex t of T , the bag in t is λ(t). Each bag is thus of size at most k since
each bag contains the variables of a k-clause of F . Since T is a join tree, for every
x ∈ var(F), the set of vertices of T whose bag contains x is a connected subtree
of T . Moreover, let e = {x, y} be an edge of Gprim(F), then by definition, there
exists a clause C ∈ F such that {x, y} ⊆ var(C). Let t be the vertex of T which
is labeled by var(C). It holds that the edge {x, y} is covered by the bag labeling
t. Thus T is a tree decomposition of Gprim(F) and it is of tree width k− 1. Thus,
tw(Gprim(F)) ≤ k − 1.

Observe that if F is an α-acyclic k-CNF with a clause of size exactly k, then
Gprim(F) contains a k-clique, thus the primal tree width of F is exactly k. The-
orem 4.7 shows that the most interesting α-acyclic instances for us will be of
unbounded arity.

4.2 Structure of β-acyclic hypergraphs

Our compilation algorithm relies on a better understanding of the structure of β-
acyclic hypergraphs. We describe the structure of the hypergraph induced by the
removed vertices following a β-elimination order. We use these orders to define a
family of subhypergraphs that will be helpful to describe a dynamic programming
compilation algorithm.

4.2.1 Orders

Let H be a hypergraph and < be an order on V (H). We define an order on H
induced by <, denoted by <H, as e <H f if and only if e 6= f and max<(e∆f) ∈ f
where e∆f denotes the symmetric difference (e \ f) ∪ (f \ e) of e and f . Another
way of seeing <H is to see it as a lexicographical order. Indeed, assume that
V (H) = {x1, . . . , xn} with xi < xj if and only if i < j. An edge e can be seen as a
vector of ~e ∈ {0, 1}n such that ~ei = 1 if xi ∈ e and ~ei = 0 otherwise. Now e <H f
if and only if ~e is smaller than ~f for the lexicographical order. It follows:

Lemma 4.8. If < is an order on V then <H is an order on H.

From the orders < and <H, one can construct a family of subhypergraphs of
H which will be interesting for us later. Let x ∈ V and e ∈ H. We denote by
V≤x = {y ∈ V | y ≤ x}, by V<x = {y ∈ V | y < x}, by V≥x = {y ∈ V | y ≥ x} and
V>x = {y ∈ V | y > x}. We denote by Hxe the subhypergraph of H that contains
the edges f ∈ H such that there is a path from f to e that goes only through edges

90 CHAPTER 4. COMPILATION OF β-ACYCLIC FORMULAS

smaller than e and vertices smaller than x. In particular, by definition, Hxe is a
connected subhypergraph of H, with e ∈ Hxe and for all f ∈ Hxe , f ≤H e. Observe
also that even if there is a path from f ∈ Hxe to e that goes only through vertices
smaller than x, f may hold vertices that are bigger than x. We insist on the fact
that the whole edge f is in Hxe and not only its restriction to V≤x. Lemma 4.12
gives a precise characterization of the vertices of Hxe . The hypergraphs Hxe are
ordered as follows:

Lemma 4.9. Let x, y ∈ V (H) such that x ≤ y and e, f ∈ H such that e ≤H f
and V (Hxe)∩V (Hyf)∩V≤x 6= ∅. Then Hxe ⊆ H

y
f . In particular, for all y, if e ∈ Hyf

then Hye ⊆ Hyf .

Proof. Let z ∈ V (Hxe) ∩ V (Hyf) ∩ V≤x, that is, there exist g1 ∈ Hxe and g2 ∈ Hyf
such that z ∈ g1 and z ∈ g2. There exists a path P1 from f to g2 going through
vertices smaller than y and edges smaller than f and a path P2 from g1 to e going
through vertices smaller than x and edges smaller than e. Since z ≤ x ≤ y and
e ≤H f , P = (P1, z,P2) is a walk from f to e going through edges smaller than
f and vertices smaller than y, that is e ∈ Hyf . Now let h ∈ Hxe and let P3 be a
path from e to h going through vertices smaller than x and edges smaller than
e. Then (P,P3) is a walk from f to h going through vertices smaller than y and
edges smaller than f . That is h ∈ Hyf , so Hxe ⊆ H

y
f .

4.2.2 Applications

If H is β-acyclic and < is a β-elimination order then the hypergraphs Hxe have
interesting properties that we will use to describe the compilation algorithm in
terms of dynamic programming and to analyze the runtime of weighted resolution
on β-acyclic instances. For the rest of this section, we assume that H is a β-acyclic
hypergraph and that < is a β-elimination order for V (H).

We start by giving an example that may help the reader to have an intuitive
representation of what follows. We are interested in the β-acyclic hypergraph
H = {{1, 2}, {3, 4}, {2, 5}, {4, 5}, {2, 4, 5}} depicted on Figure 4.2. One can easily
check that 1 < 2 < 3 < 4 < 5 is a β-elimination order and that the order <H
on H given by Lemma 4.8 is the following e1 = {1, 2} <H e2 = {3, 4} <H e3 =
{2, 5} <H e4 = {4, 5} <H e5 = {2, 4, 5}. H4

e5 is the whole hypergraph since one
can reach any edge from e5 by going through vertices smaller than 4. H3

e5 however
is lacking the edge e2 = {3, 4} since the only way of reaching e2 from e5 is to go
through the vertex 4 which is not allowed.

We now prove useful lemmas to characterize the variables of Hxe in terms of e
and V≥x, the vertices left before eliminating x.

Lemma 4.10. Let e, f ∈ H such that e∩ f 6= ∅ and let x ∈ e∩ f . If e <H f then
e ∩ V≥x ⊆ f .

Proof. Let x0 = min(e∩f). We show e∩V≥x0 ⊆ f . Since < is an elimination order,
we already know that either e ∩ V≥x0 ⊆ f or f ∩ V≥x0 ⊆ e. Let y = max(e∆f).

4.2. STRUCTURE OF β-ACYCLIC HYPERGRAPHS 91

5

3 4

21

H4
e5 = H

5

4

21

H3
e5

4 3

H3
e2

Figure 4.2: An example of Hxe

We have y ∈ f \ e since e <H f . If x0 ≤ y, then y ∈ f ∩ V≥x0 and y /∈ e ∩ V≥x0 ,
thus we must have e ∩ V≥x0 ⊆ f .

Now, if y < x, then e∆f ⊆ V≤y ⊆ V<x0 . Thus e ∩ V≥x0 = (e ∩ f) ∩ V≥x0 =
f ∩ V≥x0 . In particular, e ∩ V≥x0 ⊆ f .

We have shown e∩V≥x0 ⊆ f . Now observe that since x0 ≤ x, e∩V≥x ⊆ e∩V≥x0 .
Thus e ∩ V≥x ⊆ f .

The next lemma is crucial since it introduces a normal form of the paths we
consider. A path P = (e0, x0, . . . , xn, en) from e0 to en is defined to be decreasing
if for all i < n, xi > xi+1 and ei >H ei+1.

Lemma 4.11. For every x ∈ V , e ∈ H and f ∈ Hxe , there exists a decreasing path
from e to f going through vertices smaller than x.

Proof. By definition of Hxe , there exists a path P = (e0, x0, . . . , xn−1, en) with
e0 = e and en = f and such that for all i ≤ n, ei ≤H e and xi ≤ x. We show
that if P is a shortest path among those going through vertices smaller than x,
then it is also decreasing. Assume that P is a non-decreasing such shorter path.
Remember that by definition of paths, the edges (ei) are pairwise distinct. The
same is true for the vertices (xi). Moreover, observe that since P is a shortest
path, then it holds that:

∀k < n, j /∈ {k, k + 1} ⇒ xk /∈ ej . (?)

Indeed, if there exists k and j /∈ {k, k + 1} such that xk ∈ ej , P could be shorten
by going directly from ei to ej if j > i+ 1 or from ej to ei+1 if j < i.

Let i = min{j | xj+1 > xj or ej+1 >H ej} be the first indices where P does
not respect the decreasing condition, which exists if P is not decreasing.

First assume i = 0. By definition of P, e0 = e >H e1. Thus it holds that
x0 < x1. By definition, x0 ∈ e0 ∩ e1 and by Lemma 4.10, e1 ∩ V≥x0 ⊆ e0. Since
x1 > x0, x1 ∈ e1 ∩ V≥x0 , thus x1 ∈ e0 which contradicts (?).

Now assume i > 0. First, assume that ei+1 >H ei. By definition of P, it holds
that xi ∈ ei ∩ ei+1 and then by Lemma 4.10, ei ∩ V≥xi ⊆ ei+1. Now observe that

92 CHAPTER 4. COMPILATION OF β-ACYCLIC FORMULAS

by minimality of i, xi−1 > xi. Since xi−1 ∈ ei, xi−1 ∈ ei ∩ V≥xi ⊆ ei+1, which
contradicts (?).

Otherwise, ei >H ei+1 and xi+1 > xi. But then, by Lemma 4.10 again,
ei+1 ∩ V≥xi ⊆ ei. Since xi+1 ∈ ei+1, it implies that xi+1 ∈ ei+1 ∩ V≥xi ⊆ ei, which
contradicts (?).

It follows that such i does not exist, that is, P is decreasing.

The next lemma is characterizes the variables of Hxe . It will be crucial for the
compilation algorithm since it is what makes the dynamic programming works.

Lemma 4.12. For every x ∈ V and e ∈ H, V (Hxe) ∩ V≥x ⊆ e.
Proof. We show by induction on n that for any decreasing path P = (e0, x0, . . . , en)
from e0 to en that e0 ⊇ en ∩ V≥x0 . If n = 0, then en = e0 and the inclusion is
obvious. Now, let P = (e0, x0, . . . , en, xn, en+1). By induction, e0 ⊇ en ∩ V≥x0
since (e0, x0, . . . , en) is a decreasing path from e0 to en. Now by Lemma 4.10,
since xn ∈ en+1 ∩ en and en+1 <H en, we have en+1 ∩ V≥xn ⊆ en. Since x0 > xn,
en+1 ∩ V≥x0 ⊆ en+1 ∩ V≥xn ⊆ en. Thus en+1 ∩ V≥x0 ⊆ en ∩ V≥x0 ⊆ e0 which
concludes the induction.

Now let e ∈ H, x ∈ V (H) and f ∈ Hxe . By Lemma 4.11, there exists a
decreasing path from e to f going through vertices smaller than x. From what
precedes, f ∩ V≥x ⊆ e. That is V (Hxe) ∩ V≥x ⊆ e.

The following lemma states that Hxe is the same as Hx′e if x′ /∈ e where x′ is
the successor of x in the β-elimination order.

Lemma 4.13. Let e ∈ H, x, x′ ∈ V (H) such that x′ is the successor of x in the
β-elimination order of H. If x′ /∈ e, then Hxe = Hx′e .

Proof. Let f ∈ Hx′e . By Lemma 4.11, there exists a decreasing path from e to f .
Since x′ /∈ e, the first vertex of this path is less than x′ and different from x′, that
is lesser than x. Thus f ∈ Hxe . The other inclusion follows from Lemma 4.9.

Finally, we show how Hxe can be decomposed into smaller hypergraph:

Lemma 4.14. Let e ∈ H, x ∈ V (H). There exists U ⊆ Hxe \ {e} such that:

• Hxe \ {e} =
⊎
f∈U Hxf and,

• for all f, f ′ ∈ U , if f 6= f ′, V (Hxf) ∩ V (Hxf ′) ⊆ V>x.

Proof. Let C be a connected component of Hxe [V≤x]. We identify each edge of C
with the corresponding edge of Hxe . Let f be the biggest edge of C for <H. We
claim that C = Hxf . Indeed, if g ∈ C then there exists a path from f to g that
goes through vertices smaller than x and through edges in C since they are in
the same connected component of Hxe [V≤x]. Since f is maximal, this path goes
through edges smaller than f too, that is, g ∈ Hxf . Now by Lemma 4.9, since
f ≤H e, we have Hxf ⊆ Hxe . Thus, Hxf ⊆ C since Hxf is connected in H[V≤x].

Now it is enough to choose U to be the set of the maximal edges of the
connected components of Hxe [V≥x] to get the desired results.

4.3. THE COMPILATION ALGORITHM 93

4.3 The compilation algorithm

In this section, we use results from Section 4.2 to describe the dynamic program-
ming algorithm used to compile β-acyclic formulas.

4.3.1 Compilation to dec-DNNF

Given a CNF-formula F with hypergraph H, we can naturally define a family of
subformulas F xe from Hxe as the conjunction of clauses corresponding to the edges
in Hxe , that is F xe = {C ∈ F | var(C) ≤H e} for e ∈ H(F). Lemma 4.12 implies
in particular that var(F xe) ⊆ (e ∪ V<x). Thus, if τ is an assignment of variables
(e∩V>x), then F xe [τ] has all its variables in V≤x. We will be particularly interested
in such assignments: for a clause C ∈ F , denote by τC the only assignment
of var(C) such that τC 6|= C and by τxC = τC |V>x . We compute a dec-DNNF
D by dynamic programming such that for each clause C with var(C) = e and
variable x ∈ V , there exists a gate in D computing F xe [τxC], which is a formula
with variables in V≤x. Lemma 4.15 and Corollary 4.16 describe everything needed
for the dynamic programming algorithm by expressing F xe as a decomposable
conjunction of precomputed values.

Lemma 4.15. Let x ∈ var(F) such that x 6= min(var(F)) and let y ∈ var(F) be
the predecessor of x for order <. Let e ∈ H(F) and τ : (e ∩ V≥x)→ {0, 1}.

Then either F xe [τ] ≡ 1 or there exists U ⊆ Hxe and for all g ∈ U a clause
C(g) ∈ F xe with var(C(g)) = g such that

F xe [τ] ≡
∧
g∈U

F yg [τyC(g)].

Moreover, this conjunction is decomposable.

Proof. Assume first that for all C ∈ F xe , τ |= C. Thus F xe [τ] ≡ 1 since every clause
of F xe is satisfied.

Now assume that there exists C ∈ F xe is such that τ 6|= C. This means that
τ ' τC .

We let A = {var(C) | C ∈ F xe and τ 6|= C} 6= ∅ by assumption. Observe that

F xe [τ] ≡
∧

C∈Fxe
var(C)∈A

C[τ]

since for every C ∈ F xe , if var(C) /∈ A, τ |= C by construction of A.
Let U = {g ∈ A | ∀f ∈ A \ {g}, g /∈ Hyf}. For each g ∈ U , we choose an

arbitrary clause C(g) such that var(C(g)) = g and τ 6|= C(g). Such a clause exists
since U ⊆ A. We claim that U meets the conditions given in the statement of the
lemma.

First, let f ∈ A. We show that there exists g ∈ U such that f ∈ Hyg . If f ∈ U ,
then we are done since f ∈ Hyf . Now assume that f /∈ U . By definition of U ,

94 CHAPTER 4. COMPILATION OF β-ACYCLIC FORMULAS

B = {g ∈ A \ {g} | f ∈ Hyg} 6= ∅. We choose g to be the maximum of B for ≤H.
We claim that g ∈ U . Indeed, assume there exists g′ ∈ A such that g ∈ Hyg′ and

g < g′. By Lemma 4.9, Hyg ⊆ Hyg′ and since f ∈ Hyg , we also have f ∈ Hyg′ , that
is, g′ ∈ B. Yet, g = max(B) and g ≤ g′, that is, g = g′. Thus g ∈ U .

We proved that for all f ∈ A, there exists g ∈ U such that f ∈ Hyg . Thus
if C is a clause of F xe , either var(C) /∈ A and then τ |= C by definition of A, or
var(C) ∈ A, then there exists g ∈ U such that var(C) ∈ Hyg , that is, C ∈ F yg . Thus

F xe [τ] ≡
∧
g∈U

F yg [τ].

Let g ∈ U . We show that τ |var(F yg) = τyC(g). Observe that by Lemma 4.12,

var(F yg) ∩ V≥x = V (Hyg) ∩ V≥x ⊆ g ∩ V≥x. Since τ assigns variables from e ∩ V≥x:

τ |var(F yg) = τ |var(F yg)∩V≥x∩e

= τ |g∩V≥x∩e

Moreover, since g ∈ Hxe , by Lemma 4.12 again, g∩V≥x ⊆ e∩V≥x. Thus g∩V≥x∩e =
g ∩ V≥x. In other words,

τ |var(F yg) = τ |g∩V≥x .

Since τ assigns every variables of e ∩ V≥x by assumption, τ |g∩V≥x assigns every
variables of g∩V≥x. Finally, since τ 6|= C(g), we have τ ' τyC(g). Since by definition

var(C(g)) = g, it follows that:

τ |var(F yg) = τyC(g).

So far, we have thus proven

F xe [τ] ≡
∧
g∈U

F yg [τyC(g)].

It remains to show that this conjunction is decomposable, that is, for all g1, g2 ∈
U , var(F yg1 [τyC(g1)])∩var(F

y
g2 [τyC(g2)]) = ∅. Let g1, g2 ∈ U with g1 <H g2 and assume

there exists z ∈ var(F yg1 [τyC(g1)])∩ var(F
y
g2 [τyC(g2)]), that is, z ∈ var(F yg1)∩ var(F yg2)∩

V≤y since from what precedes, τ assigns every variable of F yg1 greater than x. By
Lemma 4.9, we have F yg1 ⊆ F

y
g2 , which contradicts the fact that g1 ∈ U .

Corollary 4.16. Let x ∈ var(F) such that x 6= min(var(F)) and let y ∈ var(F) be
the predecessor of x for order <. For every C ∈ H(F), there exist U0, U1 ⊆ Hxvar(C)

and for all g ∈ U0 ∪ U1 a clause C(g) ∈ F xvar(C) with var(C(g)) = g such that

F xvar(C)[τ
x
C] ≡ (x ∧

∧
g∈U1

F yg [τyC(g)]) ∨ (¬x ∧
∧
g∈U0

F yg [τyC(g)]).

Moreover, all conjunctions are decomposable.

4.3. THE COMPILATION ALGORITHM 95

Proof. Let τ1 = τxC ∪ {x 7→ 1} and τ0 = τxC ∪ {x 7→ 0}. We observe that

F xvar(C)[τ
x
C] = (x ∧ F xvar(C)[τ1]) ∨ (¬x ∧ F xvar(C)[τ0]).

Clearly, x /∈ var(F xvar(C)[τ1]) and x /∈ var(F xvar(C)[τ0]), thus, both conjunctions are

decomposable. Now, applying Lemma 4.15 on F xvar(C)[τ0] and on F xvar(C)[τ1] yields
the desired decomposition.

Theorem 4.17. Let F be a β-acyclic CNF-formula. There exists a dec-DNNF D
of size O(size(F)) and fanin at most |H| computing F .

Proof. Let H be the hypergraph of F and < a β-elimination order. Let var(F) =
{x1, . . . , xn} where xi < xj if and only if i < j. We construct by induction on
i a dec-DNNF Di of fanin |H| at most such that for each e ∈ H, C ∈ F such
that var(C) = e and j ≤ i, there exists a gate in Di computing F

xj
e [τ

xj
C] and

|Di| ≤ 7 · (
∑i

j=1 c(xi)) where c(xi) is the number of clauses in F holding xi.
We start by explaining how D1 is constructed. Let e ∈ H. If x1 /∈ e, then

F x1e contains only the clauses C such that e = var(C). For such a C, τx1C = τC ,
thus F x1e [τC] = 0. Now, if x1 ∈ e, F x1e contains only clauses D such that x1 ∈
var(D) ⊆ e since x1 is nested in H. Let C be a clause such that var(C) = e.
For every D ∈ F x1e , var(D) ⊆ var(C), thus F x1e [τx1C] has only one variable: x1.
Thus F x1e [τx1C] is equivalent to either x1, ¬x1 or 0. We thus define D1 to be the
dec-DNNF with at most three input gates x1,¬x1 and 0. We have |D1| ≤ 7 · c(x1).

Now let assume Di is constructed. To ease notations, let x = xi+1. Let
e ∈ H and C be a clause such that var(C) = e. We want to add a gate in
Di that will compute F xe [τxC]. If x /∈ e, then Hxe = Hxie since by Lemma 4.12,
var(Hxie) ⊆ (e ∪ V<xi). Thus F xe = F xie and τxC = τxiC . Therefore, there is already
a gate computing F xe [τxC] in Di.

Assume now that x ∈ e. By Corollary 4.16, we can compute F xvar(C)[τ
x
C] for

every C with var(C) = e by adding at most one decision-gate and a fanin |H|
decomposable and-gate to Di since for every values appearing in statement of
Corollary 4.16 there exists a gate in Di computing it. That is, we add to Di at
most 7 gates to compute F xvar(C)[τ

x
C]. We have to do this for each C ∈ F such that

x ∈ var(C). We thus add at most 7c(x) gates in Di. Thus |Di+1| ≤ 7·
∑

j≤i+1 c(xj).
To conclude, assume that H is connected and let e = max(H). We have

Hxne = H since there is a path from e to every other edge inH. Thus F xne = F . Let
C be a clause with var(C) = e. τxnC is the empty assignment, thus F xne [τxnC] ≡ F .
Hence, there is a gate in Dn that computes F and Dn is of size at most 7 · size(F)
and it is of fanin |H| at most.

If H is not connected, then each connected component of H is β-acyclic, thus
we can compile them independently and take the decomposable conjunction of
these dec-DNNF.

Proposition 4.18. Algorithm 5 runs in polynomial time and is correct.

96 CHAPTER 4. COMPILATION OF β-ACYCLIC FORMULAS

Algorithm 5: An algorithm to compile β-acyclic formulas into dec-DNNF

Data: A β-acyclic CNF-formula F
begin

Compute x1 < · · · < xn a β-elimination order for H(F) ;
Compute <H from < ;
Compute F xe for every x ∈ var(F), e ∈ H(F) ;
Construct D the DNNF with three input gates x1,¬x1, 0 ;
for C ∈ F do

M [C][x1]← the gate of D corresponding to F x1var(C)[τ
x1
C] ;

for i = 2 . . . n do
for E ∈ F such that xi ∈ E do

e← var(E) ;
τ0 ← τxiC ∪ {xi 7→ 0} ;
Let A0 ← {(var(C), C) | C ∈ F xie , τ0 6|= C} ;
Let U0 ← {(g, C) ∈ A0 | ∀f ∈ A \ {g}, g /∈ Hxi−1

f } ;

Add an ∧-gate α0 in D ;
Connect α0to a new input labeled with xi ;
For every (g, C) ∈ U0, connect α0 with the gate M [C][xi−1] ;
τ1 ← τxiC ∪ {xi 7→ 1} ;
Let A1 ← {(var(C), C) | C ∈ F xie , τ1 6|= C} ;
Let U1 ← {(g, C) ∈ A1 | ∀f ∈ A \ {g}, g /∈ Hxi−1

f } ;

Add an ∧-gate α1 in D ;
Connect α1 to a new input labeled with ¬xi ;
For every (g, C) ∈ U1, connect α1 with the gate M [C][xi−1] ;
Add an ∨-gate α in D ;
Connect α to α0 and α1 ;
M [E][xi]← α ;

Cm ← a clause of H(F) such that var(Cm) is maximal for <H ;
output(D)←M [Cm][xn] ;
return D ;

4.3. THE COMPILATION ALGORITHM 97

Proof. The precomputation of the orders can be done in polynomial time. More-
over, one can precompute F xe for every x, e as well since it boils down to compute
the connected component of e in the hypergraph H(F) where only edges smaller
than e and vertices smaller than x are kept.

Finally, the body of the loops is executed at most ‖H‖ times and one can
compute the sets A0, U0, A1, U1 in polynomial time by simply trying every C ∈ F xie .

For correction, observe that M [C][x] is always a gate of D that computed
F xvar(C)(τ

x
C) since the sets Ai, Ui are constructed as in Lemma 4.15 and we add the

decision gates given by Corollary 4.16 at each step.

Proposition 4.18 give an effective version of Theorem 4.17:

Theorem 4.19. Let F be a β-acyclic CNF-formula. One can compute in polyno-
mial time a dec-DNNF D of size O(size(F)) computing F .

4.3.2 Corollaries

We use Theorem 4.19 to settle the complexity of #SAT and other related problems
on β-acyclic CNF-formulas.

Theorem 4.20. #SAT can be solved in polynomial time on β-acyclic formulas.

Proof. Given a β-acyclic formula F , compile it into a polynomial size dec-DNNF
D in polynomial time using Theorem 4.19 and count the number of satisfying
assignments of D in polynomial time using Proposition 1.57.

More generally, every tractable queries for dec-DNNF may be done in polyno-
mial time for β-acyclic formulas. In particular, one can enumerate its satisfying
assignments with a small delay:

Theorem 4.21. Given a β-acyclic formula F with n variables, one can enumerate
sat(F) with delay O(n · size(F)).

In Section 3.2.2, we have shown how to use the compilation algorithm for
bounded PS-width formulas to solve MaxSAT. The same technique can be used
for β-acyclic formulas. Indeed, recall (see Section 3.2.2) that for a CNF-formula
F , we define F̂ = {C ∪ {yC} | C ∈ F} where the variables yC are fresh. The
following holds:

Lemma 4.22. If F is a β-acyclic formula then F̂ is β-acyclic.

Proof. Observe that for every C ∈ F̂ , the only clause having the variable yC is C
itself. Thus yC is β-leaf of H(F̂). If we remove every yC from H(F̂), we end up
with H(F) which is β-acyclic. Thus H(F̂) is also β-acyclic.

Since size(F̂) = m + size(F) where m is the number of clauses of F , we have
the following:

98 CHAPTER 4. COMPILATION OF β-ACYCLIC FORMULAS

Corollary 4.23. If F is a β-acyclic formula with m clauses then one can compute
in polynomial time a dec-DNNF of size O(m+ size(F)) computing F̂ .

Remember that we have shown in Lemma 3.14 how minimal satisfying as-
signments of F̂ can be used to solve MaxSAT on F and the minimal satisfying
assignments could be found quickly for DNNF by Proposition 3.15. Thus Corol-
lary 4.23 together with Proposition 3.15 and Lemma 3.14 gives:

Theorem 4.24. MaxSAT can be solved in polynomial time on β-acyclic formulas.

4.4 Conclusion

We have given a compilation algorithm that can transform any β-acyclic formulas
into a succinct dec-DNNF in polynomial time. The fact that this construction
can be done in polynomial time allows to settle the complexity of many problems
concerning β-acyclic CNF-formulas such as model counting or enumeration. By
using the same technique of Chapter 3, we are able to transform the formula in
order to use the compilation algorithm to solve optimization problems such as
MaxSAT.

Observe however that contrary to the compilation algorithm of Theorem 3.9
concerning bounded PS-width formulas, the compilation algorithm for β-acyclic
formulas does not necessarily construct a structured DNNF. In Theorem 3.9, the
very nature of the characterization of PS-width leads to this structuredness since
branch decompositions induce vtrees. However, all attempts so far at character-
izing β-acyclicity in terms of branch decomposition have failed. Showing that
β-acyclic formulas does not have small structured DNNF may be a way to under-
stand why such characterizations are hard to find.

Open question 2. Can β-acyclic formulas be compiled into polynomial size
structured (deterministic) DNNF?

Moreover, the compilation of β-acyclic formulas relies on a dynamic program-
ming algorithm. The way we have defined the needed subformulas may possibly
be improved in order to construct small FBDD.

Open question 3. Can β-acyclic formulas be compiled into polynomial size
FBDD?

In the next chapter, we present another algorithm for solving #SAT and related
problems on β-acyclic formulas and that can also solve counting problems on
instances more general than CNF-formulas.

Chapter 5

Weighted DP-resolution

In this chapter, we introduce a natural generalization of DP-resolution that op-
erates on weighted constraints. Resolution is a well-studied proof system that
can be used to describe a proof of unsatisfiability. It was introduced in a pa-
per by Robinson [Rob65] but Davis and Putnam [DP60] already introduced an
algorithmic version of it which is now usually called Davis-Putnam resolution,
DP-resolution for short. In this chapter, we will essentially be interested in the
DP-resolution algorithm. DP-resolution is a syntactic rule that allows one to elim-
inate a variable in a formula by merging clauses without changing its satisfiability.
By iteratively applying this process, one either gets a proof of unsatisfiability or
a satisfying assignment. However, even if the satisfiability is preserved, the set of
satisfying assignments of the formula changes in a uncontrollable way which makes
this technique – as it is – unsuited for model counting. By lifting it to weighted
constraints, we are able to preserve more information after the elimination of a
variable which enables model counting.

Like resolution, our algorithm in general leads to a blow-up of the formula
size since we possibly introduce an exponential number of clauses at each step.
However, a careful analysis allows us to define a parameter of hypergraph, the
cover-width, such that if the hypergraph of a formula is of bounded cover-width,
then the size of the formula remains bounded during the execution of the algo-
rithm. In particular, cover-width generalizes β-acyclicity and we can show that
weighted resolution runs in polynomial time on such formulas. The tractability of
SAT of such formulas was already known to be tractable [OPS13] since Ordyniak,
Paulusma and Szeider shows that DP-resolution may be down in polynomial time
on such instances. Our algorithm generalizes the one of [OPS13] and provides an-
other proof that model counting on β-acyclic instances is tractable, that is more
efficient and simpler to implement than the compilation approach of Chapter 4.
Moreover, we actually describe our algorithm in a framework that is more general
than CNF-formulas. We are thus able to show that not only #SAT is tractable on
β-acyclic instances, but also more general problems on arbitrary domains.

The first part of this chapter is dedicated to the DP-resolution algorithm. We

99

100 CHAPTER 5. WEIGHTED DP-RESOLUTION

first present the algorithm and show how structural restrictions of CNF-formulas
may lead to polynomial time execution of DP-resolution. In a second section, we
start by introducing the generalization of CNF formulas we will use in the algorithm
and show how we can encode #SAT in this model. Our model is a generalization
of different encoding used in the theory of CSPs. We then present a first version of
DP-resolution specific to the case of β-acyclic instances where it can be presented
in an lighter way than the general case. A quick analysis shows that this algorithm
runs with a polynomial number of arithmetic operations and that the formula do
not grow during the elimination process. However, it is not sufficient to guarantee a
polynomial runtime since the size of the numbers we compute during the execution
of the algorithm. This analysis is more challenging and we have to use structural
results from Chapter 4 to show that the algorithm is actually in polynomial time.
The third part is dedicated to a presentation of weighted DP-resolution. We start
by describing the algorithm. We then introduce a new width, the cover-width. We
show that weighted DP-resolution is tractable on bounded cover-width instances
and we study how cover-width relates with other measures. We show that cover-
width generalizes β-acyclicity and that is greater than β-hypertree width. Finally,
we argue that cover-width is a natural generalization of tree width to hypergraph
since both notions collapses when restricted to graphs.

5.1 DP-Resolution

In this section, we recall the resolution rule and how one can use it to solve SAT.
We then study some families of formulas where we can exploit structural properties
to ensure resolution to run in polynomial time.

5.1.1 A well-known algorithm for SAT

Let x be a variable, C = {x} ∪C ′ and D = {¬x} ∪D′ be two clauses. The clause
C ′∪D′ is called the resolvent of C and D on variable x. Resolution comes from the
simple observation that the satisfiability of C ∧D is equivalent to the satisfiability
of their resolvent on x. An intuitive way of seeing this is to interpret C ∧D as an
if-then-else structure: if x is true, then one must satisfy D′, else one must satisfy
C ′. Thus C ′ ∪D′ has to be satisfied. Reciprocally, if C ′ ∪D′ is satisfied, then one
of them has to be satisfied and one can choose the appropriate value of x to satisfy
C∧D. This transformation can be done on a CNF-formula by resolving the clauses
pairwise. For a CNF-formula F and a variable x ∈ var(F), let Fx be the set of
clauses of F that contain the literal x, let F¬x be the set of clauses of F that contain
the literal ¬x and let G = F \(Fx∪F¬x), the set of clauses that do not contain the
variable x. We denote by res(F, x) = G∪{(C\{x})∪(D\{¬x}) | C ∈ Fx, D ∈ F¬x}.
The satisfiability of F is equivalent to the satisfiability of res(F, x) as stated in the
following lemma:

5.1. DP-RESOLUTION 101

Lemma 5.1. Let F be a CNF-formula and x ∈ var(F), then F is satisfiable if and
only if res(F, x) is satisfiable.

Proof. We keep the notations of the previous paragraph, that is, Fx is the set of
clauses of F that contain the literal x, F¬x is the set of clauses of F that contain
the literal ¬x and let G = F \ (Fx ∪ F¬x) is the set of clauses that do not contain
the variable x.

Assume F is satisfiable. Let τ be a satisfying assignment of F . In particular,
τ satisfies G. If τ(x) = 1, then for every D ∈ F¬x, τ satisfies D \ {¬x}. Hence
for every C ∈ Fx, τ satisfies (C \ {x}) ∪ (D \ {¬x}). Thus τ satisfies res(F, x).
If τ(x) = 0, then for every C ∈ Fx, τ satisfies C \ {x} and by a symmetrical
reasoning, τ satisfies res(F, x). Thus, res(F, x) is also satisfiable.

Assume now that res(F, x) is satisfiable and let τ be a satisfying assignment
of res(F, x). Observe that since x /∈ var(res(F, x)), τ do not assign any value to x.
Assume that there exists D0 ∈ F¬x such that τ does not satisfies D0. For every
C ∈ Fx, since τ satisfies (C \ {x}) ∪ (D0 \ {¬x}), τ has to satisfy C \ {x}. Thus,
τ ′ = τ ∪ {x 7→ 0} satisfies every C ∈ Fx and τ ′ also satisfies every D ∈ F¬x since
¬x ∈ D. Since τ also satisfies G, τ ′ satisfies F , that is, F is satisfiable. Now, if
there is no such D0, it means that τ satisfies every D ∈ F¬x. A similar reasoning
shows that τ ′ = τ ∪ {x 7→ 1} satisfies F , that is, F is satisfiable.

Since at each step we remove a variable from the formula F , this directly
transforms to an algorithm for SAT, introduced first by Davis and Putnam, known
as DP-resolution [DP60] : iteratively pick a variable, resolve on it and remove
tautological clauses. If the empty clause appears, it is because we are resolving
on a variable x such that clauses {x} and {¬x} appear in the formula. Thus the
formula is unsatisfiable. Otherwise, we get the empty formula in the end, then the
formula is satisfiable. Algorithm 6 present this algorithm and Figure 5.1 gives an
example of a formula where the resolution algorithm is used to derive the empty
clause. If a formula is found to be unsatisfiable by only applying the resolution
rule, then it also provides a proof of this fact that can be checked by an external
prover.

Resolution is however not an efficient algorithm. Each step may square the
size of F leading to an exponential blow-up when repeated. The order in which
the variables are eliminated has a great impact on the runtime of the algorithm.
One can still ask whether it is always possible to find (not necessarily in polyno-
mial time) an order for which resolution works in polynomial time. It is unlikely
however since it would have a surprising consequence in complexity theory, since
it would imply NP = coNP. Even unconditionally, one can find formulas for which
every proof of unsatisfiability using resolution is of exponential length, that is,
whatever the order we choose to eliminate the variables, we will have an expo-
nential number of clauses at some point. One of the most famous example is the
“Pigeon Hole Principle” PHPn,m. The formula PHPn,m states that the fact that
we have n pigeons, m holes and each pigeon is in one hole, alone. Clearly, if m < n,

102 CHAPTER 5. WEIGHTED DP-RESOLUTION

Algorithm 6: DP-Resolution solves SAT using resolution

Data: A CNF-formula F and an order x1, . . . , xn on var(F)
begin

if F contains the empty clause then
return False

else
if n > 0 then

F ′ ← res(F, x1) ;
Remove tautological clauses from F ′ ;
return DP-Resolution(F ′, {x2, . . . , xn})

else
return True

F = (x ∨ y) ∧ (¬x ∨ z ∨ y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ z)
F1 = res(F, x)

= (z ∨ y) ∧ (y ∨ ¬z) ∧ (¬y ∨ z)
F2 = res(F1, z)

= y ∧ ¬y
F3 = res(F2, y)

= {∅}

Figure 5.1: An example of resolution

5.1. DP-RESOLUTION 103

then the formula is unsatisfiable. Formally, PHPn,m has nm variables pi,j for i ≤ n
and j ≤ m. The intended meaning of variable pi,j is that it is true if pigeon i
stands in hole j. PHPn,m contains clauses Ci for each i ≤ n that states that each
pigeon is in at least one hole: Ci =

∨m
j=1 pi,j . It also contains clauses Di,j,j′ for

each i ≤ n, j < j′ ≤ m that states that if pigeon i is in hole j then it is not in
hole j′: Di,j,j′ = pi,j → ¬pi,j′ = ¬pi,j ∨ ¬pi,j′ . Haken [Hak85] proved that what-
ever order we choose on variables to refute PHPn+1,n, (since n+ 1 pigeons cannot
stand in n boxes) we will at some point have a formula with 2Ω(n) clauses, that

is 2Ω(
√
N) where N = n(n+ 1) is the number of variables of PHPn,n+1. Urquhart

[Urq87] presented a strong exponential lower bound, that is a CNF formula F with
a 2Ω(size(F)) lower bound on the number of clauses needed for the refutation of a
family of formulas built on expander graphs. The proof was later simplified by
Schöning [Sch97] and it was shown by Sasson and Wigderson [BSW99] that the
number of clauses needed for refuting a formula is strongly related to the size of
the clauses needed in the proof.

In some cases however, we can ensure that resolution works in polynomial time
if the right order for the variables is picked. We present examples where resolution
does not blow-up the size of the formula that will be used afterwards to compare
with the case of weighted DP-resolution: 2-SAT, bounded primal tree width and
β-acyclic formulas.

5.1.2 Resolution on 2-CNF

The case for 2-SAT is easy to deal with and is known since the sixties [Kro67]. It
is sufficient to observe that the resolution of two clauses of size 2 is also a clause
of size 2. Thus if F is a 2-CNF and x ∈ var(F), res(F, x) is also a 2-CNF. Since
the number of clauses of size at most 2 on n variables is bounded by 4n2, we know
that during the algorithm, there will be no exponential blow-up. Since the number
of operations needed for a resolution step is roughly the number of clauses of the
formula, we have the following:

Theorem 5.2. Let F be a 2-CNF. Whatever order of variables we choose, Algo-
rithm 6 runs in time O(|var(F)|3).

This algorithm is presented here only as an example on how we can find
tractable classes for resolution: its runtime is indeed not as good as the well-
known linear time algorithm of Aspvall, Plass and Tarjan [APT79] based on the
search for strong connected component in the implication graph of the formula.

5.1.3 Resolution on bounded primal tree width

The fact that we can find an elimination order of the variables such that resolution
runs in polynomial time on formulas of bounded primal tree width has already been
shown by Alekhnovich and Razborov [AR11]. Their result is stated in terms of
branch width but it is known that it is linearly related to primal tree width [Sze04].

104 CHAPTER 5. WEIGHTED DP-RESOLUTION

In this section, we reprove this result by showing how one can use resolution on
a well-chosen elimination order to prove this tractability result. We will use the
elimination order characterizing tree width, recalled in Theorem 1.27. Intuitively,
we can show that we can always resolve on a variable such that there is at most
k variables that appear in a clause with x. Thus we can bound the number of
clauses holding x and then the number of clauses that we introduce at each step
of the algorithm. The main observation is the following:

Lemma 5.3. Let F be a CNF-formula, G its primal graph and x ∈ var(F). The
primal graph of res(F, x) is a subgraph of G/x.

Proof. First observe that the variables res(F, x) are var(F)\{x}, thus they can be
identified with the vertices of G/x.

Let {y, z} be an edge of the primal graph of res(F, x). In particular, we have
y 6= x and z 6= x. We show that it is also an edge of G/x. If {y, z} was already
an edge of G then it is still an edge of G/x. Otherwise, it means it has been
introduced by a new clause of res(F, x). That is, there exist clauses C,C ′ ∈ F
such that x, y ∈ var(C) and x, z ∈ var(C ′). Thus {x, y} and {x, z} are edges of G,
that is, {y, z} is an edge of G/x.

Moreover, it is easy to see that if G′ is a subgraph of G, then G′/x is also a
subgraph of G′/x:

Lemma 5.4. Let G = (V,E) be a graph and G′ = (V,E′) a subgraph of G (that
is E′ ⊆ E). Then for all x ∈ V , G′/x is a subgraph of G/x.

Proof. It is sufficient to show that each edge of G′/x is also in G/x. Every edges
of G′/x are either edges of G′ that does not contain x and then they are also in
G/x or edges {y, z} such that {y, x} and {z, x} are edges of G′. But then {y, x}
and {z, x} are also edges of G and then {y, z} is an edge of G/x.

Lemma 5.5. Let F be a CNF-formula of primal tree width k. One can find in
FPT times in the primal tree width of F an order x1, . . . , xn on var(F) such that
for all i ≤ n, |Fi| ≤ |F |+ 3ki where F0 = F and Fi+1 = res(F, xi).

Proof. Let x1, . . . , xn be an elimination order of width k of the primal graph of F
given by Theorem 1.27. LetG be the primal graph of F . We denote byG0 = G and
Gi+1 = Gi/xi. Let G′i be the primal graph of Fi. By Lemma 5.3 and Lemma 5.5,
G′i is a subgraph of Gi/xi. Let Ni be the neighborhood of xi in G′i. Since the
order is of width k, we know that the degree of xi in Gi is at most k, and since
the degree of xi in G′i is smaller than in Gi we have |Ni| ≤ k. By definition of the
primal graph of Fi, we know that each clause containing xi in Fi has its variables
included in {xi} ∪Ni. Let C ∈ Fi+1 be a clause. If C /∈ Fi, that is because C is
the union of two clauses of Fi containing x. Thus var(C) ⊆ Ni. Since there is at
most 3|Ni| ≤ 3k clauses on variables Ni, we have |Fi+1| ≤ |Fi|+ 3k. By induction,
for all i, |Fi| ≤ |F |+ 3ki.

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 105

Theorem 5.6. Let F be a formula of primal tree width k. One can find in
FPT time in the primal tree width of F an order x1, . . . , xn on var(F) such that
Algorithm 6 runs on time O(32k|var(F)|) on this order.

5.1.4 Resolution on β-acyclic formulas

In this section, we recall the result of Ordyniak, Paulusma and Szeider [OPS13]
concerning the tractability of deciding β-acyclic formulas. Their algorithm to
decide β-acyclic formula is a resolution following a β-elimination order. The key
observation is that if x is a β-leaf in the hypergraph of the formula and if C,D
are two clauses with x ∈ var(C) ∩ var(D), then (C \ {x,¬x}) ∪ (D \ {x,¬x}) is
either tautological, or equal to C \{x,¬x} or equal to D \{x,¬x}. Thus resolving
a formula on a β-leaf does not introduce new clauses. This is formalized by the
following lemma:

Lemma 5.7. Let F be a CNF-formula and x ∈ var(F) a β-leaf of H(F). Let F ′

be the formula we get by removing tautological clauses from res(F, x). We have
|F ′| ≤ |F | and H(F ′) ⊆ H(F) \ {x}.

Proof. Since x is a β-leaf in H(F), we have that {var(C) | C ∈ F, x ∈ var(C)} is
ordered by inclusion. Let C1 ∈ F with x ∈ C1 and C2 ∈ F with ¬x ∈ C2. Since x
is a β-leaf, we have var(C1) ⊆ var(C2) or var(C2) ⊆ var(C1). Assume w.l.o.g that
var(C1) ⊆ var(C2). If C1 \ {x} 6⊆ C2 \ {¬x}, then there exists a literal ` ∈ C1 such
that ¬` ∈ C2. Thus (C1 \ {x}) ∪ (C2 \ {¬x}) is tautological and does not appear
in F ′. Otherwise C1 \ {x} ⊆ C2 \ {¬x} and (C1 \ {x})∪ (C2 \ {¬x}) = C2 \ {¬x}.

From what precedes, let C be a clause of F ′. Either C ∈ F and x /∈ var(C) or
C = D \ {x,¬x} for some D ∈ F thus |F ′| ≤ |F | and H(F ′) ⊆ H(F) \ {x}.

Theorem 5.8. Let F be a β-acyclic CNF-formula and x1, . . . , xn a β-elimination
order for H(F). Algorithm 6 on input F and x1, . . . , xn runs in polynomial time.

Proof. This is a straightforward consequence of Lemma 5.7. Let F0 = F and
Fi+1 is res(F, xi+1) where we have removed tautological clauses. We show by
induction that H(Fi) ⊆ H(F) \ {x1, . . . , xi}, |Fi| ≤ |F | and that xi+1 is a β-leaf
of H(Fi). By definition, x1 is a β-leaf of H(F) = H(F0) and H(F0) ⊆ H(F)
and |F0| ≤ |F | since they are equal. Now let i > 0. By definition, xi+1 is a
β-leaf of H(F) \ {x1, . . . , xi}, thus xi+1 is a β-leaf of H(Fi) ⊆ H(F) \ {x1, . . . , xi}.
Now by Lemma 5.7, H(Fi+1) ⊆ H(Fi) \ {xi+1} ⊆ H(F) \ {x1, . . . , xi+1} and
|Fi+1| ≤ |Fi| ≤ |F |.

Thus each recursive call to DP-Resolution is done on a formula of size at most
|F | and Algorithm 6 runs in polynomial time.

5.2 Weighted DP-resolution for β-acyclic instances

It is a natural question to ask whether there is a relation between the number
of satisfying assignments of a CNF-formula F and those of res(F, x). If one can

106 CHAPTER 5. WEIGHTED DP-RESOLUTION

find such a relation, one may derive from it an algorithm for #SAT based on
resolution and use it on the families presented in the previous section to get new
tractability results for #SAT. This is however unlikely to happen without changing
the algorithm as #SAT is known to be #P-complete on 2-CNF instances and
Theorem 5.2 states that resolution works in polynomial time on 2-CNF. One can
also realize that resolution is not adapted as it is for counting by studying the proof
of Lemma 5.1. In this proof, we reconstruct a satisfying assignment of F from a
satisfying assignment of res(F, x). We have seen that every satisfying assignment
of res(F, x) either satisfies every clause containing the literal x or every clause
containing the literal ¬x in F . We thus construct a satisfying assignment of F
by choosing the value of x to satisfy the remaining clauses of F . However, there
may be some satisfying assignments of res(F, x) that satisfy both every clause
containing x and every clause containing ¬x and thus, the value of x could be
chosen arbitrarily to construct a satisfying assignment of F . Those assignments
account for two distinct satisfying assignments of F . Thus, to recover the number
of models of F from the number of models of res(F, x), one must know the number
of models of the conjunction of clauses containing the variable x which seems hard
a priori.

The previous observation tells us that some satisfying assignments of res(F, x)
should be counted twice if one wants to recover the number of satisfying assign-
ments of F from those of res(F, x). This suggests the idea of working with weights
on assignments and to discover a relation between the weight of F and the weight
of some formula where we have removed x and updated the weights. Of course,
since the resolvent of a 2-CNF formula is still a 2-CNF formula and since #2-SAT
is #P-complete, we will have to modify the resolvent too. Some extensions of
resolution already exist for MaxSAT such as [BLM07], presented as a resolution
system. We do not think that such system could be extended for model counting
however.

In this section, we give an algorithm inspired by the algorithm of Ordyniak,
Paulusma and Szeider [OPS13] based on this idea of weighted clauses that solves
#SAT on β-acyclic instances and precisely analyze its complexity. We show the
result for a more general model than CNF-formula: CSP with default value. We
start by introducing this notion and then present the algorithm and prove its
correctness. We finish by analyzing its complexity, a task involving a better un-
derstanding of the arithmetic operations involved during the computation.

5.2.1 Encoding SAT using CSP with default values

To generalize resolution to model counting, we need to assign weights to clauses
in order to keep more information on the original formula during the elimination
process. This transformation can in fact be done for a much general problem
than #SAT, namely, the problem of evaluating weighted constraint satisfaction
problems, CSP for short . In this section, we define the problem without appealing
to specific knowledge on CSP. Nevertheless, we briefly recall the basic ideas of

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 107

X1 X2 X3 Weight

0 1 0 0

1 1 1 0

otherwise 1

A weighted constraint that is equivalent to
(X1 ∨ ¬X2 ∨X3) ∧ (¬X1 ∨ ¬X2 ∨ ¬X3).

X1 X2 X3 Weight

1 1 0 1

1 0 1 1

otherwise 0

A weighted constraint that is equivalent to (X1 ∧X2 ∧ ¬X3) ∨ (X1 ∧ ¬X2 ∧X3).

Figure 5.2: Weighted constraints with default value

this area in the next paragraph. The reader already familiar with CSP or only
interested in how we generalize the problem may safely skip to Definition 5.9.

Constraint satisfaction problems is a natural generalization of SAT to non-
boolean domains. Informally, a CSP on variables X and (finite) domain D is a
set of constraints. A constraint C can be seen as a set SC ⊆ Dk together with a
tuple (x1, . . . , xk) of variables X. An assignment τ : X → D satisfies a constraint
C if (τ(x1), . . . , τ(xk)) is an element of SC . An assignment τ satisfies the CSP if
it satisfies every constraint in it. The interested reader may find more details on
CSP in a survey by Chen [Che06],

SAT can be seen as a specific instance of CSP where D = {0, 1} and where
each clause C with k variables is a constraint on var(C) and such that the subset
of {0, 1}k is the set of satisfying assignment of the clause C. However, since a
clause with k variables has 2k − 1 satisfying assignments, such encoding of SAT
into CSP may lead to a blow in size. Such encoding of CSP is known as positive
encoding. We could also assume that instead of giving every satisfying assignment
of a constraint, we give only the non-satisfying assignment. For the encoding of
CSP, known as negative encoding, SAT could be encoded efficiently. The influence
of the encoding of constraints on the complexity of the problem has been studied
in [CGH09, CG10]. In this section, we introduce a new way of encoding CSPs with
weights that encompasses both the positive encoding and the negative encoding.

In the problem we consider, the constraints will be encoded with a default
value. Informally, a weighted constraint C with default value on variables X is
given as a list of tuples associated with a weight in Q+ and a value µ, called
the default value. The value of C on an assignment τ of X is either the weight
associated to τ if τ is in the list, and µ otherwise. Formally:

Definition 5.9. A weighted constraint with default value C = (f, µ) on variables
X and domain D is a function f : S → Q+ with S ⊆ DX and µ ∈ Q+. S is called

108 CHAPTER 5. WEIGHTED DP-RESOLUTION

the support of C, and is denoted by supp(C). µ is called the default value of C,
denoted by def(C) and we denote by var(C) = X the variables of C. We define the
size |C| of the constraint C to be |C| := |S| · |var(C)|. The constraint C naturally
induces a total function on DX , also denoted by C, defined by:

C(a) =

{
f(a) if a ∈ S
µ otherwise.

Figure 5.2 depicts two examples of how one can encode conjunctive and dis-
junctive clauses using weighted constraints with default value. In the rest of this
section, we will identify a weighted constraint with default value C = (f, µ) with
the total function it defines on Dvar(C). Thus, when defining a constraint C, we
will usually first define its support supp(C), its default value def(C) ∈ Q+ and
finally define the value of C on a for every a ∈ supp(C), without explicitly naming
the underlying function f .

To ease notation, when a is an assignment to a set X ⊇ var(C), we make the
convention C(a) = C(a|var(C)). Observe that we do not assume var(C) to be non-
empty. A constraint whose set of variables is empty has only one possible value
in its support: the value associated with the empty assignment (the assignment
that assigns no variable).

Observe that we are restricting weights to non-negative values. We will see
that it is crucial for the correctness of our algorithm. The assumption that weights
are rational is however only a commodity to only work with constants that are
easy to encode. Our algorithm also works for positive algebraic numbers but we
prefer to use rationals in order to highlight the main ideas of the algorithm. If
one is only interested in the correctness of the algorithm, one can use weights
in R+ but all results concerning the bit size of the weights appearing during the
computation are not usable in this case.

We are interested in the problem #CSPdef of computing the weight of a given
set I of weighted constraints with default value on a finite domain D where the
weight of I is defined as:

w(I) =
∑

a∈Dvar(I)

∏
C∈I

C(a),

and var(I) :=
⋃
C∈I var(C).

The size ‖I‖ of a #CSPdef -instance I is defined to be ‖I‖ :=
∑

C∈I |C|. Its
structural size s(I) is defined to be s(I) :=

∑
C∈I |var(C)|. A hypergraph H(I),

an incidence graph Ginc(I) and a primal graph Gprim(I) are associated to I in the
same way as for CSP.

Observe that the size of an instance as defined above roughly corresponds to
that of an encoding in which the non-default values, i.e., the values on the support,
are given by listing the support and the associated values in one table for each
relation.

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 109

Given an instance I, it will be useful to condition it under some partial assign-
ment, that is, the weight of I where some of its variables are forced to a certain
value. To this end, for a ∈ D|var(I)|, we define:

w(I, a) :=
∑

b∈D|var(I)|
a∼b

∏
C∈I

C(b).

As usual, we associate a hypergraph H(I) to a #CSPdef instance on vertices
var(I) defined as H(I) = {var(C) | C ∈ I}.

Encoding #SAT. Weighted CSPs with default values are enough to encode the
#SAT problem without losing the structure of the formula as stated formally by
the following lemma:

Lemma 5.10. Given a CNF-formula F one can construct in polynomial time a
#CSPdef-instance I on variables var(F) and domain {0, 1} such that

• H(F) = H(I),

• for all a ∈ {0, 1}var(F), a is a solution of F if and only if w(I, a) = 1, and
otherwise w(I, a) = 0, and

• s(I) = ‖I‖ = |F |.

Proof. For each clause C of F , we define a constraint c with default value 1 whose
variables are the variables of C and such that supp(c) = {a} and c(a) = 0, where
a is the only assignment of var(C) that is not a solution of C. It is easy to check
that this construction has the above properties.

5.2.2 Computing the weight of a chain

In this section, we present a method that, given some instance I on domain D and
a variable x of var(I), produces an instance I ′ such that H(I ′) = H(I) \ {x} and
w(I ′) = w(I). We present the method on a very simple case, the case where the
variable of the constraints of I are ordered by inclusion, that is, I = {C1, . . . , Cm}
with var(C1) ⊆ · · · ⊆ var(Cm). This will be later generalized for β-acyclic instances
in Section 5.2.3. The main purpose of this section is to explain how we come up
with the procedure described in the forthcoming Proposition 5.11. The reader
only interested in the main algorithm may safely skip this section.

An example. Figure 5.3 shows how the weights are updated when we remove
the variable X1 from the chain C1, C2, C3 where the domain is {0, 1}. It can
be verified that the weight of the first instance is the same as the weight of the
updated instance.

Indeed, we denote by I = {C1, C2, C3} and by I ′ = {C ′1, C ′2, C ′3}. We can
verify that for every a : {X2, X3, X4} → {0, 1}, w(I ′, a) = w(I, a). As an example,

110 CHAPTER 5. WEIGHTED DP-RESOLUTION

C1

X1 X2 w

0 0 2

1 0 3

otherwise 1

C2

X1 X2 X3 w

0 0 0 4

1 1 1 5

otherwise 0

C3

X1 X2 X3 X4 w

0 0 0 0 6

otherwise 1

C ′1
X2 w

0 (2 + 3) = 5

otherwise 2

C ′2
X2 X3 w

0 0 (2 · 4 + 3 · 0)/(2 + 3) = 8/5

1 1 (1 · 0 + 1 · 5)/(1 + 1) = 5/2

otherwise 0

C ′3
X2 X3 X4 w

0 0 0 (2 · 4 · 6 + 3 · 0 · 1)/(2 · 4 + 3 · 0) = 6

otherwise 1

Figure 5.3: Eliminating X1 from the chain C1, C2, C3 on domain {0, 1}.

let a = {X2 7→ 0, X3 7→ 0, X4 7→ 0}. By definition, C ′1(a) = 5, C ′2(a) = 8/5 and
C ′3(a) = 6. Thus w(I ′, a) = 5·(8/5)·6 = 48. Now, we denote by a0 = a∪{X1 7→ 0}
and by a1 = a ∪ {X1 7→ 1}. We have by definition:

w(I, a) = C1(a0)C2(a0)C3(a0) + C1(a1)C2(a1)C3(a1)

= 2 · 4 · 6 + 3 · 0 · 1
= 48.

A sufficient condition. Let x be a variable in var(C1). We want to build an
instance I ′ = {C ′1, . . . , C ′m} with var(C ′i) = var(Ci)\{x} for all i and w(I ′) = w(I).
To see how it can be done, we reinforce the hypothesis and we want that the new
instance I ′ verifies that for all i ≤ m and for all assignments a of var(I ′), the
weight of the subinstance Ii = {C1, . . . , Ci} conditioned by a is preserved. In
other word, we want that for all a, w(I ′i, a) = w(Ii, a) where Ii = {C1, . . . , Ci} and
I ′i = {C ′1, . . . , C ′i}.

Observe that if a is an assignment of var(I ′), then for all i ≤ m, w(I ′i, a) =∏i
j=1C

′
j(a) and since var(I ′) = var(I) \ {x},

w(Ii, a) =
∑
d∈D

w(Ii, a ∪ {x 7→ d})

=
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d}).

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 111

We construct I ′i by induction on i. Let i = 1. We construct I ′1 = {C ′1} such
that for all a : var(C1) \ {x} → D:

C ′1(a) = w(I ′1, a) = w(I1, a) =
∑
d∈D

C1(a ∪ {x 7→ d}). (5.1)

Now let supp(C ′1) = {b|var(C1)\{x} | b ∈ supp(C1)}. Observe that supp(C ′1) is
smaller than supp(C1) by definition. Moreover, if a /∈ supp(C ′1), then for d ∈ D,
(a ∪ {x 7→ d}) /∈ supp(C1). In other words,

w(I1, a) =
∑
d∈D

C1(a ∪ {x 7→ d}) = |D|def(C1).

Moreover, C ′1(a) = def(C ′1) since a /∈ supp(C ′1). Thus, if we choose def(C ′1) =
|D|def(C1), we get w(I ′1, a) = w(I1, a).

Now, if a ∈ supp(C ′1), the Equation (5.1) implies:

C ′1(a) = w(I ′1, a) = w(I1, a) =
∑
d∈D

C1(a ∪ {x 7→ d}).

Thus, if we choose this value as the new weight for C ′1(a), we have w(I ′1, a) =
w(I1, a).

We just have constructed a new constraint C ′1, smaller than C1 since its support
is a projection of the support of C1 and such that w(I ′1, a) = w(I1, a) for every
a : var(C1) \ {x} → D which is our induction hypothesis at rank 1.

Now, let i > 1 and assume that we have constructed C ′1, . . . , C
′
i−1 such that

for all a : var(Ci−1) \ {x} → D, it holds:

w(I ′i−1, a) =
i−1∏
j=1

C ′j(a) = w(Ii, a) =
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d}).

We want to construct C ′i such that for all a : var(Ci) \ {x} → D:

i∏
j=1

C ′j(a) = w(I ′i, a) = w(Ii, a) =
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d}).

That is, if
∏i−1
j=1C

′
j(a) 6= 0:

C ′i(a) =

∑
d∈D

∏i
j=1Cj(a ∪ {x 7→ d})∏i−1
j=1C

′
j(a)

=

∑
d∈D

∏i
j=1Cj(a ∪ {x→ d})
w(I ′i−1, a)

.

By construction we have w(I ′i−1, a) = w(Ii−1, a) =
∑

d∈D
∏i−1
j=1Cj(a ∪ {x 7→

d}). Thus, we want for all a : var(C ′i)→ D:

C ′i(a) =

∑
d∈D

∏i
j=1Cj(a ∪ {x 7→ d})∑

d∈D
∏i−1
j=1Cj(a ∪ {x 7→ d})

(5.2)

112 CHAPTER 5. WEIGHTED DP-RESOLUTION

Again, we choose supp(C ′i) = {b|var(Ci)\{x} | b ∈ supp(Ci)}. If a /∈ supp(C ′i),
then for all d ∈ D, (a ∪ {x 7→ d}) /∈ supp(Ci). It follows that

∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d}) = def(Ci)
∑
d∈D

i−1∏
j=1

Cj(a ∪ {x 7→ d}).

Thus, since C ′i(a) = def(C ′i), it we choose def(C ′i) = def(Ci), we have for
a /∈ supp(C ′i), w(I ′i, a) = w(Ii, a). Now if a ∈ supp(Ci), we choose C ′i(a) as in
Equation 5.2 and we have by induction w(I ′i, a) = w(Ii, a).

However, choosing supp(C ′i) as in Equation 5.2 is possible only if the denomi-
nator is non zero. Otherwise, assume that

∑
d∈D

i−1∏
j=1

Cj(a ∪ {x 7→ d}) = 0.

This is where the hypothesis that the constraint have positive values is useful.
It follows that the previous sum is a sum of positive terms evaluating to 0. Thus
for all d ∈ D,

∏i−1
j=1Cj(a∪{x 7→ d}) = 0 and then

∑
d∈D

∏i
j=1Cj(a∪{x 7→ d}) = 0

too. That is, whatever value we choose for C ′i(a), we have

w(Ii, a) =
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d}) = 0 =

i∏
j=1

C ′j(a) = w(I ′i, a).

In particular, we could choose C ′i(a) = def(Ci). In other words, we can remove a
from the support of C ′i and still preserve the weight of the instance.

5.2.3 Computing the weight of β-acyclic instances

We just described a procedure that removes a β-leaf in a specific #CSPdef instance
without changing its weight. Using a β-elimination order, we are able to generalize
this method to any β-acyclic instance. Given a set A of assignment from a set
of variables X to D and x ∈ X, we denote by πx(A) the set of assignments of A
restricted to V \ {x}, that is:

πx(A) = {a|V \{x} | a ∈ A}
= {b : V \ {x} → {0, 1} | ∃d ∈ D, b ∪ {x 7→ d} ∈ A}.

Let I be a set of weighted constraints on domain D and x a β-leaf of H(I).
Let I(x) = {C1, . . . , Cp} be the constraints C of I such that x ∈ var(C) with
var(C1) ⊆ . . . ⊆ var(Cp). We denote by wres(I, x) = (I \ I(x))∪{C ′i | i ≤ p} where
for every i ≤ p, C ′i is defined as follows:

• var(C ′i) = var(Ci) \ {x},

• def(C ′1) = |D| · def(C1) and def(C ′i) = def(Ci) if i > 1,

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 113

• supp(C ′1) = πx(supp(C1)) and for i > 1, supp(C ′i) is the set of assignments a
of πx(supp(Ci)) such that

∑
d∈D

i−1∏
j=1

Cj(a ∪ {x 7→ d}) 6= 0

and,

• for all a ∈ supp(C ′i),

C ′1(a) :=
∑
d∈D

C1(a ∪ {x 7→ d})

and for i > 1,

C ′i(a) :=

∑
d∈D

∏i
j=1Cj(a ∪ {x 7→ d})∑

d∈D
∏i−1
j=1Cj(a ∪ {x 7→ d})

.

Observe that the denominator is non-zero by definition of supp(C ′i). We have
the following:

Proposition 5.11. Let I be a set of weighted constraints on domain D and x a
β-leaf of H(I). Then

• H(wres(I, x)) = H(I) \ x,

• ‖wres(I, x)‖ ≤ ‖I‖ and

w(I) = w(wres(I, x)).

Moreover, one can compute wres(I, x) with O(p · |D| ·‖I(x)‖) arithmetic operations
where I(x) is the set of constraints C such that x ∈ var(C) and p is the number
of such constraints.

Proof. In this proof, we denote by I ′ = wres(I, x) and I(x) = {C1, . . . , Cp} with
var(C1) ⊆ . . . ⊆ var(Cp).

First observe that H(I ′) = H(I) \ x since for every constraint C ′ of I ′, there
exists a constraint C of I with var(C) \ {x} = var(C ′). Thus the edges of H(I ′)
are exactly the edges of H(I) where x has been removed.

Moreover ‖I ′‖ ≤ ‖I‖ since for all C ∈ I, |supp(C ′)| ≤ |supp(C)| because
every assignment of supp(C ′) is the projection of an assignment of supp(C) on
var(C) \ {x}.

We now prove that w(I) = w(I ′). To this end, we prove by induction on i that
for all a : var(C ′i)→ D:

i∏
j=1

C ′j(a) =
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d})

114 CHAPTER 5. WEIGHTED DP-RESOLUTION

We start with i = 1. We want to prove that for all assignments a of var(C ′1),
C ′1(a) =

∑
d∈D C1(a ∪ {x 7→ d}). If a ∈ supp(C ′1), this follows directly from the

definition.

Otherwise, if a /∈ supp(C ′1), for all d ∈ D, (a ∪ {x 7→ d}) /∈ supp(C1) by
definition of supp(C ′1). Thus

∑
d∈D C1(a ∪ {x 7→ d}) = |D|def(C1). Since for

a /∈ supp(C ′1), we have

C ′1(a) = def(C ′1)

= |D|def(C1) by definition of C ′1

=
∑
d∈D

C1(a ∪ {x 7→ d}).

Now assume the result is true for all k ≤ i. We want to prove that for all
assignment a of var(C ′i+1):

|D|
i+1∏
j=1

C ′j(a) =
∑
d∈D

i+1∏
j=1

Cj(a ∪ {x 7→ d}).

By induction,

|D|
i∏

j=1

C ′j(a) =
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d}).

Assume first that a /∈ supp(C ′i+1). By definition, we either have that for all d ∈ D,
Ci+1(a ∪ {x 7→ d}) = def(Ci+1) = def(C ′i+1) and then

∑
d∈D

i+1∏
j=1

Cj(a ∪ {x 7→ d}) =
∑
d∈D

def(Ci+1)

i∏
j=1

Cj(a ∪ {x 7→ d})

= def(C ′i+1)
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d})

=
i+1∏
j=1

C ′j(a).

Or we have
∑

d∈D
∏i
j=1Cj(a∪{x 7→ d}) = 0. Since the weights are positive, each

term of the previous sum is null, that is,
∏i
j=1Cj(a∪ {x 7→ d}) = 0 for all d ∈ D.

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 115

Thus
∏i+1
j=1Cj(a ∪ {x 7→ d}) = 0 too. It follows:

∑
d∈D

i+1∏
j=1

Cj(a ∪ {x 7→ d}) = 0

=
∑
d∈D

i∏
j=1

Cj(a ∪ {x 7→ d})

=
i∏

j=1

C ′j(a) by induction.

=
i+1∏
j=1

C ′j(a)(= 0).

Finally, assume that a ∈ supp(C ′i+1). By definition,

C ′i+1(a) =

∑
d∈D

∏i+1
j=1Cj(a ∪ {x 7→ d})∑

d∈D
∏i
j=1Cj(a ∪ {x 7→ d})

By induction:

C ′i+1(a) =

∑
d∈D

∏i+1
j=1Cj(a ∪ {x 7→ d})∏i
j=1C

′
j(a)

That is:
i+1∏
j=1

C ′j(a) =
∑
d∈D

i+1∏
j=1

Cj(a ∪ {x 7→ d})

which concludes the induction. Applying it to i = m yields:∏
C∈I(x)

C ′(a) =
∑
d∈D

∏
C∈I(x)

C(a ∪ {x 7→ d}).

Thus

w(I) =
∑

a:var(I)→D

∏
C∈I(x)

C(a)
∏

C/∈I(x)

C(a)

=
∑

a:var(I)\{x}→D

∑
d∈D

∏
C∈I(x)

C(a ∪ {x 7→ d})
∏

C/∈I(x)

C(a)

=
∑

a:var(I)\{x}→D

∏
C/∈I(x)

C(a)
(∑
d∈D

∏
C∈I(x)

C(a ∪ {x 7→ d})
)

=
∑

a:var(I)\{x}→D

∏
C/∈I(x)

C(a)
(∏
C∈I(x)

C ′(a)
)

= w(I ′).

116 CHAPTER 5. WEIGHTED DP-RESOLUTION

Finally we can compute I ′ with O(p · |D| · ‖I(x)‖) arithmetic operations since
for each i ≤ p we have to compute at most |Ci| sums over D terms that are
products of at most p values.

Theorem 5.12. Given a β-acyclic #CSPdef-instance I and a β-elimination order
of H(I), we can compute w(I) with O(s(I) · |D| · ‖I‖) arithmetic operations.

Proof. We eliminate variables from I using Proposition 5.11 following the β-
elimination order until we get an instance J with no variables and such that
w(I) = w(J) =

∏
C∈J C(a∅) where a∅ denotes here the empty assignment. Elimi-

nating x takes O(|D| · |I(x)| · ‖I(x)‖) arithmetic operations where I(x) is the set
of constraints holding x. Thus, we need a total number of

O
(∑
x∈var(I)

|D| · |I(x)| · ‖I(x)‖
)

= O
(
|D| · ‖I‖ ·

∑
x∈var(I)

|I(x)|
)

= O
(
|D| · s(I) · ‖I‖

)
arithmetic operations.

Algorithm 7: An algorithm to compute wres(I, x) given an instance I and
a β-leaf x

Data: A #CSPdef instance I, a β-leaf x, < an order on I
begin

J ← I(x) sorted according to < ;
I ← I \ J ;
V ← var(J [1]) \ {x} ;
C ← empty constraints on variables V and default value |D|def(J [1]) ;
for a ∈ supp(J [1]) do

Add a|V to supp(C) with weight
∑

d∈D J [1](a ∪ {x 7→ d}) ;

I ← I ∪ {C} ;
for j = 2 . . . |J | do

V ← var(J [j]) \ {xi} ;
C ← empty constraints on variables V and default value def(J [j]) ;
for a ∈ supp(J [j]) do

A←
∑

d∈D
∏j−1
k=1 J [k](a ∪ {xi 7→ d}) ;

if A 6= 0 then

B ←
∑

d∈D
∏j
k=1 J [k](a ∪ {xi 7→ d}) ;

Add a|V to supp(C) with weight B/A;

I ← I ∪ {C} ;

return I

In the case of a CNF-formula, s(I) is roughly the same as ‖I‖ since each clause
corresponds to a constraint of size 1 and thus, the algorithm of Theorem 5.12 is

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 117

Algorithm 8: An algorithm to compute w(I) for I a β-acyclic #CSPdef -
instance

Data: A β-acyclic #CSPdef instance I, a β-elimination order x1, . . . , xn of
var(I)

begin
Compute the order <H(I) (see Lemma 4.8) ;

Sort I according to <H(I) ;

for i = 1 . . . n do
I ← wres(I, xi, <Hi)

return
∏
C∈I C(a∅)

quadratic in the size of the formula. However, in the case of general queries, s(I) is
usually much smaller than ‖I‖ thus it is then interesting to have a good complexity
in ‖I‖. Brault-Baron proved in [BB12] under some reasonable conditions that
the problem of evaluating a negatively encoded conjunctive query I with a fixed
hypergraph can be done in quasi-linear time in ‖I‖ if and only if H(I) is β-acyclic.
Theorem 5.12 is not strong enough to prove that the result still holds for counting
since we have a |D| · ‖I‖ factor in the complexity of the query which is not linear
in the size of the domain. Moreover, we do not know exactly what is the size of
the weights during the computation.

The next section gives a more precise analysis of the runtime of Algorithm 8.
We prove that Algorithm 8 runs in polynomial time.

5.2.4 Runtime of Algorithm 8

Theorem 5.12 only states that one needs a polynomial number of arithmetic op-
erations to compute w(I) for a β-acyclic instance I. Yet it is possible that these
arithmetic operations are done on rational numbers which are not of polynomial
size in ‖I‖. Take for instance the sequence defined by u0 = 2 and un+1 = u2

n. It
is easy to see that un can be evaluated with n multiplications but since un = 22n ,
the result is of bit size 2n thus un cannot truly be evaluated in polynomial time in
n. It follows that in order to prove that our algorithm works in polynomial time,
we need to bound the size of the rational numbers we are dealing with, that is,
the value of each constraint after the deletion of a vertex. This is delicate since
naively bounding the numerator and the denominator of each constraint indepen-
dently does not work: we are multiplying too many terms at each step. The trick
is that most of the terms in the multiplication are canceling out and in fact, the
algorithm runs in polynomial time. To prove this, we prove that, at each step,
the weight of a constraint is the ratio of the weight of two sub-instances of the
original instance.

The key part of what follows is to remark that not only w(I) is preserved during
the elimination procedure of Proposition 5.11 but also the weight of other sub-

118 CHAPTER 5. WEIGHTED DP-RESOLUTION

instances of I. We actually already proved in the proof of Proposition 5.11 that
there are many sub-instances of I whose weight is preserved by our elimination
procedure. The same sort of preservation is true for β-acyclic instances.

Notations and assumptions. We rely on results of Chapter 4 concerning the
structure of a β-acyclic hypergraph. In the following, we fix a β-acyclic instance
I of hypergraph H. We assume that for all C1, C2 ∈ I, var(C1) 6= var(C2). Any
instance I can be transformed in order to verify this property without increasing its
size nor changing its weight. If there exist C1, C2 ∈ I with var(C1) = var(C2), we
replace them with a constraint C with supp(C) = supp(C1) ∪ supp(C2), def(C) =
def(C1) · def(C2) and for all a ∈ supp(C), C(a) = C1(a)C2(a). We have |C| ≤
|C1|+ |C2| thus we have not increased the size of the instance and we have chosen
the default value of C such that for all assignments a, C(a) = C1(a)C2(a). Thus
we have not changed the size of the instance. We iterate this transformation until
we have removed all such constraints. This assumption on I allows us to identify
the edges of H with the constraints of I.

We choose x1, . . . , xn, a β-elimination order of H = H(I). We denote by (≤H)
the order on H associated to this elimination order given by Lemma 4.8 and use
notations Hxie of Section 4.2.1, page 89. This yields an order on I as well since
the constraints of I have been identified with the edges of H. Given i ∈ [n] and
C ∈ I, we denote by IiC the sub-instance corresponding to Hxivar(C).

Each time we eliminate a variable from I, we get a new instance where we
have transformed each constraint of I but we have not added nor deleted any
constraint from I, thus, each constraint of the new instance can be associated to
a constraint of the original instance. We denote by I(k) the instance we have
after the deletion of xk. By convention, I = I(0). Given C ∈ I, we denote
by C(k) ∈ I(k) the constraint corresponding to C in the new instance I(k). By
convention, C = C(0). These notations extend to sub-instances J ⊆ I, that is,
we denote by J(k) = {C(k) | C ∈ J}. In particular, we are interested in IiC(k)
sub-instances with i ≥ k. Observe that the variables of J(k) are included V>k and
var(C(k)) = var(C)∩V>k. Observe also that by Lemma 4.12, var(IkC) ⊆ var(C)∪V>k
and thus var(IkC(j)) ⊆ var(C)∩V>j for j > k since we have removed every variable
of V>k in this instance.

The intuitive reason why we consider such sub-instances is the following: when
we remove a β-leaf from I, the weight of each constraint containing x is updated.
The weight of the bigger constraints will now depend on the weight of the con-
straints that are included in them. Now if there is a path from a constraint C1

to C2 with C1 < C2 going through vertices smaller than xk, then the weight of
the constraint C2 after having eliminated x1, . . . , xk will depend on the original
weight of C1 since the original weight of C1 will “transfer” along this path to C2.
This dependency is precisely stated in the forthcoming Lemma 5.13.

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 119

Bounding the weights. In the definition of wres(I, x), we order the constraints
containing x by inclusion, but it is not deterministic as some constraints may
become equal once we have removed sufficiently enough variables. We assume
that we always follow the order (≤H) on H during the elimination process as it is
done in Algorithm 8. We show the following:

Lemma 5.13. For all C ∈ I, k ≤ n and a ∈ supp(C(k)), it holds that:

C(k)(a) · w(IkC \ {C}, a) = w(IkC , a).

We delay the proof of Lemma 5.13 a bit to explain how it ensures that Algo-
rithm 8 runs in polynomial time on a RAM machine. We can use Lemma 5.13 to
show that the size of C(k)(a) is polynomially bounded for every C ∈ I and k ≤ n,
thus, every arithmetic operations that are done by Algorithm 8 can be done in
polynomial time. The bound is the following:

Proposition 5.14. For every k ≤ n, for every C ∈ I and a ∈ supp(C(k)), C(k) is
a positive rational number of size bounded by O(n · log |D| · s · ‖I‖) where s is the
maximal size of the initial weights.

Proof. If J ⊆ I and b is a partial assignment of var(I), it holds that w(J, b) is a
rational number of size bounded by O(n · log |D| · s · ‖I‖). Indeed, by definition,

w(J, b) =
∑

a:var(I)→D,a'b

∏
C∈I

C(a)

is a sum of at most |D|n terms (where n = |var(I)|). Each term of this sum is a
product of |I| rational numbers. We first choose a common denominator for these
terms. Observe that in I, there is at most ‖I‖ distinct weights, thus at most ‖I‖
denominators. For every term in the sum w(J, b), we can choose the product of
all denominators of the initial weights of I. Each initial denominator being of size
at most s, this common denominator is of size O(‖I‖ · s). Now, with this common
denominator, each numerator is of size O(‖I‖ · s) also. Thus, the numerator of
w(J, b) is of size bounded by O(n · log |D| · s · ‖I‖) and the size of w(J, b) is thus
bounded by O(n · log |D| · s · ‖I‖) too.

Now by Lemma 5.13, it holds

C(k)(a) · w(IkC \ {C}, a) = w(IkC , a).

If w(IkC \ {C}, a) 6= 0 then C(k)(a) is the ratio of two rational numbers of size
bounded by O(n · log |D| · s · ‖I‖), thus the size of C(k)(a) is bounded by O(n ·
log |D| · s · ‖I‖).

Now assume that w(IkC \ {C}, a) = 0. We construct a new instance I(X) from
I by replacing each weight equal to 0 by a constant X > 0. In this instance, there
is no null weight, thus the weight of sub-instances is not null. The weight of each
sub-instance may be seen as a polynomial in X. We denote by Q(X) = w(IkC(X)\

120 CHAPTER 5. WEIGHTED DP-RESOLUTION

{C}, a) and P (X) = w(IkC(X), a) (where C in I(X) is the constraint corresponding
to C). Observe that Q(0) = w(IkC \ {C}, a) and P (0) = w(IkC , a). Moreover, the
coefficients of P and Q are rational numbers of size at most O(n · log |D| · s · ‖I‖)
by the same argument as before.

We also have that C(k)(a) in I(X) is an algebraic fraction F (X) since ev-
ery update of the weights only performs additions, multiplications or divisions.
Moreover, observe that C(k)(a) = F (0) is finite.

During the execution of the algorithm, the only way the support of a constraint
can diminish is when a sub-instance has a null weight. Since it does not happen
in I(X), we know that a ∈ supp(C(k)) even in I(X) (again we identify C in I and
I(X)). Lemma 5.13 still holds for I(X) and thus we have:

F (X) ·Q(X) = P (X).

Thus F (X) = (P/Q)(X). Moreover, limX→0(P/Q)(X) = C(k)(a) is finite. Since
the limit exists, it means that there exists l ≥ l′ such that P (X) = X l′pl′ +
oX→0(X l′) and Q(X) = X liql+oX→0(X l). In other words, if l′ > l then C(k)(a) =
0 and C(k)(a) = pl/ql otherwise. Since both pl and ql are coefficients of P and Q
they are of size bounded by O(n · log |D| · s · ‖I‖), so the size of C(k)(a) is at most
O(n · log |D| · s · ‖I‖).

Before proving Lemma 5.13, we show that the weight of some sub-instances of
I is also preserved during the elimination process. In Lemma 5.15, we show that
the weight of IjC(k) for j ≥ k is the same as the weight of IjC . In Lemma 5.16, we

show the same weight preservation for the sub-instance (IjC \ {C})(k). The proof
of Lemma 5.13 then follows since we can easily express C(k) from the weights of
IjC(k) and (IjC \ {C})(k).

Lemma 5.15. For all C ∈ I, k, j ∈ [n], j ≥ k and a : V>k ∩ var(IjC)→ D,

w(IjC(k), a) = w(IjC , a).

Proof. The proof is by induction on k, the equality being trivial if k = 0. Now
let k ≥ 0, C ∈ I, j ≥ k + 1 and a : V>k+1 ∩ var(IjC) → D. Observe that
var(I(k+ 1)) = V>k+1 since I(k+ 1) is the instance obtained after the deletion of
{x1, . . . , xk+1}. Thus, a assigns every variable of IjC(k + 1). It follows:

w(IjC(k + 1), a) =
∏

K∈IjC(k+1)

K(a)

=
∏
K∈IjC

K(k+1)(a) by definition of IjC(k + 1)

Only the constraints K such that xk+1 ∈ var(K) are updated when xk+1 is
removed. Thus, if xk+1 /∈ var(K), it holds K(k+1) = K(k). We denote by

5.2. WEIGHTED DP-RESOLUTION FOR β-ACYCLIC INSTANCES 121

J = {K ∈ IjC | xk+1 ∈ var(K)}. It follows:

w(IjC(k + 1), a) =
∏

K∈IjC\J

K(k)(a) ·
∏
K∈J

K(k+1)(a). (5.3)

If J = ∅, that is xk+1 /∈ var(IjC), we have:

w(IjC(k + 1), a) =
∏
K∈IjC

K(k)(a)

= w(IjC(k), a) since a assigns all variables of IjC(k)

= w(IjC , a) by induction.

Now assume J 6= ∅. We follow the notations of Proposition 5.11 and denote
I(xk+1) = {C1, . . . , Cp} with C1 ≤H . . . ≤H Cp. Let r be such that Cr = max≤H J .
For all i ≤ r, Ci ∈ J by Lemma 4.9. That is J = {C1, . . . , Cr}. Moreover, it is
shown in the proof of Proposition 5.11 that:

r∏
i=1

C
(k+1)
i (a) =

∑
d∈D

r∏
i=1

C
(k)
i (a ∪ {xk+1 7→ d}).

Since J = {C1, . . . , Cr}, we have:∏
K∈J

K(k+1)(a) =

r∏
i=1

C
(k+1)
i (a)

=
∑
d∈D

∏
K∈J

K(k)(a ∪ {xk+1 7→ d}).

The equality 5.3 can thus be rewritten:

w(IjC(k + 1), a) =
∏

K∈IjC\J

K(k)(a) ·
∑
d∈D

∏
K∈J

K(k)(a ∪ {xk+1 7→ d})

=
∑
d∈D

∏
K∈IjC

K(k)(a ∪ {xk+1 7→ d})

=
∑
d∈D

w(IjC(k), a ∪ {xk+1 7→ d})

Since j ≥ k + 1, we also have j ≥ k, and a ∪ {xk+1 7→ d} assigns variables in
V>k ∩ var(IjC(k)). Thus, by induction, for all d ∈ D,

w(IjC(k), a ∪ {xk+1 7→ d}) = w(IjC , a ∪ {xk+1 7→ d}),

that is:
w(IjC(k + 1), a) =

∑
d∈D

w(IjC , a ∪ {xk+1 7→ d})

= w(IjC , a)

which concludes the induction and the proof.

122 CHAPTER 5. WEIGHTED DP-RESOLUTION

Before proving Lemma 5.13, we need a last lemma showing that the weights
of sub-instances are preserved during the elimination process:

Lemma 5.16. Let k ≤ n and a : V>k∩var(IkC)→ D. We denote by J = IkC \{C}.
It holds that

w(J(k), a) = w(J, a).

Proof. The main argument of the proof is to decompose J into disjoint instances
of type IkK for some constraints K and use Lemma 5.15 on each sub-instance. By
Lemma 4.14, there exists U ⊆ J such that:

J =
⊎
K∈U

IkK

and for all K,K ′ ∈ U , if K 6= K ′ then var(IkK) ∩ var(IkK′) ⊆ V>k.
Thus J and J(k) are both the disjoint union of sub-instances whose common

variables are assigned by a, that is:

w(J(k), a) =
∏
K∈U

w(IkK(k), a)

and
w(J, a) =

∏
K∈U

w(IkK , a).

It follows that:

w(J(k), a) =
∏
K∈U

w(IkK(k), a)

=
∏
K∈U

w(IkK , a) by Lemma 5.15

= w(J, a).

Proof (of Lemma 5.13). Let C ∈ I, k ≥ 1 and a ∈ supp(C(k)). To ease notation,
we denote by J = IkC \ {C}. By Lemma 4.12, var(IkC) ⊆ var(C) ∪ V≥k. In other
words, var(C(k)) = var(C) ∩ V>k = V>k ∩ var(IkC).

Thus,

w(IkC(k), a) =
∏

K∈IkC(k)

K(a)

= C(k)(a) ·
∏

K∈J(k)

K(a)

= C(k)(a) · w(J(k), a).

Now apply Lemma 5.15 on the left term and Lemma 5.16 on the right term
yields:

w(IkC) = C(k)(a) · w(IkC \ {C}, a),

which is what we wanted to show.

5.3. WEIGHTED DP-RESOLUTION ON GENERAL INSTANCES 123

Lemma 5.13 guarantees that every arithmetic operations that are done during
the elimination process are done on poly size rational numbers. Thus, we have
the following:

Theorem 5.17. Given a β-acyclic #CSPdef-instance I with n variables on do-
main D and an β-elimination order of H(I), we can compute w(I) with O(|D| ·
s(I) · ‖I‖) arithmetic operations on rational numbers of size O(n log(D) · s · ‖I‖)
where s is the size needed to encode the initial weights in I.

In the particular case of counting the number of satisfying assignments, the
weight of the sub-instances is bounded by the number of possible assignments,
that is, by Dn where n is the number of variables. This gives:

Theorem 5.18. Given a β-acyclic CSP on domain D, we can count its number of
satisfying assignments with a O(|D| · s(I) · ‖I‖) arithmetic operations on rational
numbers of size O(n log(D)).

5.3 Weighted DP-resolution on general instances

In this section, we generalize the previous algorithm for β-acyclic instances to
make it work on any #CSPdef instances and analyze it. As before, each step
of the algorithm consists of removing a variable x and updating the weights of
constraints. The novelty here is that we have to introduce new constraints with
well-chosen weights in order to preserve the weight of the instance. This was
implicitly done on β-acyclic instances but as for resolution, we merge clauses that
are included in one another which prevent new clauses to be created.

We start by describing the algorithm. We then show how it could be applied
to reprove tractability results for #SAT. Finally, we introduce and study a new
hypergraph measure, the cover-width, and study its relations with other measures.
We finally show that weighted DP-resolution runs in polynomial time on instances
of bounded cover-width if the arithmetic operations are assumed to be done in
polynomial time.

5.3.1 Description of the algorithm

Let I be an instance of #CSPdef on domain D and let x ∈ var(I). We denote by
Ix = {C ∈ I | x ∈ var(C)} the set of constraint holding variable x. Our goal is to
find a procedure to transform I into a new instance I ′ with var(I ′) = var(I) \ {x}
and such that w(I) can be easily deduced from w(I ′).

We denote by L(Ix) = {var(J) | J ⊆ Ix} the lattice induced by the union of
var(C) for C ∈ Ix. For W ∈ L(Ix), we call a set C ⊆ Ix of constraints a generator
of W if var(C) = W . We denote by gen(W) = {C ⊆ Ix | var(C) = W} the set of
generators of W . In what follows, to ease subscripts notations, we assume that C
ranges over Ix only. For each W ∈ L(Ix), we define a weighted constraint with
default value W ∗ which is intuitively the fusion of every constraint having their
variables in W :

124 CHAPTER 5. WEIGHTED DP-RESOLUTION

• var(W ∗) = W \ {x}

• def(W ∗) = |D| ·
∏
C∈Ix

var(C)=W

def(C)

• supp(W ∗) =
⋃
C∈gen(W){a : W \ {x} → D | ∀C ∈ C,∃b ∈ supp(C), a ' b},

that is, supp(W ∗) is the union of the join of every subset of constraints C
such that var(C) = W ,

• for all a ∈ supp(W ∗),

– if
∏

Z∈L(Ix)
Z(W

Z∗(a) 6= 0 then

W ∗(a) =

∑
d∈D

∏
C∈Ix,var(C)⊆W C(a ∪ {x 7→ d})∏

Z∈L(Ix),Z(W Z∗(a)

– otherwise W ∗(a) = 0.

The weighted resolvent of I by a variable x ∈ var(I) is the instance on domain
D and variables var(I) \ {x} defined as

wres(I, x) = (I \ Ix) ∪
⋃

W∈L(Ix)

W ∗.

The main motivation of this definition is the following, which can be seen as a
generalization of Lemma 5.1:

Theorem 5.19. Let I be an instance of #CSPdef and x ∈ var(I). Then

w(I) = w(wres(I, x)).

Before proving Theorem 5.19, we make some handful remarks and present
examples. In the following, we fix an instance I of #CSPdef and x ∈ var(I). We
start by giving a better explanation of supp(W ∗) for W ∈ L(Ix).

Lemma 5.20. Let W ∈ L(Ix) and a : W \ {x} → D. The assignment a ∈
supp(W ∗) if and only if there exists C0 ∈ gen(W) such that for every C ∈ C0, there
exists d ∈ D such that a|var(C) ∪ {x 7→ d} ∈ supp(C).

Proof. It is only a rewriting of the definition of supp(W ∗).

Lemma 5.20 yields a useful observation:

Corollary 5.21. Let C ∈ Ix, W = var(C) and a : W \{x} → D. If a /∈ supp(W ∗)
then for every d ∈ D, C(a ∪ {x 7→ d}) = def(C).

Proof. It is a direct consequence of Lemma 5.20 since {C} is a generator of W .

5.3. WEIGHTED DP-RESOLUTION ON GENERAL INSTANCES 125

C1

X X1 X2 w

0 0 0 1

1 0 0 2

1 1 1 3

otherwise 4

C2

X X2 X3 w

0 0 0 4

1 0 1 5

otherwise 0

C3

X X3 X4 w

0 0 0 0

1 1 1 3

otherwise 1

C4

X X1 X4 w

0 0 0 0

1 1 1 0

otherwise 1

Figure 5.4: An instance I of #CSPdef on domain D = {0, 1}.

An Example. We now give an example of the weighted resolvent of the instance
I given in Figure 5.4. We want to compute wres(I,X). First observe that X
appears in the four constraints {C1, C2, C3, C4}. However, even if there is 24 = 16
subsets of {C1, . . . , C4}, we see that L(IX) is much smaller since for example
var(C1) ∪ var(C3) = var(C2) ∪ var(C4) = {X, . . . ,X4}. Indeed, the lattice L(IX),
depicted in Figure 5.5 has 9 points. Thus, in wres(I,X), we will have 9 constraints.

We give in Figure 5.6 the new tables for 3 of these constraints: {X1, X2}∗,
{X1, X2, X3}∗ and {X1, X2, X3, X4}∗. The only generator of {X,X1, X2} is {C1}.
Thus the support of {X1, X2}∗ is actually the support of C1 projected on {X1, X2}.
Moreover, the default value of {X1, X2}∗ is |D| = 2 times the default value of C1

since only var(C1) = {X,X1, X2}.
For {X,X1, X2, X3}, we still have only one generator {C1, C2}. The only as-

signments of {X1, X2, X3} that can be extended to an element of supp(C1) and
to an element of supp(C2) are {X1 7→ 0, X2 7→ 0, X3 7→ 1} and {X1 7→ 0, X2 7→
0, X3 7→ 0} which gives the support of {X1, X2, X3}∗. Moreover, since no con-
straint of I has variables {X,X1, X2, X3}, the default value of {X1, X2, X3}∗ is
1.

The case of {X1, X2, X3, X4}∗ is more delicate since it has many genera-
tors. Indeed, {C1, C3}, {C2, C4}, {C1, C2, C3}, {C1, C2, C4}, {C2, C3, C4} and
{C1, C3, C4} and {C1, C2, C3, C4} are all generators of {X,X1, X2, X3, X4}. To
construct the support of {X1, . . . , X4}∗ however, it is sufficient to look at the
generators {C1, C3} and {C2, C4} since for every other generator, one of them
is included in it. It is interesting to observe that all weights in the support of
{X1, . . . , X4}∗ are null. Indeed, it can be observed that if a is an assignment of
{X1, . . . , X4} and if a(X3) = a(X4) = 0 then C3(a) = C4(a) = 0, leading to a
0 weight in {X1, . . . , X4}∗. Similarly if a(X2) = a(X3) = 1 then C2(a) takes its
default value, 0. Finally, if a(X1) = a(X4) = 1, then C4(a) = 0.

We now prove Theorem 5.19 by induction:

126 CHAPTER 5. WEIGHTED DP-RESOLUTION

{X1, X2} {X2, X3} {X3, X4} {X1, X4}

{X1, X2, X3} {X2, X3, X4} {X1, X3, X4} {X1, X2, X4}

{X1, X2, X3, X4}

Figure 5.5: L(IX) where I is the instance of Figure 5.4.

{X1, X2}∗
X1 X2 w

0 0 1+2=3

1 1 3+4=7

otherwise 8

{X1, X2, X3}∗
X1 X2 X3 w

0 0 0 (1 · 4 + 2 · 0)/(3 · 4) = 1/3

0 0 1 (1 · 0 + 2 · 5)/(3 · 5) = 2/3

otherwise 1

{X1, X2, X3, X4}∗
X1 X2 X3 X4 w

0 0 0 0 0

0 0 1 1 0

1 0 1 1 0

1 1 1 1 0

otherwise 1

Figure 5.6: Some constraints of wres(I,X) for the instance I of Figure 5.4.

5.3. WEIGHTED DP-RESOLUTION ON GENERAL INSTANCES 127

Proof (of Theorem 5.19). Let W ∈ L(Ix). We prove by induction on |{Z ∈ L(Ix) |
Z ⊆W}| that for all a : W \ {x} → D,∏

Z⊆W
Z∈L(Ix)

Z∗(a) =
∑
d∈D

∏
C∈Ix

var(C)⊆W

C(a ∪ {x→ d}).

Base case. Let W ∈ L(Ix) such that |{Z ∈ L(Ix) | Z ⊆ W}| = 1 that is
{Z ∈ L(Ix) | Z ⊆W} = {W}. Thus for all a : W \ {x} → D,∏

Z⊆W,Z∈L(Ix)

Z∗(a) = W ∗(a).

If a ∈ supp(W ∗), then by definition

W ∗(a) =
∑
d∈D

∏
var(C)⊆W

C(a ∪ {x→ d}).

Now, observe that since {Z ∈ L(Ix) | Z ⊆ W} = {W}, it means in partic-
ular that there is no constraint C ∈ Ix such that var(C) (W . Thus, the only
generators of W are {C ∈ Ix | var(C) = W}. If a /∈ supp(W ∗) then for every
C ∈ Ix such that var(C) = W and for every d ∈ D, C(a ∪ {x 7→ d}) = def(C) by
Corollary 5.21. In other words,∑

d∈D

∏
var(C)⊆W

C(a ∪ {x 7→ d}) = |D|
∏

var(C)=W

def(C)

= W ∗(a) by definition of def(W).

Induction step. Let W ∈ L(Ix) such that |{Z ∈ L(Ix) | Z ⊆ W}| = k + 1 and
assume the induction hypothesis holds for every l ≤ k. Let a : W \ {x} → D such
that a ∈ supp(W). Assume first that

∏
Z∈L(Ix),Z(W Z∗(a) 6= 0. Then by definition

of W ∗, it holds that:∏
Z∈L(Ix)
Z⊆W

Z∗(a) = W ∗(a)
∏

Z∈L(Ix)
Z(W

Z∗(a) =
∑
d∈D

∏
C∈Ix

var(C)⊆W

C(a ∪ {x→ d}).

Now, assume that
∏
Z∈L(Ix),Z(W Z∗(a) = 0. In particular, there exists Z0 (W

such that Z∗0 (a) = 0. By induction,∏
Z∈L(Ix)
Z⊆Z0

Z∗(a) =
∑
d∈D

∏
C∈Ix

var(C)⊆Z0

C(a ∪ {x 7→ d}) = 0.

This sum is a sum of positive rational numbers evaluating to 0. Thus each term
of the sum is 0. It implies that∑

d∈D

∏
var(C)⊆W

C(a ∪ {x 7→ d}) = 0.

128 CHAPTER 5. WEIGHTED DP-RESOLUTION

That is ∏
Z∈L(Ix)Z⊆W

Z∗(a) = 0 =
∑
d∈D

∏
C∈Ix

var(C)⊆W

C(a ∪ {x→ d}).

Finally assume that a /∈ supp(W ∗). Let

C0 = {C ∈ Ix | var(C) ⊆W and ∃d ∈ D, a|var(C) ∪ {x 7→ d} ∈ supp(C)}.

Let Z0 = var(C0). By Lemma 5.20, C0 is not a generator of W since a /∈ supp(W ∗),
that is Z0 (W . Thus, by induction, we have:∏

Z⊆Z0

Z∗(a) =
∑
d∈D

∏
var(C)⊆Z0

C(a ∪ {x 7→ d}).

Now let Z ∈ L(Ix) such that Z ⊆W but Z 6⊆ Z0. If a ∈ supp(Z) then we would
have Z ⊆ Z0 by Lemma 5.20. Thus a /∈ supp(Z∗), that is, Z∗(a) = def(Z∗) =∏

var(C)=Z def(C). By Corollary 5.21, it even holds that for every d ∈ D,∏
var(C)=Z

def(C) =
∏

var(C)=Z

C(a ∪ {x 7→ d}).

It follows that:∏
Z⊆W

Z∗(a) =
∏
Z 6⊆Z0

def(Z∗)
∑
d∈D

∏
var(C)⊆Z0

C(a ∪ {x 7→ d})

=
∑
d∈D

∏
Z 6⊆Z0

def(Z∗)
∏

var(C)⊆Z0

C(a ∪ {x 7→ d})

=
∑
d∈D

∏
var(C)6⊆Z0

C(a ∪ {x 7→ d})
∏

var(C)⊆Z0

C(a ∪ {x 7→ d})

=
∑
d∈D

∏
var(C)⊆W

C(a ∪ {x 7→ d})

which finishes the induction.
The theorem follows from:

w(I) =
∑

a:var(I)→D

∏
C∈Ix

C(a)
∏

C∈I\Ix

C(a)

=
∑

a:var(I)\{x}→D

(
∑
x∈D

∏
C∈Ix

C(a ∪ {x 7→ d}))
∏

C∈I\Ix

C(a)

=
∑

a:var(I)\{x}→D

∏
Z∈L(Ix)

Z∗(a)
∏

C∈I\Ix

C(a)

= w(wres(I, x)).

5.3. WEIGHTED DP-RESOLUTION ON GENERAL INSTANCES 129

Theorem 5.19 suggests an algorithm for #CSPdef similar to Algorithm 6:
choose a variable x ∈ var(I) and compute wres(I, x). Repeat this operation until
there is no more variable left. The resulting instance J has only constraints with
no variable which can be seen as scalars, thus w(J) =

∏
C∈J C(∅) = w(I). This is

illustrated in Algorithm 9.

Algorithm 9: An algorithm CSPwres for #CSPdef using weighted DP-
resolution

Data: A set I of weighted constraints with default value and an order
{x1, . . . , xn} on var(I)

begin
if var(I) is empty then

return
∏
c∈I c(∅)

else
I ′ ← wres(I, x1) ;
return CSPwres(I ′, {x2, . . . , xn})

Contrary to the classical resolution, wres(I, x) can already be of size expo-
nential in ‖I‖. For instance, if I is an instance with n constraints C1, . . . , Ci
with var(Ci) = {x0, xi}, then for all A ⊆ [n], {xi | i ∈ A ∪ {0}} ∈ L(Ix0).
Thus wres(I, x0) has 2n constraints. However, if I has n constraints C1, . . . , Cn
with var(Ci) = {x0, . . . , xi}, then var(C1) ⊆ . . . ⊆ var(Ci). Thus, L(Ix0) =
{{x0, . . . , xi} | i ≤ n} is of size n and then wres(I, x0) has the same number
of constraints as I.

The main challenge with weighted DP-resolution is thus to find classes of
instances for which there exists an elimination order of the variables for which
Algorithm 9 does not lead to a blow up in the size of the instance. For example,
using weighted DP-resolution following a β-elimination order of the hypergraph of
the instance does not lead to a blow-up: the number of constraints in the resolvent
does not increase, nor the size of the constraints. This observation is explained in
details in Section 5.3.2.

Computation of the weighted resolvent. In this paragraph, we make obser-
vations on how one can compute the weighted resolvent. In the following, I is a
#CSPdef instance on domain D, x ∈ var(I) and we want to compute wres(I, x).
From the definition alone, it is not clear how one can compute wres(I, x) without
brute forcing on every subset C of Ix since for W ∈ L(Ix), supp(W ∗) is defined
using the generators of W . Thus, even if we have a guarantee that wres(I, x) is
small, the naive algorithm would still have a runtime exponential in |Ix|. We de-
scribe a procedure to compute wres(I, x) in polynomial time in ‖wres(I, x)‖+ ‖I‖
assuming that the arithmetic operations can be done in polynomial time. We get
this result by explaining how we can efficiently compute supp(W ∗) from supp(Z∗)
for Z,W ∈ L(Ix) and Z (W . We rely on the notion of primal generators.

130 CHAPTER 5. WEIGHTED DP-RESOLUTION

Let W ∈ L(Ix). A primal generator C for W is a generator of W — that
is, C ⊆ Ix and var(C) = W — such that for every C ∈ C, var(C \ {C}) 6= W .
The set of primal generators of W is denoted by pgen(W). For example, in the
instance of Figure 5.4, we had seen that {X1, . . . , X4} had a lot of generators but
only {C1, C3} and {C2, C4} are primal generators. In this example, the number
of prime generators is smaller than the total number of generator. We show that
supp(W ∗) can be defined by looking only at primal generators:

Lemma 5.22. Let W ∈ L(Ix) and let C ⊆ Ix be a generator of W . There exists
a primal generator C0 of W such that C0 ⊆ C.

Proof. If C is not primal, then there exists C ∈ C such that (C \ {C}) is still a
generator of W . We remove such constraints until we have a primal generator of
W .

Proposition 5.23. Let I be an instance of #CSPdef and x ∈ var(I). For every
W ∈ L(Ix), it holds that

supp(W ∗) =
⋃

C∈pgen(W)

{a : W \ {x} → D | ∀C ∈ C, ∃b ∈ supp(C), a ' b}.

Proof. The right-to-left inclusion is clear since pgen(W) ⊆ gen(W). Now let
a ∈ supp(W ∗). By definition, there exists C ∈ gen(W) such that ∀C ∈ C, ∃b ∈
supp(C), a ' b. By Lemma 5.22, there exists a primal generator C0 of W such
that C0 ⊆ C and it clearly holds that ∀C ∈ C0,∃b ∈ supp(C), a ' b which proves
the left-to-right inclusion.

Given A and B two subsets of assignments of variables, we denote by A ./ B
the join of A and B, that is, A ./ B = {a ∪ b | a ∈ A, b ∈ B, a ' b}. It is easy
to see that we can compute A ./ B in polynomial time. The key result to allow
efficient computation of wres(I, x) is the following:

Proposition 5.24. Let I be an instance of #CSPdef and x ∈ var(I). For every
W ∈ L(Ix), it holds that

supp(W ∗) =
⋃

Z∈L(Ix)
Z(W

⋃
C∈Ix

W=Z∪var(C)

supp(Z∗) ./ supp(C \ {x}).

Proof. The right-to-left inclusion is easy to prove: let C be such that Z∪var(C) =
W . Let a ∈ supp(Z∗) ./ supp(C \ {x}). Let b ∈ supp(Z∗) for Z (W such that
a ' b and c ∈ supp(C \ {x}) such that a ' c. Let C be a generator of Z such that
for every C ′ ∈ C, there exists b′ ∈ supp(C ′) such that b′ ' b. Observe that C ∪{C}
is a generator of W and that for every C ′ ∈ C ∪ {C} there exists b′ ∈ supp(C ′)
such that a ' b′. Indeed, either C ′ is in C and b′ is given by definition of C. Or
C ′ = C, and we choose a = c.

5.3. WEIGHTED DP-RESOLUTION ON GENERAL INSTANCES 131

Now let a ∈ supp(W ∗) and let C be a primal generator of W such that ∀C ∈
C,∃b ∈ supp(C), a ' b which exists by Proposition 5.23. Let C be any constraint
in C and let C′ = C \ {C} and Z = var(C′). Since C is primal, Z (W . It is easy
to see that a|Z ∈ supp(Z∗) and a|var(C) ∈ supp(C \ {x}), that is, a ∈ supp(Z∗) ./
supp(C \ {x}).

Proposition 5.24 suggests that we can compute wres(I, x) in time polynomial
in ‖wres(I, x)‖ and ‖I‖. We start by computing W ∗ for W ∈ L(Ix) having no
Z (W . Then, we find an element W in L(Ix) such that we have already computed
Z∗ for every Z that is strictly included in W . We can find such W by adding the
variables of a constraint of Ix and choosing one that is minimal for inclusion. We
now compute W ∗ using Proposition 5.24. This can be done in time polynomial in
‖wres(I, x)‖ and ‖I‖ since for every Z (W , |supp(Z∗)| is bounded by ‖wres(I, x)‖.
This gives the following result.

Theorem 5.25. Let I be a #CSPdef instance and x ∈ var(I). We can compute
wres(I, x) in polynomial time in ‖wres(I, x)‖ and ‖I‖ if the arithmetic operations
are done in polynomial time.

We believe that Theorem 5.25 could be improved a lot by using the right data
structures to efficiently test inclusions and to quickly compute joins but it would
require a better description of the exact encoding of #CSPdef instances. For now,
we are only interested in using weighted DP-resolution to discover or rediscover
tractable classes for #SAT so we are not interested in efficiency. Testing weighted
DP-resolution in practice or as a precomputation phase to simplify the structure
of a formula is however a perspective that we believe should be explored more
precisely in practice. We let this work as an open question:

Open question 4. How can we improve the computation time needed to compute
the weighted resolvent in the general case?

The case of bounded primal tree width. In this paragraph, we present a
simple example where we can show that weighted DP-resolution runs in a polyno-
mial number of arithmetic operations. For an instance I of #CSPdef on domain
D, we define the primal graph of I, denoted by Gprim(I), similarly as the pri-
mal graph of CNF-formulas: it is the graph whose vertices are var(I) and there
is an edge between x and y in Gprim(I) if there is a constraint C ∈ I such that
{x, y} ⊆ var(C). We show that if Gprim(I) is of tree width k, then following an
elimination order of Gprim(I) of width k, weighted DP-resolution on I can be done
with a polynomial number of arithmetic operations, which was already known
for boolean domains [SS10] but using a more classical dynamic programming ap-
proach. Even if the result of [SS10] yields a much better runtime than ours, we use
primal tree width as an example to illustrate how weighted DP-resolution can be
used efficiently on some instances. This result is a generalization of Theorem 5.6.

132 CHAPTER 5. WEIGHTED DP-RESOLUTION

Lemma 5.26. Let I be an instance of #CSPdef , x ∈ var(I) and let G = Gprim(I).
The primal graph of wres(I, x) is G/x.

Proof. Let {y, z} be an edge of the primal graph of wres(I, x). Either this edge
is generated by a constraint C ∈ I \ Ix and thus {y, z} is also in G/x. Or it is
generated by W ∗ for some W ⊆ Ix. In this case, it means that {x, y} and {x, z}
were both edges in G, and thus, {y, z} is in G/x.

Now let {y, z} be an edge of G/x. If this edge is also in G, then it means
that there exists a constraint C ∈ I such that {y, z} ⊆ var(C). If x /∈ var(C),
then C ∈ wres(I, x). If x ∈ var(C), then {y, z} ⊆ var(C)∗. In both case, {y, z}
is an edge of the primal graph of wres(I, x). If {y, z} is not an edge of G, then
it means that {x, y} and {x, z} were edges in G, that is, there exists C1, C2 ∈ Ix
such that {x, y} ⊆ var(C1) and {x, z} ⊆ var(C2). Thus {y, z} ⊆ W ∗ ∈ wres(I, x)
where W = var(C1) ∪ var(C2). That is, {y, z} is an edge of the primal graph of
wres(I, x).

Lemma 5.27. Let I be an instance of #CSPdef on domain D and x ∈ var(I)
such that the degree of x in Gprim(I) is k. Let I ′ = wres(I, x). It holds that
‖I ′‖ ≤ (|D|+ 1)k + ‖I‖.

Proof. Let Y = {y1, . . . , yk} be the neighbors of x in G = Gprim(I). By definition,
for every C ∈ Ix, it holds that var(C) ⊆ {x} ∪ Y . Thus, for every C ⊆ Ix,
var(C) ⊆ {x} ∪ Y and then there are at most 2k new constraints in wres(I). Now,
let W ∗ be a new constraint in I ′. It holds that W ⊆ Y ∪ {x}. Moreover W ∗ has
arity |W | − 1 = i ≤ k and thus |supp(W ∗)| ≤ |D|i. Thus, the size of the new
clauses is at most: ∑

W⊆Y
|D||W | =

k∑
i=0

(
n

i

)
|D|i = (|D|+ 1)k.

In other words, ‖I ′‖ ≤ ‖I‖+ (|D|+ 1)k.

Following an elimination order of width k and using Lemma 5.26 and Lemma 5.27
together with Theorem 5.25 yields the following theorem, which can be seen as a
generalization of Theorem 5.6:

Theorem 5.28. Given an instance I of #CSPdef on domain D with n variables
and primal tree width k, one can compute w(I) in time polynomial in (|D| + 1)k

and ‖I‖ if the arithmetic operations are done in polynomial time.

Proof. By following an elimination order of width k, it follows from Lemma 5.27
and Lemma 5.26 that during the elimination process, the size of the instance is
always smaller than n(|D|+ 1)k + ‖I‖. We use Theorem 5.25 to conclude.

Theorem 5.28 does not however state that weighted DP-resolution runs in
polynomial time on instances of bounded primal tree width. Indeed, as in The-
orem 5.12, Theorem 5.28 does not ensure that the weights computed during the

5.3. WEIGHTED DP-RESOLUTION ON GENERAL INSTANCES 133

elimination procedure can be encoded in polynomial bit size. To prove tractability
results using weighted DP-resolution would require a finer analysis of the algorithm
as it was conducted in Section 5.2.4. Our understanding of weighted resolution
is however not mature enough to generalize the already technical proof of Sec-
tion 5.2.4. We left this study as an open question.

Open question 5. Is the bit size of the weights computed during weighted DP-
elimination polynomially bounded?

5.3.2 Cover-width

In this section, we generalize the elimination order of width k characterizing the
tree width to the hypergraph setting. We introduce the cover-width of a hyper-
graph H to be the minimal k such that H has such an elimination order of width
k. We show that cover-width one corresponds to β-acyclicity and that the cover-
width of a hypergraph is bigger than its β-hyper tree width in general. Finally,
we show that weighted DP-resolution can be done with a polynomial time num-
ber of arithmetic operations following an elimination order of constant width k.
We finally conclude this chapter by presenting open questions and perspective
concerning weighted DP-resolution.

We start by defining the notion of covering we need. This corresponds to the
cover-value defined in Section 2.3.1 in the setting of hypergraphs.

Definition 5.29. A hypergraph H is k covered if and only if for every H′ ⊆ H,
there exists H′′ ⊆ H′ such that |H′′| ≤ k and V (H′′) = V (H′). The cover-value of
a hypergraph H, denoted by cv(H), is the minimal k such that H is k-covered.

The cover-width is defined using an elimination order where we bound the
cover-value of subhypergraphs at each step of the elimination procedure.

Definition 5.30. Let H be a hypergraph and x1, . . . , xn be an ordering of its
vertices. The ordering x1, . . . , xn is an elimination order of cover-width at most k
for H if for every i ≤ n, Hi[xi, . . . , xn] is k-covered, where Hi contains exactly the
edges of H that can be reach from xi by going through x1, . . . , xi. The cover-width
of H, denoted by covw(H), is the minimal k such that there exists an elimination
order of H of cover-width at most k.

Observe that the cover-width of a hypergraph is bounded by it number of
vertices.

Proposition 5.31. For every hypergraph H, covw(H) ≤ |V (H)|.
Proof. We show that, actually, the cover-value of a hypergraph is bounded by its
number of vertices. Indeed, let H be a hypergraph and let H′ ⊆ H. Let H′′ ⊆ H′
is such that V (H′′) = V (H′) and H′′ is of minimal size. By definition, for every
e ∈ H′′, V (H′′ \ {e}) 6= V (H′), otherwise, we would have a smaller subhypergraph
of H′ satisfying the property. Thus for every e ∈ H′′, there exists xe ∈ e such that
for e′ ∈ H′′ \ {e}, xe /∈ e′. It follows that |H′′| ≤ |V (H)| and then the cover-value
of H is smaller than |V (H)|.

134 CHAPTER 5. WEIGHTED DP-RESOLUTION

Cover-width and other measures. In this paragraph, we study how cover-
width is related to other measures. We start by showing that the cover-width of
a graph is exactly its tree width and that elimination order of width k for graph
and hypergraph actually defines the same notion on graphs.

Proposition 5.32. Let G = (V,E) be a graph and x1, . . . , xn an ordering of V .
The ordering x1, . . . , xn is of width k if and only if this ordering is of cover-width
k. In particular, covw(G) = tw(G).

Proof. As usual, we define G1 = G and Gi+1 = Gi/xi for all i < n. We show that
for {y, z} is an edge of Gi if and only if there exists a path from y to z in the only
goes through vertices in {y, z, x1, . . . , xi−1} in G (for y, z /∈ {x1, . . . , xi−1}).

The proof is by induction. If i = 1, then the result is trivial since there is an
edge between y and z if and only there is a path in G that goes through vertices
in {y, z}.

Now let {y, z} be an edge in Gi+1. If {y, z} is an edge of Gi also then
by induction, there exists a path in G from y to z going through vertices in
{y, z, x1, . . . , xi−1} ⊆ {y, z, x1, . . . , xi}. If {y, z} is not an edge of Gi, then it
means that {y, xi} and {z, xi} are edges of Gi by definition of Gi/xi. By induc-
tion, there exists a path from y to xi and a path from xi to z in G that both go
through vertices in {y, z, x1, . . . , xi−1}. The concatenation of these paths is a path
from y to z going through vertices in {y, z, x1, . . . , xi}.

Now assume there exists a path from y to z going through vertices {y, z, x1, . . . , xi}.
Either this path does not go through xi and by induction, {y, z} is an edge of Gi
and thus of Gi+1. Or this path goes by xi. But then we can cut this path into a
path from y to xi going through vertices in {y, xi, x1, . . . , xi−1} and a path from
xi to z going going through vertices in {z, xi, x1, . . . , xi−1}. In particular, by in-
duction, the existence of the first path implies that {y, xi} is an edge of Gi, and
similarly, {z, xi} is an edge of Gi. This, {y, z} is an edge of Gi+1 = Gi/xi.

To conclude, let Hi be the edges of G than can be reached from xi by going
through vertices in {x1, . . . , xi}. These are edges of the form {xj , y} for j ≤ i and
then, we know from what precedes that there is an edge between xi and y in Gi.
That is, the neighborhood of xi in Gi is exactly V (Hi) \ {xi} and Hi[xi, . . . , xn]
contains edges of the form {xi, y} or {y} if y is not a neighbor of xi in G. The
cover-value of Hi is exactly the degree of xi in Gi.

An immediate corollary of Proposition 5.32 is that it is as hard to compute
cover-width than tree width on graphs. Since computing the tree width of a graph
is NP-hard by Theorem 1.25 [Bod93a], we have:

Theorem 5.33. Given a hypergraph H and k ∈ N, it is NP-hard to decide whether
covw(H) ≤ k.

We now explore the relation between β-hypertree width and cover-width.

5.3. WEIGHTED DP-RESOLUTION ON GENERAL INSTANCES 135

Proposition 5.34. Let H be a hypergraph and x1, . . . , xn an ordering of its vari-
ables. The elimination order x1, . . . , xn is of cover-width 1 if and only if it is
a β-elimination order. In particular, a hypergraph H is β-acyclic if and only if
covw(H) = 1.

Proof. Assume first that x1, . . . , xn is of cover-width 1. It is clear that every edge
containing xi can be reach from xi by going only through xi. Let e, f be two
edges containing xi. Since the cover-width of x1, . . . , xn is 1, then e∩{xi, . . . , xn}
and f ∩ {xi, . . . , xn} are covered by one edge among them. In other word, e ∩
{xi, . . . , xn} ⊆ f ∩ {xi, . . . , xn} or f ∩ {xi, . . . , xn} ⊆ e ∩ {xi, . . . , xn}, that is xi is
a β-leaf in H[xi, . . . , xn].

Now assume that x1, . . . , xn is an β-elimination order and let e, f be an edge
that can be reached from xi by going through vertices in {x1, . . . , xi}. We appeal
to results and definitions of Chapter 4. Assume w.l.o.g that e <H f . Then by
definition e ∈ Hxif and then e ∩ {xi, . . . , xn} ⊆ f by Lemma 4.12.

Proposition 5.35. For every hypergraph H, it holds that β-htw(H) ≤ 3·covw(H)+
1.

Proposition 5.35 follows directly from the following two lemmas:

Lemma 5.36. For every hypergraph H, it holds that ghtw(H) ≤ covw(H).

Proof. Let x1, . . . , xn be an elimination order of width k of H. We claim that
H′ = H ∪

⋃n
i=1(V (Hxi) ∩ {xj | j ≥ i}) is α-acyclic. Indeed, x1, . . . , xn is an α-

elimination order of H′ since when we remove xi, its neighborhood is covered by
V (Hxi) ∩ {xj | j ≥ i}. This is actually a general fact that do not depend on the
width of the elimination order.

Now by Proposition 1.31, it follows that H′ is α-acyclic. Thus there exists
a join tree T for H′. We claim that T is a hypertree decomposition of H of
generalized hypertree width k. It is sufficient to show that each bag of T can
be covered with at most k edges of H. Since T is a join tree of H′, its bags are
labeled with edges of H′ and thus, it is sufficient to show that each edge of H′ can
be covered with at most k edges of H.

Let e ∈ H′. If e ∈ H, then e is covered by itself and then it is covered by
one edge of H. Otherwise, there exists i such that e = V (Hxi) ∩ {xj | j ≥ i}.
But every edges of Hxi can be reached from xi by going only through xi. Thus
V (Hxi)∩{xj | j ≥ i} is covered by k edges of Hxi by definition of cover-width.

Lemma 5.37. For every hypergraph H and H0 ⊆ H, it holds that covw(H0) ≤
covw(H).

Proof. Let x1, . . . , xn be an elimination order of H of width k. We show that
this order, restricted to the variables of H0, is also an elimination order of H0.
We denote Hi the set of edges of H that can be reach from xi by going through
vertices in {x1, . . . , xi}. We denote by H0

i the set of edges of H0 that can be reach

136 CHAPTER 5. WEIGHTED DP-RESOLUTION

from xi by going through vertices in {x1, . . . , xi}. It is easy to see that Hi0 ⊆ Hi.
But then the cover-value of H0

i is smaller than the cover-value of Hi. Thus the
elimination order x1, . . . , xn is also an elimination order for H0 of cover-width at
most k.

Proposition 5.35 shows that β-hypertree width is more general than cover-
width, that is, if a class of hypergraph has bounded cover-width, then it has also
bounded β-hypertree width. Unfortunately, we do not know if the cover width of
a hypergraph can be polynomially bounded by its β-hypertree width.

Open question 6. Find a polynomial P (or prove that such polynomial does not
exist) such that:

covw(H) ≤ P (β-htw(H)).

A positive answer to the previous question may provide new perspectives to
prove the tractability of some problems, like SAT or #SAT, parametrized by β-
hypertree width. It may also provide new tools to study β-hypertree width. Such
characterizations may be a way of finding parametrized algorithm to compute
the β-hypertree width of a given hypergraph. Unfortunately, the parametrized
complexity of computing a good elimination order for a hypergraph is still open.

Open question 7. Given a hypergraph H and an integer k ∈ N, what is the
parametrized complexity of computing an elimination order of H of width at most
k when it exists and rejects otherwise?

Weighted DP-resolution and cover-width. In this paragraph, we show that
weighted resolution can be done on bounded cover-width instances without an
exponential blow-up in the size of the instance if one follows an elimination order of
width k. The main argument is that every constraint that has been introduced by
weighted resolution after having eliminating xi is actually the fusion of constraints
that are reachable from one another by going through vertices in x1, . . . , xi. By
the cover-width definition, it follows that such constraints are covered by k original
constraints and then we can use it to bound both the size of their support and
the number of constraints that are introduced during weighted resolution.

In the following, we fix I an instance of #CSPdef . We let H = H(I) and
x1, . . . , xn be an elimination order of H of cover-width k. For every i ≤ n, we
denote by Hi the set of edges of H that can be reached from xi by going through
vertices in {x1, . . . , xi}. We denote by I1 = I and by Ii+1 = wres(Ii, xi).

Lemma 5.38. Let i ≤ n, C ∈ Ii and a ∈ supp(C). There exists C1, . . . , Cp ∈ I
and a1 ∈ supp(C1), . . . , ap ∈ supp(Cp) with p ≤ k such that:

1. a ' aj for all j ≤ p and,

2. var(C) ⊆
⋃p
j=1 var(Cj).

5.4. CONCLUSION 137

Proof. Let C be a constraint of Ii. We say that C was introduced at step j if C
is a constraint of Ij+1 and C is not a constraint of Ij . Constraints of I = I1 have
been introduced at step 0. We prove by induction on i that if a constraint C have
been introduced at step i then for every a ∈ supp(C):

• there exist C1, . . . , Cp ∈ I such that var(C) =
⋃p
j=1 var(Cj) \ {x1, . . . , xi},

• for j, j′ ≤ p, there is a path from var(Cj) to var(Cj′) in H that goes through
{x1, . . . , xi} only,

• there exists aj ∈ supp(Cj) such that a ' aj for every j ≤ p.

The case where i = 0 is trivial since every constraint of I is covered by itself.
Now let C be a constraint introduced at step i and a ∈ supp(C). By definition
of weighted DP-resolution, there exists constraints C ′1, . . . , C

′
r of Ii, all containing

xi, such that var(C) = (var(C ′1)∪ · · · ∪ var(C ′r)) \ {xi} and for every j, there exists
aj ∈ supp(C ′j) such that aj ' a. The constraint C ′j has been introduced before step
i, thus by induction there exists Cj,1, . . . , Cj,pj that respects the desired properties
for C ′j . We choose C1, . . . , Cp to be all these clauses. They satisfy the desired
properties.

The statement of the lemma follows from the fact that since the elimination
order is of cover-width k, given a ∈ supp(C) and the corresponding C1, . . . , Cp, we
can extract k constraints from C1, . . . , Cp that still covers var(C).

Corollary 5.39. Let I be a #CSPdef instance with m constraints and x1, . . . , xn
an elimination order of H(I) of cover-width k. Let I1 = I and Ii+1 = wres(Ii, xi).
For every i ≤ n, ‖Ii‖ ≤ mk+1‖I‖k.

Proof. By Lemma 5.38, the variables of every constraint of Ii is covered with the
variables of at most k constraints of I. Thus, there is are most

∑k
j=1

(
m
j

)
≤ mk+1

constraints in Ii and the support of each of them is obtained by joining tuples of
at most k original constraints, that is, their support is of size at most ‖I‖k.

Combining Corollary 5.39 with Theorem 5.25, it follows that weighted DP-
resolution may be done in polynomial time if one follows an elimination order of
cover-width k and if arithmetic operations can be done in polynomial time:

Theorem 5.40. Given I a #CSPdef instance with m constraints and x1, . . . , xn
an elimination order of H(I) of cover-width k, one can compute w(I) in polyno-
mial time in mk‖I‖k assuming that arithmetic operations can always be done in
polynomial time.

5.4 Conclusion

There is still much to understand on weighted resolution. The main challenge is
to bound the size of the weights that appear during the elimination procedure. A

138 CHAPTER 5. WEIGHTED DP-RESOLUTION

reasonable goal would be to prove they are bounded when the cover-width of the
instance is also bounded, as we did it in Section 5.2.3 for β-acyclic instance which
corresponds to cover-width 1.

Our main purpose with weighted DP-resolution is to offer new perspectives for
understanding the complexity of #SAT on bounded β-hypertree width formulas,
the difficult task of characterizing the β-hypertree width better is still an interest-
ing question and characterizations based on elimination order such as cover-width
may be an interesting direction.

We have also seen in the previous chapters that the trace of every algorithm
for #SAT can actually be seen as a compilation algorithm from CNF into d-DNNF.
It is not clear however if this applies to weighted DP-resolution as well. Indeed,
the algorithm for PS-width was not hard to generalize to a compilation algorithm
since the algorithm count the number of satisfying assignments by multiplying
the number of satisfying assignments of disjoint variables formulas or by adding
the number of satisfying assignments of formulas having disjoint satisfying assign-
ments. This could be almost directly translated into a compilation algorithm into
d-DNNF by replacing multiplications by decomposable ∧-nodes and additions by
deterministic ∨-gate. Weighted resolution however relies on weights that are not
even necessarely integers. It is not straightforward to see how divisions of weights
could be translated into boolean circuits.

However, since weighted DP-resolution is working on an elimination order, it
may suggests that it implicitly constructs a dec-DNNF, and that the weights are
only an implicit way of encoding the shared part of an underlying boolean circuits.
We thus let the question of turning weighted DP-resolution into a compilation
algorithm as an open question:

Open question 8. Can weighted resolution be turned into a compilation algorithm
of CNF-formulas into dec-DNNF?

Chapter 6

Unconditional separations

The previous chapters were mostly focused on proving positive algorithmic results.
We have indeed designed specific polynomial time algorithms in order to discover
tractable classes for knowledge compilation. This naturally raises the question of
finding CNF-formulas for which such algorithmic techniques will always fail. Such
question can be reformulated as lower bounds in knowledge compilation. Indeed,
if a class of CNF-formulas cannot be represented succinctly by d-DNNF, then the
structure-based algorithms for #SAT – and for compiling – presented in this thesis
will fail. This was already observed by Huang and Darwiche [HD05] who argued
that most of the practical tools for #SAT were implicitly compiling the formula
into a dec-DNNF. Thus lower bounds on the size of dec-DNNF representing a family
of formulas directly translate into lower bounds on the runtime of state-of-the-art
tools for #SAT.

For a function g : N → N, we say that we have an g(n) lower bound on the
compilation of a language L1 into an other language L2 if there exists a boolean
function f : {0, 1}∗ → {0, 1} such that the size of f represented in L1 – denoted
by L1(f) – is at least O(g(L2(f))). We say that L1 and L2 separated if we have
a super polynomial lower bound on the compilation of L1 into L2. We often refer
to strongly exponential lower bound as 2Ω(n) lower bound in contrast to weakly
exponential lower bounds that are 2Ωnα lower bounds for α < 1.

Few unconditional lower bounds are known for representation languages based
on DNNF. Most separation of representation langages are known only under com-
mon hypothesis in complexity theory such as NP 6⊆ P/poly [KS96]. Most of these
separations have been left open in the survey of Darwiche and Marquis [DM02] on
the study of representation languages for knowledge compilation. Unconditional
separation are not entirely satisfactory since they give no hint on the reasons why
a function is hard to represent in a given language.

More is known however on simple languages. Lower bounds for FBDD and
OBDD have been proven very early [Žák84, Weg88] (see also [Weg00] for an
overview of these results) but the first lower bounds for DNNF based languages
have been proven only very recently. Beame and al. have proven an unconditional

139

140 CHAPTER 6. UNCONDITIONAL SEPARATIONS

FBDD s-DNNF
2Ω(n), Section 6.3

decDNNF

dDNNF

DNNF

Simulation O(nlog(n)) [BLRS13]

2Ω(
√
n) separation [BLRS13]

See Section 6.4 for discussion.

CNF
2Ω(n) separation, Section 6.2

Figure 6.1: Overview of some known and new separations concerning DNNF and
its restriction. An arrow represents the inclusion, a dash line the fact that the
languages are incomparable. Here s-DNNF stands for structured DNNF.

separation of dec-DNNF and d-DNNF in [BLRS13] and an unconditional separation
of dec-DNNF and DNF in [BLRS14] but even there, the separations are usually
based on known lower bounds for FBDD that are then leveraged to restrictions of
DNNF. Based on the result of [PD10b], Pipatsrisawat gives in his thesis [Pip10]
lower bounds on the size of structured DNNF.

In this chapter, we establish a connection between the size of DNNF-based
languages and the number of rectangles needed to cover their computed function.
Rectangles is a notion that is well-studied in communication complexity and our
technique can be used to leverage lower bounds from communication complexity
into knowledge representation. Using this connection, we are able to provide the
first strongly exponential separation of DNNF and CNF. This can be achieved
by using known lower bound from communication complexity [JS02], but we also
provide a self-contained proof of this fact that is shorter and more elementary
than the proof of [JS02]. We also show that our connection with communication
complexity may be used to characterized other restrictions of DNNF such as de-
terministic DNNF or structure DNNF. We use the last connection to rediscover
results of Darwiche and Pipatsrisawat [PD10b] and prove a strongly exponential
separation of structured DNNF and FBDD, which can be seen as a separation of
every representation language with their structured equivalent. This fact was al-
ready proven in [Pip10] but our method is more generic and relies on basic tools
of graph decompositions.

In the first section, we introduce essential notions to study DNNF and prove the
connection with the size of a DNNF and the number of balanced rectangles needed

6.1. PRELIMINARIES 141

to cover it. In the second section, we use this connection to leverage known lower
bounds in communication complexity and give a strongly exponential separation
of 3-CNF and DNNF. We also present a self-contained proof of such lower bound
that allows us to separated montone 2-CNF from DNNF. Finally, we show how the
known lower bounds on structured DNNF from [PD10b] can be explained by our
connection to communication complexity and we use these techniques to reprove
lower bounds on the size of structured DNNF. We conclude this chapter by giving
an outlined proof of a strongly exponential separation of DNNF and deterministic
DNNF.

Figure 6.1 summarizes the contributions of this chapter and provides references
for the already known separations concerning DNNF and its restrictions.

6.1 Preliminaries

In this section, we introduce the main tools needed to prove lower bounds. We
start by defining the notion of certificates in DNNF that allows us to nicely operate
on the set of satisfying assignments of a DNNF. We then define normal forms of
DNNF and give algorithm to transform DNNF into such normal form with only a
polynomial increase in size. Finally, we introduce the notion of boolean rectangle,
a well-studied notion in communication complexity, used intensively for proving
lower bounds in this area.

6.1.1 Certificates

Most of the notions introduced here are classical notions in arithmetic circuit com-
plexity [Bü00, MP06] adapted to the framework of DNNF. We start by introducing
certificates, that is the analogous notion of parse trees in arithmetic circuits. Cer-
tificates can be seen as a generalization to DNNF of the notion of paths in FBDD.
A path in an FBDD is a witness of the fact that an assignment is a satisfying
assignment of the FBDD. We use the certificate similarly in our proofs.

Definition 6.1. Let D be a DNNF and let s = output(D). A certificate of D is a
connected DNNF T , included in D such that:

• s ∈ T

• if u ∈ T is an ∧-gate then every child of u is in T

• if u ∈ T is an ∨-gate then exactly one child of u is in T

The set of certificates of D is denoted by cert(D). The set of certificates that
contain a gate v is denoted by cert(D, v)

Certificates are very useful since they have a very simple form and characterize
entirely the function computed by a DNNF. One can observe the following:

142 CHAPTER 6. UNCONDITIONAL SEPARATIONS

Proposition 6.2. Let D be a DNNF and T ∈ cert(D). Let v be a gate of T . Then
Tv ∈ cert(Dv).

Proof. By definition, output(Dv) = v. Thus Tv is a set of gate of Dv containing v
such that if u is an ∧-gate of Tv, then every child of u is in Tv and if u is an ∨-gate
of Tv, then exactly one child of u is in Tv. That is Tv is a certificate of Dv.

Proposition 6.3. Let D be a DNNF and T ∈ cert(D). The inputs of T are labeled
by literals with pairwise distinct variables and the underlying graph of T is a tree
rooted in output(D). Moreover

T ≡
∧

`∈lit(T)

`

Proof. The proof is by induction on the depth of D. If D is of depth 0, then its
output has no children, that is, the output of D is an input of D. Thus the only
certificate T of D is {output(D)}. The underlying graph of T is an isolated vertex,
that is a tree rooted in s where lit(T) is the label of s thus T ≡

∧
`∈lit(T) `.

Now assume the result holds for DNNF of depth smaller than d and let D be
a DNNF of size d + 1. Let s = output(D) and let s1, . . . , sk be the inputs of s.
Let T be a certificate of D. By definition, T contains s. Now, if s is an ∨-gate,
then T also contains exactly one gate si. Thus T = {s}∪Tsi . By Proposition 6.2,
Tsi is a certificate of Dsi , thus, by induction, its underlying graph is a tree rooted
in si and its input gates are labeled with literals having distinct variables. Thus
the underlying graph of T is the tree rooted in s connected to a tree rooted in si.
Moreover, the input gate of T are the same as those of Tsi , thus are labeled with
pairwise distinct variables by induction and T ≡ Tsi ≡

∧
`∈lit(T) `.

If s is an ∧-gate, then T = {s} ∪
⋃k
i=1 Tsk . By Proposition 6.2, for all i ≤ k,

Tsi ∈ cert(Dsi) that are trees rooted in sk by induction. Since s is decomposable,
Ds1 , . . . , Dsk are disjoint circuits having disjoint variables. Thus T is the rooted
tree in s connected to trees Ts1 , . . . , Tsk . Moreover, the input gate of T are the
union of input gates of Tsi , which are all labeled by disjoint variables since s
is decomposable. That is, all input gates of T are labeled by disjoint variables.
Finally,

T ≡
k∧
i=1

Tsi ≡
k∧
i=1

∧
`∈lit(Tsi)

` ≡
∧

`∈lit(T)

`.

Proposition 6.4. Let D be a DNNF. Then

sat(D) =
⋃

T∈cert(D)

sat(T).

Moreover, if D is deterministic, the union is disjoint.

6.1. PRELIMINARIES 143

Proof. Let τ : X → {0, 1} be a satisfying assignment of D. A set T of gate of D
is said satisfied by τ if for all α ∈ T , τ |= Dα. Let T0 = {output(D)}. Since τ
satisfies D, T0 is satisfied by τ .

Assume we have constructed Ti satisfied by τ . If there exists an ∧-gate α ∈ Ti
and a child α0 of α such that α0 /∈ Ti then we set Ti+1 = Ti ∪ {α0}. Observe that
since τ |= Dα, we also have τ |= Dα0 , that is, Ti+1 is satisfied by τ . If there exists
an ∨-gate α in Ti such that no child of α is in Ti, then choose a child α0 of α such
that τ |= Dα0 . It exists since τ |= Dα and set Ti+1 = Ti ∪ {α0}. If no such gate
exists, then let T = Ti.

By construction, T is a certificate ofD since it is connected, contains output(D),
for every ∨-gate, there is exactly one of its children in T and for every ∧-gate,
every child of this gate are in T . Moreover, for every ` ∈ lit(T), τ |= ` since τ
satisfies T by construction. Thus by Proposition 6.3, τ |= T , that is τ ∈ sat(T).

Now let T ∈ cert(D) and let τ ∈ sat(T). One can easily see by induction that
for all gate v in T , τ |= Dv. Since s = output(D) is in T , we have τ |= Ds = D.

Assume that D is deterministic and let T, T ′ ∈ cert(D) such that T 6= T ′.
Assume there exists τ ∈ sat(T) ∩ sat(T ′). Let w be a gate of T that is also in T ′

and such that there exists a child of w in T that is not in T ′. Such a gate exists
since T and T ′ have at least output(D) as a common gate since T 6= T ′. Observe
that w cannot be an ∧-gate since if it were, every children of w would be in T
and in T ′. Thus w is an ∨-gate and there exists a child w1 of w that is in T and
another child w2 of w that is in T ′. But since τ ∈ sat(T) ∩ sat(T ′), it holds that
τ satisfies both Dw1 and Dw2 which contradicts the fact that D is deterministic.
Thus sat(T) ∩ sat(T ′) = ∅.

The following lemma shows how one can recombine certificates:

Lemma 6.5. Let D be a DNNF and v be a gate of D. Let T, T ′ ∈ cert(D, v),
then T ′′ = (T \ Tv) ∪ T ′v ∈ cert(D, v) and var(Tv) ⊆ var(Dv) and var(T \ Tv) ⊆
var(D) \ var(Dv).

Proof. Since v ∈ T ′v, we also have v ∈ T ′′. Moreover, the output of D is in T ′′ and
for every ∧-gate w of T ′′, every child of w is also in T ′′ since if w is in T ′v then its
children are also all in T ′v since T ′ is a certificate. If w is in T \ Tv then either no
children of w is v, thus every children of w are also in T \Tv since T is a certificate
of D. If v is one of the children of T then it is also in T ′′ since v ∈ T ′v. We can
similarly show that for every ∨-gate w of T ′′, exactly one child of w is in T ′′.

Now observe that by Lemma 6.2, Tv is a certificate of Dv. Thus var(Tv) ⊆
var(Dv). Moreover, assume that there exists a variable x such that x ∈ var(T \
Tv) ∩ var(Dv). Since x ∈ var(Dv), there exists a certificate T ′′′ of Dv such that
x ∈ var(T ′′′). But then, from what precedes, (T \ Tv) ∪ T ′′′ is a certificate of D
having two leaves labeled by x, contradicting Lemma 6.3.

144 CHAPTER 6. UNCONDITIONAL SEPARATIONS

6.1.2 Rectangles and covers

In this section, we make a new connection between knowledge compilation and
communication complexity. Our presentation of the result may be understood
without specific knowledge in communication complexity since we only rely on
the notion of rectangles that is presented later. Nevertheless, before presenting
the main result, we quickly explain the framework of communication complex-
ity and review previous work concerning the connection of knowledge compila-
tion and communication complexity. The interested reader may find additional
background concerning communication complexity in the book of Kushilevitz and
Nisan [KN97].

The usual model in communication complexity is the following: we are given
a computable boolean function f : Z → {0, 1} and a partition of Z = X] Y .
We want to evaluate f on input z = (x, y) ∈ {0, 1}n. We assume that Alice
knows x and Bob knows y. In this model, the complexity of f with respect to the
partition (X,Y) is measured as the maximal number of bits Alice and Bob have
to exchange to compute f(x, y). The time needed to compute f is not relevant
here. Of course, the complexity of f is smaller than min(|X|, |Y |) since Bob (or
Alice) could send its input y to Alice and let her compute the function. Thus, the
goal is to find non trivial ways of computing such function. Several variations can
be made here. We could assume that (X,Y) is not chosen in advance and then
define the complexity of f to be the best complexity over every partition (X,Y).
Of course, we would like to avoid the trivial cases where |X| = 1 which is not
relevant. Hence a common assumption is that the partition is balanced, that is,
|X| = |Y | ± 1. Such model is called the best partition model.

A connection between the size of the smallest OBDD computing a boolean func-
tion f and the complexity of f in the best partition model have been established
by Kushilevitz and Nisan [KN97, Kus97] and is reviewed in [Weg00]. The idea is
that an OBDD F can be seen as a communication protocol for f with partition
X = {x1, . . . , xbn/2c} and Y = {xbn/2c+1, . . . , xn} where x1, . . . , xn is the order of
the variables in the OBDD. Indeed, Alice can communicate to Bob the node she
reaches in the OBDD F after having followed the partial path corresponding to its
partial input. Bob only can then resume the computation in the OBDD from the
node Alice has transmitted. This can be done by communicating O(log(size(F)))
bits. Thus if one has a lower bound on the complexity of f in the best partition
model, it can be leveraged to a lower bound on the OBDD size of f .

For richer representation languages such as DNNF, a lower bound on the com-
plexity of f in the best partition model is generally not enough to give a lower
bound in this language. However, several variations in the model of computa-
tion can be made to match the representation language. Such variations in the
model and corresponding lower bounds have been used recently by Beame and
Liew [BL15] to prove lower bound on the size of richer representation language
such as SDD and DNNF. Their approach however only yields a weakly exponential
separation of DNNF and CNF and does not take full advantage of the structure

6.1. PRELIMINARIES 145

of DNNF. Moreover, it can hardly be adaptated to restrictions of DNNF such as
deterministic DNNF.

The model of computation that is related to our result is the following: the
partition of the variable is chosen non-deterministically from the input. It can be
thought as if an oracle could see the entire input and choose which bits it gives
to Alice, and which bits it gives to Bob. Such model is known as multipartition
communication protocol. A presentation of this model and lower bounds can be
found in [DHJ+04, JS02]. Our connection to the size of DNNF and the number
of rectangles needed to cover it can be understood as a connection between the
DNNF size of a boolean function and its complexity in the multipartition model.
However, we present our result independently from this framework and the only
tool from communication complexity needed to understand the proof is the notion
of rectangle.

Rectangles and balanced rectangle cover. Let X be a finite set and r :
{0, 1}X → {0, 1}. The boolean function r is said to be a rectangle over X if there
exists a partition (X1, X2) of X, r1 : {0, 1}X1 → {0, 1} and r2 : {0, 1}X2 → {0, 1}
such that for all τ : X → {0, 1}, r(τ) = 1 if and only if r1(τ |X1) = r2(τ |X2) = 1.
Intuitively, it means that r ≡ r1 ∧ r2 and var(r1)∩ var(r2) = ∅. A rectangle is said
to be balanced if |X|/3 ≤ |X1| ≤ 2|X|/3.

Let f : {0, 1}X → {0, 1} be a function. A rectangle cover of f is a finite set R
of rectangles over X such that sat(f) =

⋃
r∈R sat(r). A rectangle cover R is said

balanced if for every r ∈ R, the underlying partition of r is balanced. It is said
disjoint if for every r1, r2 ∈ R, if r1 6= r2 then sat(r1) ∩ sat(r2) = ∅. The size of R
is simply |R|, the number of rectangles in R.

By extension, we say that a set F ⊆ {0, 1}X is a rectangle if the function
fF : {0, 1}X → {0, 1} defined as fF (τ) = 1 if and only if τ ∈ F is a rectangle. A
rectangle cover of F is a rectangle cover of fF .

Observation 2. Given F ⊆ {0, 1}X and a partition (X1, X2) of X, we have that
F is a rectangle over X with underlying partition (X1, X2) if and only if for every
τ1, τ2 ∈ F , τ1|X1 ∪ τ2|X2 ∈ F .

Rectangle covers of DNNF. In this section, we show a strong connection be-
tween the size of a balanced (disjoint) rectangle cover of a function f : {0, 1}X →
{0, 1} and the size of any (deterministic) DNNF computing f . This allows to lift
known lower bounds from communication complexity on the size of balanced rect-
angle cover needed for some functions to the framework of knowledge compilation.

For a DNNF D and a gate v of D, we denote by sat(D, v) =
⋃
T∈cert(D,v) sat(T).

Intuitively, sat(D, v) is the set of satisfying assignments of D that also satisfy Dv.
We start by showing that for all v, sat(D, v) is a rectangle:

Lemma 6.6. Let D be a DNNF on variable X and v a gate of D. sat(D, v) is a
rectangle over X whose underlying partition is (var(Dv), X \ var(Dv)).

146 CHAPTER 6. UNCONDITIONAL SEPARATIONS

Proof. To ease notations, we denote by Xv = var(Dv) and by Xv = X \ Xv.
By Observation 2, it is sufficient to show that for every τ, τ ′ ∈ sat(D, v), τ ′′ :=
τ |Xv ∪ τ

′|Xv ∈ sat(D, v). Let T ∈ cert(D, v) such that τ |= T and T ′ ∈ cert(D, v)
such that τ ′ |= T ′.

By Lemma 6.5, T ′′ = (T \ Tv) ∪ T ′v is a certificate of D going through v,
var(T ′v) ⊆ Xv and var((T \Tv)) ⊆ Xv. Thus, τXv satisfies every literal labeling the

inputs of T \Tv since it satisfies every literals of T and var(T \Tv) ⊆ Xv. Similarly,
τ ′|Xv satisfies every literals of T ′v. Therefore, τ ′′ satisfies every literal of T ′′ that
is τ ′′ |= T ′′ and since v ∈ T ′′, τ ′′ ∈ sat(D, v).

Lemma 6.6 gives a natural way of covering the satisfying assignments of a
DNNF D with rectangles by simply taking⋃

v∈D
sat(D, v).

Balanced rectangle covers of DNNF. This covering is however of little interest
for proving lower bounds since it is not balanced. It is easy to see that one can
cover any boolean function f on variables X with two (unbalanced) rectangles on
partition ({x}, X \ {x}) for x ∈ X by remarking that

sat(f) = sat(x ∧ f({x 7→ 1})) ∪ sat(¬x ∧ f({x 7→ 0}).

The rest of this section is dedicated to the extraction of a set of gate A of D such
that

⋃
v∈A sat(D, v) is a balanced rectangle cover of D.

Our strategy is as follows: we iteratively construct a set R which will be in
the end a balanced rectangle cover of sat(D). We start by looking for a gate v
such that the underlying partition of the rectangle sat(D, v) given by Lemma 6.6
is balanced. We add sat(D, v) to R and then drop the gate v by replacing it by
the constant 0. We iterate this process us until D is unsatisfiable. In this end, we
have a guarantee that R is a balanced rectangle cover of D. More precisely, we
prove the following theorem:

Theorem 6.7. Let D be a DNNF. There exists a balanced rectangle cover R of
sat(D) of size at most size(D)2. Moreover, if D is deterministic, we can assume
R to be disjoint.

Our strategy is essentially based on the procedure of eliminating a gate in a
DNNF. Given a DNNFD and a gate v in D, we denote by D\v the DNNF where we
have removed every input wire of v and relabeled v with the constant 0. IfG is a set
of gates of D, we denote by D\G the DNNF obtained by successively removing the
gates in G. Observe that for every gate v, w, it holds that (D\v)\w = (D\w)\v.
Therefore the order we eliminate the gate of G in D is not important and D \G
is well defined. There is a nice connection between the satisfying assignments of
D and those of D \ v:

6.1. PRELIMINARIES 147

Lemma 6.8. Let D be a DNNF and v a gate. We have

sat(D) \ sat(D, v) ⊆ sat(D \ v) ⊆ sat(D).

Moreover, if D is deterministic then D\v is deterministic and sat(D)\sat(D, v) =
sat(D \ v).

Proof. In this proof, we identify the gates of D different from v to the gates of
D \ v. This is possible since the only gate that has been relabeled in D \ v is v.

We first show that sat(D\v) ⊆ sat(D). Let τ ∈ sat(D\v). By Proposition 6.4,
there exists a certificate T of D \ v such that τ ∈ sat(T). Moreover, since T
is equivalent to the conjunction of its inputs, we know that the constant 0 does
not label any of the inputs of T . Thus T only contains gates of D, that is, T
is also a certificate of T . Thus by Proposition 6.4 again, τ ∈ sat(D). That is
sat(D \ v) ⊆ sat(D).

We now prove sat(D) \ sat(D, v) ⊆ sat(D \ v). Let τ ∈ sat(D) \ sat(D, v).
By Proposition 6.4, there exists T ∈ cert(D) such that τ ∈ sat(T). Moreover,
by definition of sat(D, v), we can assume that T does not contain v, otherwise,
sat(T) ⊆ sat(D, v). Since T does not contain v, it only contains gates that are in
D \ v. Thus, T ∈ cert(D \ v), that is, τ ∈ sat(D \ v) by Proposition 6.4 again, that
is, sat(D) \ sat(D, v) ⊆ sat(D \ v).

We now prove that if D is deterministic, then we actually have sat(D) \
sat(D, v) = sat(D \ v). It only remains to prove the inclusion sat(D \ v) ⊆
sat(D) \ sat(D, v). Assume D is deterministic and let τ ∈ sat(D \ v). From
what precedes, we have in particular τ ∈ sat(D) and there even exists a certificate
T of D that does not contain v and such that τ ∈ sat(T). Assume toward a con-
tradiction that τ ∈ sat(D, v). This means that there exists T ′ ∈ cert(D, v) such
that τ ∈ sat(T ′), But since v is not in T , we have T 6= T ′ and τ ∈ sat(T)∩ sat(T ′).
Since D is deterministic, it contradicts Proposition 6.4.

A immediate consequence of Lemma 6.8 is that sat(D) = sat(D, v)∪ sat(D \v)
and even sat(D) = sat(D, v)] sat(D \ v) if D is deterministic. More generally, the
following holds:

Corollary 6.9. Let D be a DNNF, v1, . . . , vk a sequence of gates of D. Then it
holds that

sat(D) = sat(Dk) ∪
k−1⋃
j=0

sat(Dj , vj+1).

where D0 = D and Di = D \ {v1, . . . , vi} for all i ≤ k. Moreover, if D is
deterministic, then Dk is deterministic and

sat(D) = sat(Dk)]
k−1⊎
j=0

sat(Dj , vj+1).

148 CHAPTER 6. UNCONDITIONAL SEPARATIONS

Proof. The proof is by induction on k. The result holds for k = 0 since D0 = D.
Assume that the result holds at rank k, that is

sat(D) = sat(Dk) ∪
k−1⋃
j=0

sat(Dj , vj+1) (6.1)

and let vk+1 be a gate of D different from v1, . . . , vk. By Lemma 6.8, it holds that
sat(Dk) \ sat(Dk, vk+1) ⊆ sat(Dk \ vk+1) ⊆ sat(Dk). In other words, sat(Dk) =
sat(Dk \ vk+1) ∪ sat(Dk, vk+1), that is sat(Dk) = sat(Dk+1) ∪ sat(Dk, vk+1). In-
jecting this equality in Equation 6.1 yields the result at rank k + 1.

If D is deterministic, then by induction, Dk is also deterministic and

sat(D) = sat(Dk)]
k−1⊎
j=0

sat(Dj , vj+1). (6.2)

By Lemma 6.8, we have sat(Dk) \ sat(Dk, vk+1) = sat(Dk \ vk+1) = sat(Dk+1) and
Dk \ vk+1 = Dk+1 is deterministic.

In other words, sat(Dk) = sat(Dk+1)] sat(Dk, vk+1). Injecting this in Equa-
tion 6.2 yields the result at rank k + 1.

We say that a gate v in a DNNF D is n-balanced if n/3 ≤ |var(Dv)| ≤ 2n/3.
If D is in normal form and has sufficiently many variables, then we can find an
n-balanced gate. We have a small technicality in the lemma that follows. Our
elimination process disconnects gates of the DNNF and thus, some input may
become inaccessible from the output of the DNNF. The set of variables of the
DNNF do not change since we have define var(D) to be the variables of the circuit.
But if we denote s = output(D), then var(Ds) may be different from var(D) since
Ds contains only the subcircuit rooted in s. In particular, it contains only the
accessible inputs.

Lemma 6.10. Let D be a DNNF, s = output(D) and n ∈ N. If |var(Ds)| ≥ n/3
then there exists an n-balanced gate in D.

Proof. The proof is by induction on size(D). LetD be a DNNF such that |var(Ds)| ≥
n/3 where s = output(D). If |var(Ds)| ≤ 2n/3 then s is n-balanced and we are
done. Otherwise, we have |var(Ds)| > 2n/3. Let s1, s2 be the children of s. Since
var(Ds) = var(Ds1) ∪ var(Ds2), it holds that |var(Ds)| ≤ |var(Ds1)| + |var(Ds2)|.
Thus 2n/3 ≤ |var(Ds1)| + |var(Ds2)|. That is, either n/3 ≤ |var(Ds1)| or n/3 ≤
|var(Ds2)|. Assume without lost of generality that n/3 ≤ |var(Ds1)|. By induction,
there exists an n-balanced gate in Ds1 that is also an n-balanced gate of D.

Theorem 6.11. Let D be a DNNF in normal form. There exists a balanced rect-
angle cover R of sat(D) of size at most size(D). Moreover, if D is deterministic,
we can assume R to be disjoint.

6.2. SEPARATING CNF-FORMULAS FROM DNNF 149

Proof. Let n = |var(D)|. By iteratively applying Lemma 6.10, we construct a
sequence v1, . . . , vk of gates of D such that for every i ≤ k, vi is n-balanced in
Di−1 = D \ {v1, . . . , vi−1} and such that |var(Dk

s)| < n/3 where s = output(Dk).

By Corollary 6.9, it holds that:

sat(D) = sat(Dk) ∪
k−1⋃
j=0

sat(Dj , vj+1).

By Lemma 6.6, for every j < k, sat(Dj , vj+1) is a rectangle with underlying

partition (Vj , var(D) \ Vj) where Vj = var(Dj
vj+1) and since vj+1 is n-balanced in

Dj , we have sat(Dj , vj+1) is a balanced rectangle. Moreover, sat(Dk) depends
only on variables V = var(Dk

s) where s = output(Dk). By definition, we have
|V | < n/3. Let W ⊆ |var(D)| such that n/3 ≤ |V ∪W | ≤ 2n/3. We have that
sat(Dk) is a rectangle with underlying partition (V ∪W, var(D) \ (W ∪ V)) since
Dk ≡ (Dk ∧>W)∧>var(D)\(V ∪W) where >X is the 1-constant boolean function on
variables X.

If D is deterministic, then by Corollary 6.9, we have:

sat(D) = sat(Dk)]
k−1⊎
j=0

sat(Dj , vj+1).

Following the same argument as in the non-deterministic case, we conclude that
this is a rectangle cover of D. This rectangle cover is disjoint.

The proof of Theorem 6.7 follows from Theorem 6.11 and the fact that for
every DNNF D, there exists a DNNF D′ in normal form of size at most size(D)2

by Theorem 1.61.

6.2 Separating CNF-formulas from DNNF

Theorem 6.7 provides a nice tool for proving lower bounds in knowledge compi-
lation. Indeed, if one needs at least N balanced rectangles to cover a boolean
function f , then Theorem 6.7 says that there exists no DNNF D equivalent to f of
size smaller than

√
N . Many functions are known from communication complexity

for being hard to cover with balanced rectangles, that is, any rectangle cover of
such functions must be of size exponential in the number of its variables.

In this section, we separate unconditionally CNF-formulas from DNNF, that
is, we exhibit families of CNF-formulas for which every equivalent DNNF is of
size exponential in the size of the formula. We start by separating CNF-formulas
from DNNF by using only known lower bounds on monotone circuits [AB87]. This
yields a separation of CNF-formulas and DNNF but this gives no strong lower
bounds. We then show how we can lift known lower bounds from communication
complexity [Juk12] to separate CNF from DNNF. This technique provides a strong

150 CHAPTER 6. UNCONDITIONAL SEPARATIONS

exponential lower bound. In the last subsection, we provide a self-contained proof
of the separation of CNF-formulas and DNNF by showing a family of 2-CNF that
cannot be covered by a small number of balanced rectangles.

6.2.1 A weakly exponential lower bound

This bound relies on lower bounds on the size of monotone circuits for some
boolean functions. The key observation is that DNNF computing monotone func-
tions can be assumed to be negation free, that is, they could be seen as monotone
circuits.

Proposition 6.12. Let D be a DNNF computing a monotone boolean function.
There exists a DNNF D′ equivalent to D having only positive literals as input such
that size(D′) ≤ size(D).

Proof. We show that if D computes a monotone boolean function then replacing
an input of D labeled with a negative literal by the constant 1 does not change
the function computed by D. It is then sufficient to replace every input labeled
by a negative literal by 1 to get the desired negation-free D′.

Let u be an input gate labeled with the negative literal ¬x for x ∈ var(D)
and let D1 be the DNNF where u is replaced by constant 1. We claim that
sat(D) = sat(D1). Let τ ∈ sat(D). If τ(x) = 0, then τ(¬x) = 1 and we clearly
have τ ∈ sat(D1). If τ(x) = 1, then by Proposition 6.4, there exists T ∈ cert(D)
such that τ ∈ sat(T). Since τ(x) = 1 and T is equivalent to the conjunction of its
inputs, ¬x does not appear in the inputs of T , that is, u is not a gate of T . In
other words, T is also a certificate of D1, that is, τ ∈ sat(D1).

Now let τ ∈ sat(D1). Again, if τ(x) = 0 then we clearly have τ ∈ cert(D).
Otherwise assume τ(x) = 1 and let T ∈ cert(D1) such that τ ∈ sat(T). If u is
not in T then T is also a certificate of D and we have τ ∈ cert(D). Otherwise,
let T ′ be the certificate of D having the same gates as T . The only difference
between T and T ′ is that u is labeled by 1 in T and by ¬x in T ′. Let τ ′ be the
truth assignment such that τ ′ is equal to τ on every variable but x and such that
τ ′(x) = 0. It is readily verified that τ ′ satisfies T ′, that is, τ ′ ∈ sat(D). Since D is
monotone, we also have τ ∈ sat(D).

We now show how Proposition 6.12 can be combined with known lower bounds
on monotone circuits (boolean circuits without negation gates) to prove the desired
separation.

For 1 ≤ k ≤ n, let CLIQUE(n, k) denote the boolean function of
(
n
2

)
variables

representing the edges of an undirected n-vertex graphG such that CLIQUE(n, k) =
1 if, and only if, G contains a clique on k vertices. Owing to a result by Alon and
Boppana [AB87], every monotone circuit computing CLIQUE(n, k) for k ≤ n1/4

has size 2Ω(
√
n). This lower bound also applies to DNNFs computing CLIQUE(n, k)

since a minimum-size DNNF computing a monotone function is monotone by

6.2. SEPARATING CNF-FORMULAS FROM DNNF 151

Proposition 6.12, and CLIQUE(n, k) is a monotone function. This leads to a
weakly exponential separation of DNNFs from CNFs as follows.

The problem CLIQUE is in NP so there exists a non deterministic polynomial-
time decision algorithm. By the Cook-Levin theorem, given n, k, there exists
a CNF Fn of size polynomial in n that encodes the run of this algorithm on a
graph of size n. Let Dn be a DNNF computing Fn. They both have m =

(
n
2

)
variables encoding the graph G as for CLIQUE plus auxiliary variables encoding
the run of the algorithm. We can existentially project these auxiliary variables
in Dn without increasing its size by Proposition 1.54, resulting in a DNNF D′n
computing CLIQUE, thus, of size at least 2Ω(

√
n). Since size(D′n) ≤ size(Dn), we

also have size(Dn) ≥ 2Ω(
√
n) resulting in a (weak) separation of CNF and DNNF

since Fn is of size polynomial in n.

6.2.2 Lifting known lower bound from communication complexity

In [JS02], Jukna and Schnitger exhibit for all n, a boolean function JSn having
n2 variables and such that every balanced rectangle cover of JSn is of size at
least 2Ω(n2). Using Theorem 6.7 on JSn, we immediately get an exponential lower
bound on the size of any DNNF representing JSn. Moreover, we can show that
JSn can be represented by a CNF of size Ω(n2), thus it implies a strong exponential
separation of CNF-formulas and DNNF. In the following, we recall precisely the
result of [JS02] and show how to represent JSn as a small CNF in order to prove
the desired strong exponential separation.

For n ≥ 2, let Kn be the set of all 2-element subsets (edges) of {1, . . . , n}.
We view every subset of Kn as the edge set of a graph G whose vertex set is
{1, . . . , n}. We identify edges in Kn with boolean variables, so that the graph
G ⊆ Kn is encoded by the {0, 1}-assignment of Kn mapping a variable (edge) to
1 if and only if it is in the edge set of G.

A triangle T = {i, j, k} on n vertices is a set of three distinct integers smaller
than n. We say that a boolean function f : {0, 1}Kn → {0, 1} avoids a triangle
T if every graph with n vertices satisfying f does not contain the three edges
{i, j}, {i, k}, {j, k}. In other words, if τ ∈ sat(f), then τ({i, j}) = 0 or τ({i, k}) = 0
or τ({j, k}) = 0.

For a set A of triangles, let

JSAn : {0, 1}Kn → {0, 1} (6.3)

denote the function accepting exactly those graphs over {1, . . . , n} that avoid all
triangles in A.

Jukna and Schnitger show an exponential lower bound on the size of balanced
rectangle covers for functions as in (6.3).

Theorem 6.13 (Jukna and Schnitger). For every n, there exists a set An of
triangles of size O(n2) such that any balanced rectangle cover of JSAnn in (6.3)
has size 2Ω(n2).

152 CHAPTER 6. UNCONDITIONAL SEPARATIONS

The Jukna-Schnitger function JSn : {0, 1}Kn → {0, 1} is defined by

JSn = JSAnn (6.4)

where An is chosen by Theorem 6.13 (n ≥ 2).

Lemma 6.14. Let A be a set of triangles. The function JSAn is equivalent to the
CNF-formula:

FAn =
∧

(i,j,k)∈A

¬{i, j} ∨ ¬{i, k} ∨ ¬{j, k}.

Proof. The equivalence follows easily from the fact that a satisfying assignment τ
avoids a triangle (i, j, k) if and only if τ satisfies the clause ¬{i, j}∨¬{i, k}∨¬{j, k}.
Indeed, if τ avoids triangle (i, j, k), then it should set either {i, j} or {j, k} or {i, k}
to 0 and then it satisfies the clause. Reciprocally, if it satisfies the clause, it set
either {i, j} or {j, k} or {i, k} to 0, that is, it avoids the triangle (i, j, k).

Applying Lemma 6.14 with the family An of Theorem 6.13, it follows:

Corollary 6.15. For every n ≥ 2, there exists a monotone 3-CNF of size 3|An| =
Ω(n2) equivalent to JSn.

The exponential separation of CNF-formula and DNNF follows easily from The-
orem 6.13, Theorem 6.7 and Corollary 6.15. The consequences of such a sep-
aration are discussed later in Section 6.2.4. We first present another family of
CNF-formulas having no small DNNF with a complete proof of the lower bound.

6.2.3 A family of CNF having no small DNNF

In this section we exhibit a simple family of monotone 2-CNF requiring an expo-
nential number of balanced rectangle to be covered. This provides an alternative
simpler proof of the result of Jukna and Schnitger [JS02] presented above. Our
formulas are constructed from graphs by adding a constraint between two vari-
ables if and only if there is an edge between these variables in the graph. We rely
on an simple exponential lower bound on the ratio of vertex covers of a bounded
degree graph containing a fixed set S of vertices (Theorem 6.17). We use this
lower bound to prove that, for a well-chosen family of graphs, any balanced rect-
angle can cover only an exponentially small ratio of the total number of satisfying
assignments of the formula, giving the lower bound.

CNF and vertex covers A graph G = (V,E) naturally defines a monotone
2-CNF FG on variables V as follows:

FG =
∧

(x,y)∈E

(x ∨ y)

This CNF inherits the properties of the graph and it will be useful to prove lower
bounds. The solutions of FG exactly correspond to vertex covers of G: W ⊆ V

6.2. SEPARATING CNF-FORMULAS FROM DNNF 153

is a vertex cover of G if and only if 1W is a satisfying assignment of FG. In this
section, we prove a combinatorial result on the number of vertex covers of graphs
of bounded degree that will be crucial in the next section. Given a graph G,
we denote by VC(G) the set of vertex covers of G and given W ⊆ V , we denote
by VC(G,W) = {C ∈ VC(G) | W ⊆ C}, the set of vertex covers containing W .
The following result states that the number of vertex covers of G containing W
decreases exponentially in |W |. This result was first proven by Razgon in [Raz14]
but we present here a much shorter and elementary proof:

Lemma 6.16. Let G = (V,E) be a graph, W ⊆ V a non-empty subset of vertices
and v ∈W a vertex. Let d be the degree of v in G. We have:

(1 + 2−d)|VC(G,W)| ≤ |VC(G,W \ {v})|

Proof. We denote by K the set of vertex covers that contains W \ {v} but not v.
Clearly,

VC(G,W \ {v}) = VC(G,W)]K (6.5)

Let f be the mapping from VC(G,W) to P(N (v))×K defined for all C ∈ VC(G,W)
by

f(C) = (C ∩ N (v), (C \ {v}) ∪N (v)).

For C ∈ VC(G,W), we have C ∩ N (v) ⊆ N (v), that is C ∩ N (v) ∈ P(N (v)).
Moreover (C \ {v}) ∪N (v) is in K: it contains W \ {v} since W ⊆ C, and it does
not contain v by construction. Moreover it is a vertex cover of G. Indeed, let e
be an edge of G. If e does not contain v, then it is covered by a vertex u 6= v in
C. In particular, u ∈ (C \ {v}) ∪ N (v). Now if e contains v, then e = (u, v) with
u ∈ N (v). Thus e is also covered by (C \ {v}) ∪N (v).

Now we prove that f is an injection. Let C,D ∈ VC(G,W) be such that f(C) =
f(D) that is C ∩N (v) = D∩N (v) and (C \ {v})∪N (v) = (D\{v})∪N (v). Since
v ∈ C and v ∈ D, we deduce from the second equality that C \ N (v) = D \ N (v).
Thus C = (C ∩ N (v)) ∪ (C \ N (v)) = (D ∩N (v)) ∪ (D \ N (v)) = D.

Since f is an injection, we have

|VC(G,W)| ≤ |P(N (v))| · |K| = 2d|K|.

Plugging this inequality into Equation 6.5, we have:

|VC(G,W \ {v})| ≥ (1 + 2−d)|VC(G,W)|

By iteratively applying this lemma to a bounded degree graph, we get, as a
corollary, the following theorem:

Theorem 6.17. Let G = (V,E) be a graph of degree d and W ⊆ V a subset of
vertices. We have

|VC(G,W)| ≤
(2d

2d + 1

)|W |
|VC(G)|.

154 CHAPTER 6. UNCONDITIONAL SEPARATIONS

Proof. The proof is by induction on |W |. If W = ∅, the inequality is clear. Now
assume that W 6= ∅ and let v ∈W . By induction,

|VC(G,W \ {v})| ≤
(2d

2d + 1

)|W |−1
|VC(G)|.

Since the degree of v is smaller than d, by Lemma 6.16, we have

|VC(G,W)| ≤
(2d

2d + 1

)
|VC(G,W \ {v})|

thus

|VC(G,W)| ≤
(2d

2d + 1

)|W |
|VC(G)|.

Observe that
(

2d

2d+1

)
< 1. Theorem 6.17 thus establishes an exponential lower

bound on the proportion of vertex cover of a bounded degree graph G containing
a given subset of variables.

Rectangle covers of graph CNF Given a boolean function f : {0, 1}X → {0, 1}
and a rectangle r over X, we say that r is compatible with f if sat(r) ⊆ sat(f).
Observe that if R is a rectangle cover of f , then for all r ∈ R, r is compatible with
f . We give some property of rectangles compatible with graph CNF.

Lemma 6.18. Let G = (V,E) be a graph, (v1, v2) ∈ E and (V1, V2) a partition of
V such that v1 ∈ V1 and v2 ∈ V2. Let r be rectangle over V , compatible with FG
with underlying partition (V1, V2). There exists v ∈ {v1, v2} such that for every
τ ∈ sat(r), τ(v) = 1.

Proof. Assume there exists τ, τ ′ ∈ sat(r) such that τ(v1) = 0 and τ ′(v2) = 0. Since
r is a rectangle, τ ′′ := τ |V1 ∪τ ′|V2 ∈ sat(r) and τ ′′(v1) = τ ′′(v2) = 0. It follows that
τ ′′ does not satisfy FG since it does not satisfy the clause v1∨v2, which contradicts
the fact that r is compatible with FG.

Lemma 6.18 can be extended to the case where we have a large matching
between the two parts of the partition:

Lemma 6.19. Let G = (V,E) be a graph, (V1, V2) a partition of V and M a
matching between V1 and V2. Let r be a rectangle over V , compatible with FG with
underlying partition (V1, V2). There exists IM ⊆ V such that |IM | = |M | and for
every τ ∈ sat(r), for every v ∈ IM , τ(v) = 1.

Proof. Let e = (v1, v2) ∈M . Since M is between V1 and V2, we have v1 ∈ V1 and
v2 ∈ V2. By Lemma 6.18, there exists ve ∈ {v1, v2} such that for all τ ∈ sat(r),
τ(ve) = 1. Therefore, IM = {ve | e ∈ M} satisfies the fact that for all τ ∈ sat(r)
and v ∈ IM , τ(v) = 1. Moreover, since M is a matching, |IM | = |M |.

6.2. SEPARATING CNF-FORMULAS FROM DNNF 155

This gives the following useful corollary:

Corollary 6.20. Let G = (V,E) be a graph of degree d, (V1, V2) a partition of V
and M a matching between V1 and V2. Let r be rectangle over V , compatible with
FG with underlying partition (V1, V2). Then

|sat(r)| ≤
(2d

1 + 2d

)|M |
|sat(FG)|.

Proof. By Lemma 6.19, there exists IM ⊆ V such that |IM | = |M | and for every
τ ∈ sat(r), for all x ∈ IM , τ(x) = 1. Thus, the vertex cover of G corresponding to
τ contains IM . That is

|sat(r)| ≤ |VC(G, IM)|.

The desired bound follows by Theorem 6.17 since |VC(G)| = |sat(FG)|.

Balanced rectangle cover of expander graphs Corollary 6.20 states that
we have a rectangle r compatible with a bounded degree graph CNF and if there
exists a large matching between the two parts of the underlying partition of r,
then r covers only a small ratio of the total number of satisfying assignments of
the formula. This ratio is exponentially smaller in |M |.

Expander graphs are bounded degree graphs that are well connected. We show
that if we choose a balance partition in an expander graph, we are sure to find
a large matching across this partition. We then use it to derive an exponential
lower bound on the size of any balanced rectangle cover of such graph CNF.

We start by defining expander graphs. There are numerous different definitions
of expander graphs but we will only focus on the so-called boundary expansion.
We recall that N (S) is the open neighborhood of S that is, the set of vertices that
are neighbors of an element of S but not in S.

Definition 6.21. A graph G = (V,E) is a (c, d)-expander if it is of degree d and
for every S ⊆ V , if |S| ≤ |V |/2 then N (S) ≥ c|S|.

The property of expander graphs given in the following definition are the only
one that we need to prove the lower bound. Fortunately, such graphs exist:

Theorem 6.22 (Section 9.2 in [AS00]). For all d ≥ 3, there exists c > 0 and a
sequence of graphs {Gi | i ∈ N} such that Gi = (Vi, Ei) is a (c, d)-expander and
|Vi| → ∞ as i→∞ (i ∈ N).

Lemma 6.23. Let G = (V,E) be a (c, d)-expander with c ≤ 1 and let (V1, V2)
be a balanced partition of V . There exists a matching M between V1 and V2 with
|M | ≥ c|V |/(3d).

Proof. Since (V1, V2) is a partition of V , we have N (V1) ⊆ V2 and we can assume
w.l.o.g that |V1| ≤ |V |/2. Since G is a (c, d)-expander, |N (V1)| ≥ c|V1|. And since
(V1, V2) is balanced, we have |V1| ≥ |V |/3 that is |N (V1)| ≥ c|V |/3. We construct
a matching M between V1 and N (V1) ⊆ V2 of size at least c|V |/(3d).

156 CHAPTER 6. UNCONDITIONAL SEPARATIONS

We construct M iteratively. We start with M = ∅, A = V1 and B = N (V1).
Pick an edge (v1, v2) between A and B and add it to M . Remove v1 from A,
v2 from B and every vertices of B that are not connected to an element of A
anymore. Repeat until A or B is empty.

Since at each step we remove isolated vertices from B, if B is non-empty, then
we always have an edge between A and B to select. Thus we can repeat this
operations until A or B is empty. Moreover, since we delete the endpoint of the
selected edge at each step, we never add in M an edge that share vertices with
another edge of M . Thus M is a matching between V1 and N (V1).

Finally, observe that at each step, we only remove neighbors of v1 from B and
v1 from A. Thus, we remove one vertex from A and at most d from B since G
is of degree d. Thus, we iterate at least |N (V1)|/d ≥ |c|V |/(3d) times, that is,
|M | ≥ c|V |/(3d).

Theorem 6.24. Let G = (V,E) be a (c, d)-expander with c ≤ 1 and let R be a
balanced rectangle cover of FG. There exists a constant α > 0 such that

|R| ≥ 2α|V |.

Proof. Let α = log
(

1+2d

2d

)c/(3d)
= (c · log(1 + 2−d))/(3d) > 0. Let r ∈ R with

underlying balanced partition (V1, V2). By Lemma 6.23, there exists a matching
M between V1 and V2 of size at least c|V |/(3d). By Corollary 6.20, we have

|sat(r)| ≤ 2−α|V ||sat(FG)|.

SinceR is a rectangle cover of FG, we have
⋃
r∈R sat(r) = sat(FG) thus

∑
r∈R |sat(r)| ≥

|sat(FG). By the previous bound on sat(r), we have:

2−α|V ||R||sat(FG)| ≤ |sat(FG)|.

It follows that

|R| ≥ 2α|V |.

Using the connections between the number of balanced rectangle needed to
cover a DNNF of Theorem 6.7 and Theorem 6.24, we can answer several open
questions of [DM02] concerning the expressivity of DNNF:

Theorem 6.25. There exists a family (Fn)n∈N of monotone 2-CNF and a constant
α > 0 such that for every n, DNNF(Fn) > 2α|Fn|.

6.2. SEPARATING CNF-FORMULAS FROM DNNF 157

6.2.4 Corollaries

In this section we summarize the consequences of Theorem 6.25 on the knowledge
compilation map of Darwiche and Marquis [DM02]. We start by showing that
some queries cannot be supported efficiently by DNNF.

We start by showing that negating a DNNF may lead to an exponential blow-
up:

Corollary 6.26. There exists a family of DNNF (Dn)n∈N such that for every n,
DNNF(¬Dn) > 2Ω(size(Dn)).

Proof. We simply take the negation of the CNF family of Theorem 6.25. The
negation of a CNF is a DNF, thus it can be written as a DNNF of the same size as
the CNF. Negating this family again gives the lower bound.

We now show that DNNF does not support conjunction with only a polynomial
increase in size:

Corollary 6.27. There exists families (D1,n)n∈N , (D2,n)n∈N , (D3,n)n∈N and
(D4,n)n∈N of DNNF such that for every n,

DNNF(D1,n ∧D2,n ∧D3,n ∧D4,n) > 2size(D1,n)+size(D2,n)+size(D3,n)+size(D4,n).

Proof. Vizing’s theorem [Die12] states that for every graph G = (V,E) of degree
d, the there exists a coloring of its edges with at most d + 1 colors, that is, a
function λ : E → [d + 1] such that if e ∩ f 6= ∅, λ(e) 6= λ(f). Take a family
(Gn = (Vn, En))n∈N of expander graphs of degree 3 and for all n, let λn be a
4-coloring the edges of Gn. We define for i ≤ 4, Fi,n =

∧
λn({x,y})=i(x ∨ y) where

{x, y} ranger over En. Observe that Fi,n has a DNNF Di,n of size |En| since it is
a conjunction of disjoint variable disjunctions. But Fn = F1,n ∧ F2,n ∧ F3,n ∧ F4,n

has no small DNNF by Theorem 6.25.

Similarly, we can show that universal projections of DNNF may lead to an
exponential blow-up:

Corollary 6.28. There exists a family of DNNF (Dn)n∈N such that for every n,
there exist x1, . . . , xp ∈ var(Dn) such that DNNF(∀x1, . . . , xp, Dn) > 2Ω(size(Dn))

and p = O(log |size(Dn)|).

Proof. Given a CNF F =
∧m−1
i=0 Ci and Y = {y1, . . . , yk} with k = dlog(m)e, we

define the DNNF D =
∨m
i=0(y = i∧Ci) where y = i encodes the fact that y1 . . . yk

is the binary representation of i. It is easy to check that ∀y1, . . . , yk.D is equivalent
to F . The corollary follows by applying this transformation to the family of CNF
of Theorem 6.25.

We can also use Theorem 6.25 to derive new separation results that were left
open in [DM02]. A CNF formula F is said to be in prime implicate form, PI-form
for short, if:

158 CHAPTER 6. UNCONDITIONAL SEPARATIONS

• No clause C of F entails another. In other words, for every C,C ′ ∈ F , if
C 6= C ′ then C does not imply C ′.

• For every clause C entailed by F , there exists C ′ ∈ F such that C ′ entails
C.

It is readily verified that monotone 2-CNF are in PI-form. Thus Theorem 6.25
also separates DNNF from PI-form CNF:

Corollary 6.29. There exists a family (Fn)n∈N of 2-CNF in PI-form and a con-
stant α > 0 such that for every n, DNNF(Fn) > 2α|Fn|.

6.3 Separating structured DNNF from FBDD

For almost every compilation language, we have defined a structured version of it.
When we deal with linear language, the structure is usually given as an order on the
variables. This is the case with OBDD, which are FBDD plus a structural condition
that enforces the variables to appear in a fixed order. For treelike language such
as DNNF, the structural condition is a tree whose leaves are variables and which
forces some uniformity in the way the ∧-gates are partitioning the variables. It is
known that there exists boolean functions which are efficiently computable by an
FBDD but not by OBDD [Weg00]. The trick to separate such classes is to take the
disjunction of two functions that can be both easily computed by an OBDD but
each function uses two very different orders. The disjunction is easily computable
by an FBDD but not by an OBDD. This suggests that adding structures usually
lead to an exponential blow-up, even if the resulting function is just a disjunction
of two easily computable functions.

Proving lower bounds on structure DNNF relies on understanding precisely the
notion of vtree, which are harder to work with than order on variables. In [PD10b],
Darwiche and Pipatsrisawat proposed a framework to prove lower bounds on the
size of structured DNNF. Their framework can be understood as relating the size
of a structured DNNF and the size of rectangle cover of its satisfying assignments
where every rectangle in the cover share the same underlying partition.

In this section, we start by restating the result of Pipatsrisawat and Darwiche
in the framework of rectangle covers. We then use a connection between the size
of a matching across a partition of the variables of a graph CNF as in Section 6.2.3
and the number of rectangles needed to cover such functions to exhibit graph CNF
that are hard to compute for structured DNNF. We use such hard functions to
separate structured DNNF from FBDD. Such separation was already shown in the
PhD thesis of Pipatsrisawat [Pip10] which is not publicly available. We reprove
this result here using classical results in graph theory.

6.3.1 Rectangle covers of structured DNNF

In this section, we prove again the main theorem of [PD10b] connecting the size
of a structured DNNF and the number of rectangles needed to cover its satisfying

6.3. SEPARATING STRUCTURED DNNF FROM FBDD 159

assignments using a unique partition of the variables. More precisely, we prove
the following theorem:

Theorem 6.30. Let T be a vtree on variables X, t a vertex of T and D be a
structured DNNF form respecting T . There exists a rectangle cover R of D such
that |R| ≤ size(D) and such that for every r ∈ R, the underlying partition of r is
(Xt, X \Xt). Moreover, if D is deterministic, R may be assumed to be disjoint.

We follow the same proof structure as for Theorem 6.7. We start by showing
that each ∧-gate of a structured DNNF defines a rectangle:

Lemma 6.31. Let T be a vtree on variables X, t a vertex of T and D a structured
DNNF respecting T . Let v be a gate of D such that var(Dv) ⊆ Xt and such that
for every ancestor w of v, we have var(Dw) 6⊆ Xt. Then sat(D, v) is a rectangle
whose underlying partition is (Xt, X \Xt).

Proof. The proof is similar as the proof of Lemma 6.6. We only need to prove that
for every T ∈ cert(D, v), we have var(Tv) ⊆ Xt and var(T)\var(Tv) ⊆ X \Xt. The
fact that var(Tv) ⊆ Xt directly follows from the fact that var(Tv) ⊆ var(Dv) ⊆ Xt.
Now let x ∈ var(T) \ var(Tv). By definition, there exists an input u of T labeled
with variable x that is not in Dv. Let w be the least common ancestor of u and
v in T . It is necessarily a vertex of degree 2 in T , that is, w is an ∧-gate that is
an ancestor of v in D. By hypothesis, D respects T and var(Dw) 6⊆ Xt. Thus w
has to respect a vertex t′ of T that is an ancestor of t. Moreover, if t1, t2 are the
children of t′ in T , we have Xt1 ∩Xt2 = ∅, x ∈ Xt1 and Xt ⊆ Xt2 . That is x /∈ Xt.
Thus var(T) ∩Xt = ∅. In other words, var(T) ⊆ X \Xt.

The rest of the proof is similar to the proof of Lemma 6.6.

We now show that gates such as in Lemma 6.31 almost always exists in struc-
tured DNNF:

Lemma 6.32. Let T be a vtree on variables X, t a vertex of T and D a structured
DNNF respecting T . If Xt ∩ var(D) 6= ∅, then there exists a gate v in D such that
var(Dv) ⊆ Xt and such that for every ancestor w of v, we have var(Dw) 6⊆ Xt.

Proof. Since var(D) ∩Xt 6= ∅, there exists an input u of D labeled with a literal
` such that var(`) ∈ Xt. We have var(Du) ⊆ Xt. Thus the set S = {u | var(Du) ⊆
Xt} is not empty. We choose v to be an element of S that has no ancestor in
S.

We can now prove Theorem 6.30 in a similar fashion as Theorem 6.7.

Proof (of Theorem 6.30). By iteratively applying Lemma 6.32, we get a sequence
v1, . . . , vk of gates such that var(Di

vi+1
) ⊆ Xt, where Di = D\{v1, . . . , vi} for every

i < k and such that var(Dk) ∩Xt = ∅.

160 CHAPTER 6. UNCONDITIONAL SEPARATIONS

By Corollary 6.9, it holds that

sat(D) = sat(Dk) ∪
k−1⋃
i=1

sat(Di, vi+1).

By Lemma 6.31, for every i < k, sat(Di, vi+1) is a rectangle whose underlying
partition is (Xt, X\Xt). Moreover, Dk does not depends on variables in Xt. Thus,
Dk can be seen as a rectangle whose underlying partition is (Xt, X \Xt). We thus
have a rectangle cover of size at most size(D) of D for which each rectangle has
the same underlying partition (Xt, X \Xt).

If D is deterministic, then by Corollary 6.9 again,

sat(D) = sat(Dk)]
k−1⊎
i=1

sat(Di, vi+1).

This gives a disjoint rectangle cover of D for which each rectangle has the same
underlying partition (Xt, X \Xt).

6.3.2 Rectangle covers of graph CNF

In this section, we study the complexity of graph CNF for structured DNNF.
The key observation is that a vtree for a graph CNF can be seen as a branch
decomposition of the underlying graph. This connection allows us to construct
graphs having no small structured DNNF. From this, we derive a separation of
FBDD and structured DNNF.

We start by showing a relation between the existence of a large matching across
a partition of the vertices of a graph CNF and the number of rectangles needed to
cover the formula if they all have the same underlying partition:

Lemma 6.33. Let G = (V,E) be a graph, (X,Y) a partition of V and M an
induced matching of G across X and Y . The number of rectangles with underlying
partition (X,Y) needed to cover FG is at least 2|M |.

Proof. Let M = {(x1, y1), . . . , (xk, yk)} with xi ∈ X and yi ∈ Y for every i ≤ k.
For K ⊆ [k], we define τXK to be the truth assignment of X such that for all x ∈ X,
τXK (x) = 0 if and only if x = xi for some i ∈ K. Otherwise, we let τXK (x) = 1. We
define τYK to be the truth assignment of Y such that for all y ∈ Y , τYK (y) = 0 if and
only if y = yi for some i ∈ K. Otherwise, we let τYK (y) = 1. We let τK = τXK ∪ τYK .

For every K, it holds that τK |= FG. Indeed, for every e ∈ E, either e ∈ M ,
that is e = (xi, yi) for some i and the clause xi ∨ yi is satisfied by τ since if
i ∈ K then τK(yi) = 1 and if i /∈ K, τK(xi) = 1. If e /∈ M , then at least one
of its endpoint z is not in V (M) since M is an induced matching. It holds that
τK(z) = 1, thus the corresponding clause in FG is satisfied by τK .

We now show that if r is a rectangle with underlying partition (X,Y) such that
sat(r) ⊆ sat(FG) and such that τK ∈ sat(r), then for every K ′ ⊆ [k], τK′ ∈ sat(r)

6.3. SEPARATING STRUCTURED DNNF FROM FBDD 161

if and only if K ′ = K. Indeed, if there exists K ′ 6= K such that τK′ ∈ sat(r),
we would have τXK ∪ τYK′ ∈ sat(r) and τXK′ ∪ τYK ∈ sat(r) since r is a rectangle

with underlying partition (X,Y). Since K ′ 6= K, there exists i ∈ K∆K ′. Assume
without lost of generality that i ∈ K \K ′. Thus τXK ∪ τYK′ maps both xi and yi
to 0. Thus it is not a satisfying assignment of FG which contradicts the fact that
sat(r) ⊆ sat(FG).

Thus we need one rectangle with underlying partition (X,Y) for each K ⊆ [k]
to cover FG, that is, we need at least 2k rectangles with underlying partition
(X,Y) to cover FG.

If G has a high MIM-width, then for every branch decomposition of G, we
may find a large induced matching across the leaves of a subtree of the branch
decomposition and the other vertices of G. Combining this with Lemma 6.33 and
Theorem 6.30 yields the following:

Theorem 6.34. Let G = (V,E) be a graph and T a branch decomposition of G
of MIM-width k. Any structured DNNF respecting T and computing FG is of size
at least 2k.

Proof. Let D be a DNNF computing FG and respecting T . We show that D is of
size at least 2k. The tree T is a branch decomposition of G. Since MIM-width(T) =
k, there exists a vertex t of T and an induced matching M of size k across
Xt = L(Tt) and Yt = V \Xt. By Theorem 6.30, there exists a cover R of FG with
rectangles having the underlying partition (Xt, Yt) such that |R| ≤ size(R). Be-
sides, by Lemma 6.33, any rectangle cover of F with underlying partition (Xt, Yt)
is of size 2|M | = 2k. It means that |R| ≥ 2k and therefore size(D) ≥ 2k.

An immediate corollary of Theorem 6.34 is that high MIM-width graphs CNF
have no small DNNF:

Corollary 6.35. Let G = (V,E) be a graph of MIM-width k. Any structured
DNNF computing FG is of size at least 2k.

6.3.3 Separations

Corollary 6.35 gives numerous boolean functions that are hard for structured
DNNF but it is not sufficient separate FBDD from structured DNNF since these
functions are likely to be hard for FBDD as well. To construct a boolean function
that is easy for FBDD but hard for DNNF, we use a disjunction on simple functions
that all have a small structured DNNF (and even a small OBDD) but they all needs
a very different structure, making their disjunction hard for structured DNNF but
easy for FBDD. To do so, we start from a graph having a high MIM-width and
split it into disjoint matchings.

We start by illustrating this process on grids. Let V = {xi,j | 1 ≤ i, j ≤ 2n}
and G = (V,E) be the 2n× 2n. We split the edges of G into four graphs:

162 CHAPTER 6. UNCONDITIONAL SEPARATIONS

• G0 = (V,E0) with E0 = {(xi,2j+1, xi,2j+2) | 1 ≤ i ≤ 2n, 0 ≤ j ≤ n− 1},

• G1 = (V,E1) with E1 = {(xi,2j , xi,2j+1) | 1 ≤ i ≤ 2n, 1 ≤ j ≤ n− 1},

• G2 = (V,E2) with E2 = {(x2i+1,j , x2i+2,j) | 0 ≤ i ≤ n− 1, 1 ≤ j ≤ 2n}

• G3 = (V,E3) with E3 = {(x2i,j , x2i+1,j) | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ 2n}.

Observe that Gi is a matching of G for each i ≤ 3. We define En as:

En ≡ (¬l0 ∧ ¬l1 ∧ FG0) ∨ (l0 ∧ ¬l1 ∧ FG1) ∨ (¬l0 ∧ l1 ∧ FG2) ∨ (l0 ∧ l1 ∧ FG3)

Observe that the clauses of FG0 have disjoint variables. Thus it can be com-
puted by an OBDD of size O(n2) by testing that each clause is satisfied consec-
utively. The same is true for FG1 , FG2 and FG3 . This gives an FBDD for En of
size O(n2): test the value of l0 and l1. If l0 = 0 and l1 = 0, then plug the OBDD
for FG0 . More generally, if l0 = i and l1 = j, plug the OBDD for FGi+2j . The
resulting FBDD is of size O(n2) and computes En. We now show that there is no
small structured DNNF computing En:

Proposition 6.36. Let n ∈ N. Every structured DNNF computing En is of size
at least 2n/6.

Proof. Let T be a vtree for V . We show that every DNNF computing En and
respecting T is of size 2n/6 at least. We see T as a branch decomposition of G.
Since G is of tree width 2n, there exists by Lemma 1.29 a vertex t of T and a
matching M across L(Tt) and V \ L(Tt) of size 2n/3.

Let Mi = M ∩ Ei. Since M =
⋃
i≤3Mi, there exists i0 ≤ 3 such that |Mi0 | ≥

|M |/4 ≥ n/6. Moreover, Mi0 is an induced matching of Gi0 since Gi0 is itself
a matching, across L(Tt) and V \ L(Tt). Thus by Theorem 6.34, any DNNF
computing FGi0 and respecting T is of size at least 2n/6.

Let D be a DNNF computing En and respecting T . By conditioning D with
{l0 7→ i0 mod 2, l1 7→ bi0/2c} (see Proposition 1.53), we get a DNNF D′, respect-
ing T , computing FGi0 and such that size(D′) ≤ size(D). From what precedes,

2n/6 ≤ size(D′) that is 2n/6 ≤ size(D).

This leads to the following separation:

Theorem 6.37. There exists an infinite family of FBDD (Fn)n∈N such that for

all n ∈ N , any structured DNNF equivalent to Fn is of size at least 2Ω(
√

size(Fn)).

The construction we did on grids can be generalized to any graph: given a
graph G = (V,E) and a k-coloring w : E → [k] of the edges, one can consider the
graphs Gi = (V,Ei) where Ei = w−1(i) and the formula FG,w =

∨k
i=1(Eq(L, i) ∧

FGi) where L = {`0, . . . , `p} is a fresh set of selector variables with p = blog kc
and Eq(L, j) =

∧
i∈I `i ∧

∧
i/∈I ¬`i where j =

∑
i∈I 2i. That is Eq(L, j) = 1 if and

only if j =
∑p

i=0 `i2
i.

6.4. CONCLUSION 163

Since Gi is a matching (w is a coloring), FGi can be computed by a linear size
OBDD. Just test each clauses one after the other. Thus, FG,w can be computed
by a small FBDD: test each `i, and depending on the value of j =

∑p
i=0 `i2

i, plug
the OBDD for FGj .

Moreover, we have the following:

Lemma 6.38. If G = (V,E) is a graph of tree width p and w : E → [k] is a
k-coloring of the edges of G, then any structured DNNF computing FG,w is of size
at least 2p/(3k).

Proof. Let T be a vtree for V . We show that every DNNF respecting T and
computing FG,w is of size at least 2p/(3k). We see T as a branch decomposition
of G. Since G is of tree width p, by Lemma 1.29, there exists a vertex t of T
and a matching M of G across L(Tt) and V \ L(Tt) of size at least p/3. Let
Mi = Ei ∩M . Since M =

⋃
i≤kMi, there exists j ≤ k such that Mj is of size at

least |M |/(3k) ≥ p/(3k). Mj is an induced matching of Gj of size p/(3k) since Gj
is a matching. Thus by Theorem 6.34, any DNNF computing FGi and respecting T
is of size at least 2p/(3k). Since FGi is a projection of FG,w, any DNNF computing
FG,w and respecting T is of size at least 2p/(3k).

This lemma can be used to lift the bound of Theorem 6.37 to a strongly expo-
nential one: instead of using grids, one can use (c, d)-expanders, whose tree width
is linear in the number of edges [GM09]. Moreover, since they are of bounded
degree d, one can find a (d+ 1)-coloring of the edges by Vizing’s theorem [Die12].
Applying Lemma 6.38 to expander graphs with such coloring yields a strong sep-
aration of FBDD and structured DNNF.

Theorem 6.39. There exists an infinite family of FBDD (Fn)n∈N such that for
all n ∈ N , any structured DNNF equivalent to Fn is of size at least 2Ω(size(Fn)).

Theorem 6.39 separates one of the most general structures language from the
less general unstructured language we have introduce in Chapter 1. Thus, the
following separations directly follows from Theorem 6.39: (decision, deterministic)
DNNF are exponentially more succinct than their structured restrictions.

6.4 Conclusion

We conclude this chapter by giving perspectives and open questions. There is still
a few separations that are not known to hold unconditionally. One of the most
promising direction is to separate d-DNNF from DNNF. Indeed, Theorem 6.7 states
that d-DNNF can be covered with few disjoint rectangles. Thus, constructing a
family of DNNF that is hard to cover with disjoint rectangles would yield the
desired upper bounds. Sauerhoff gives in [Sau03] such lower bound. We explain
how his result can be used to separate d-DNNF from DNNF and what is left to

164 CHAPTER 6. UNCONDITIONAL SEPARATIONS

do. The Sauerhoff function Sn : {0, 1}n2 → {0, 1} is defined on the n × n matrix
X = (xij)1≤i,j≤n of variables by

Sn(X) = Rn(X) ∨ Cn(X) (6.6)

where Rn, Cn : {0, 1}n2 → {0, 1} are defined by

Rn(X) =
n⊕
i=1

modn3 (xi1, xi2, . . . , xin)

and Cn(X) = Rn(X>), where X> denotes the transpose of X, ⊕ denotes addition
modulo 2 and modn3 : {0, 1}n → {0, 1} is the function evaluating to 1 if and only
if the sum of its inputs is divisible by 3.

The Sauerhoff function has polynomial DNNF size:

Proposition 6.40. Sn has DNNF size O(n2).

Proof (Sketch). The functions Rn and Cn have OBDD of size O(n2), ordering the
variables by rows and columns, respectively; their disjunction has size O(n2).

A partition (X1, X2) of a set X is said to be strictly balanced if |X1| = |X2|±1.
A rectangle is strictly balanced if its underlying partition is strictly balanced.
Sauerhoff has proven in [Sau03] the following lower bound:

Theorem 6.41 (Sauerhoff). Any strictly balanced disjoint rectangle cover of the
Sauerhoff function Sn has size 2Ω(n).

Unfortunately, we cannot use Theorem 6.41 as it is to prove a separation of
DNNF and d-DNNF since Theorem 6.7 only gives upper bounds on the size of
balanced rectangle cover of d-DNNF. The proof of Theorem 6.41 in [Sau03] seems
to still work for the less restrictive notion of balanced rectangles. However, we
still have not check every details nor rewritten the proof, we thus let it as an open
question:

Open question 9. Separate d-DNNF and DNNF using the bound of Sauerhoff
and Theorem 6.7.

Another intriguing open question would be to separate d-DNNF from DNF.
The separation of DNF from dec-DNNF is already known [BLRS13] but the proof
uses a simulation of dec-DNNF by FBDD to leverage lower bounds on FBDD, which
make the proof hard to generalize since such a simulation cannot holds for d-DNNF
since dec-DNNF and d-DNNF are exponentially separated. It is not clear how far
rectangle covers techniques can be pushed in this case.

Open question 10. Separate DNF from d-DNNF or prove a that d-DNNF can
express DNF with a quasi-polynomial increase.

Index

certificate, 141

CNF-formula, 5, 40

clause, 5

k-CNF, 7

dual graph, 40

empty clause (⊥), 6

hypergraph, 41

incidence graph, 41

literal, 5

monotone, 7

primal graph, 40

satisfiable, 5

satisfying assignment, 5

signed incidence graph, 42

size, 7

communication complexity, 144

Complexity classes, 3

FP, 8

FPT, 10

NP, 3

P, 3

#P, 8

parametrization, 10

reduction, 4, 11

W[1], 11

XP, 10

constraint satisfaction problems, 106

counting complexity, 8

CSP, 106

DNF

DNF, 7

Graphs, 12

bipartite, 13

chord, 22

chordal bipartite, 22

clique, 13

connected component, 13

cycle, 12

decomposition, 15

branch decomposition, 18

clique width (cw), 17

elimination order for tree width,
16

MIM-width (mimw), 19

MM-width (mmw), 19

PS-width (psw), 58

rank-width (rw), 63

signed clique width (scw), 64

tree decomposition, 15

tree width (tw), 15

expander, 155

matching, 13

neighborhood diversity (nd), 67

path, 12

subgraph, 13

induced, 13

tree, 13

rooted, 13

rooted subtree, 14

vertex cover, 13

Hypergraphs, 14

acyclicity, 19

α-acyclicity, 20

α-elimination order, 20

Berge acyclicity, 20

β-acyclicity, 21

β-elimination order, 21

db-rootable, 54

disjoint branches, 45

165

166 INDEX

γ-acyclicity, 22
join path, 50
join tree, 20

connected component, 14
decomposition, 23

cover width (covw), 133
elimination order for covw, 133
generalized hypertree decomposi-

tion, 23
generalized hypertree width

(ghtw), 23
hypertree decomposition, 24
hypertree width (htw), 24
β-hypertree width (β-htw), 24

incidence graph, 14
path, 14
primal graph, 14
subhypergraph, 15

induced, 15

Knowledge compilation, 25
decision node, 31
decomposable, 30
determinism, 31
DNNF, 29, 30

decision (dec-DNNF), 31
deterministic (d-DNNF), 31
structured, 32

FBDD, 27
negation normal form (NNF), 29
OBDD, 28
query, 26
representation language, 26
structuredness, 32
succinctness, 26
transformation, 26
variable tree (vtree), 32

parametrized complexity, 9
PQ-trees, 51

RAM machine, 2
rectangle, 145

balanced, 145
cover, 145

disjoint, 145
resolution, 100

DP-resolution, 101
pigeon hole principle, 101
resolvent, 100
res(F, x), 100

SAT, 5
k-SAT, 7
#SAT, 8
shape, 74

generate, 75

weighted constraint, 107
#CSPdef , 108
generator, 123
size, 108
structural size, 108
support, 108

Bibliography

[AB87] N. Alon and R. B. Boppana. The monotone circuit complexity of
boolean functions. Combinatorica, 7(1):1–22, 1987. 149, 150

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Ap-
proach. Cambridge University Press, New York, NY, USA, 1st edition,
2009. 2, 6

[ACF10] J. M. Astesana, L. Cosserat, and H. Fargier. Constraint-based vehi-
cle configuration: A case study. In Tools with Artificial Intelligence
(ICTAI), volume 1, pages 68–75. IEEE, 2010. xiv

[ADM86] G. Ausiello, A. D’Atri, and M. Moscarini. Chordality properties on
graphs and minimal conceptual connections in semantic data models.
J. Comput. Syst. Sci., 33(2):179–202, 1986. 22

[AGCL12] C. Ansótegui, J. Giráldez-Cru, and J. Levy. The community structure
of sat formulas. In Theory and Applications of Satisfiability Testing,
pages 410–423. Springer, 2012. xi

[AGG07] I. Adler, G. Gottlob, and M. Grohe. Hypertree width and related hy-
pergraph invariants. European Journal of Combinatorics, 28(8):2167
– 2181, 2007. 24

[APT79] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for
testing the truth of certain quantified boolean formulas. Information
Processing Letters, 8(3):121–123, March 1979. xii, 9, 103

[AR11] M. Alekhnovich and A. Razborov. Satisfiability, Branch-Width
and Tseitin tautologies. Computational Complexity, 20(4):649–678,
November 2011. 103

[AS00] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, 2000.
155

[AS12] G. Audemard and L. Simon. Glucose 2.1: Aggressive-but reactive-
clause database management, dynamic restarts. In International
Workshop of Pragmatics of SAT (Affiliated to SAT), 2012. xi

167

168 BIBLIOGRAPHY

[BB12] J. Brault-Baron. A Negative Conjunctive Query is Easy if and only if
it is Beta-Acyclic. In Computer Science Logic - 21st Annual Confer-
ence of the EACSL, volume 16 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 137–151. Schloss Dagstuhl, 2012. 117

[BB14] J. Brault-Baron. Hypergraph acyclicity revisited. ArXiv e-prints,
March 2014. 19

[BCM15] J. Brault-Baron, F. Capelli, and S. Mengel. Understanding model
counting for beta-acyclic CNF-formulas. In 32nd International Sym-
posium on Theoretical Aspects of Computer Science, volume 30 of
LIPIcs, pages 143–156. Schloss Dagstuhl, 2015. xiii, xvi, 86

[BCMS14] S. Bova, F. Capelli, S. Mengel, and F. Slivovsky. Expander cnfs have
exponential DNNF size. CoRR, abs/1411.1995, 2014. xv

[BCMS15] S. Bova, F. Capelli, S. Mengel, and F. Slivovsky. On Compiling CNFs
into Structured Deterministic DNNFs. In Theory and Applications of
Satisfiability Testing, Lecture Notes in Computer Science, pages 199–
214. Springer International Publishing, September 2015. xv, xvi, 74,
85

[Ber85] C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd., 1985. 20

[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability
of acyclic database schemes. J. ACM, 30(3):479–513, July 1983. xii,
20, 21, 22

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal
of Computer and System Sciences, 13(3):335–379, 1976. 49, 50, 52

[BL15] P. Beame and V. Liew. New limits for knowledge compilation and
applications to exact model counting. In Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelligence, pages 131–
140, 2015. 144

[BLM07] M. L. Bonet, J. Levy, and F. Manyà. Resolution for Max-SAT. Arti-
ficial Intelligence, 171(8–9):606–618, June 2007. 106

[BLRS13] P. Beame, J. Li, S. Roy, and D. Suciu. Lower bounds for exact model
counting and applications in probabilistic databases. In Proceedings of
the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence,
2013. 32, 140, 164

[BLRS14] P. Beame, J. Li, S. Roy, and D. Suciu. Counting of query expres-
sions: Limitations of propositional methods. In Proc. 17th Interna-
tional Conference on Database Theory (ICDT), pages 177–188, 2014.
140

BIBLIOGRAPHY 169

[Bod93a] H. L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’93, pages
226–234. ACM, 1993. 16, 134

[Bod93b] H. Bodlaender. A tourist guide through treewidth. Acta Cybern.,
11(1-2):1–21, 1993. 15

[Bod06] H. L. Bodlaender. Treewidth: Characterizations, Applications, and
Computations, page 1–14. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Jun 2006. 16, 17

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24:293–318, 1992. 31

[BSW99] E. Ben-Sasson and A. Wigderson. Short proofs are nar-
row—resolution made simple. In Proceedings of the Thirty-first
Annual ACM Symposium on Theory of Computing, STOC ’99, pages
517–526. ACM, 1999. 103

[Buk11] L. Bukowski. 58, 2011. featuring Kacem Wapalek Anton Serra NAdir,
chez Oster Lapwass. iv

[Bü00] P. Bürgisser. Completeness and Reduction in Algebraic Complexity
Theory, volume 7 of Algorithms and Computation in Mathematics.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000. 141

[CDLS02] M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf. Preprocessing
of intractable problems. Information and Computation, 176(2):89 –
120, 2002. 26

[CDM14] F. Capelli, A. Durand, and S. Mengel. Hypergraph Acyclicity and
Propositional Model Counting. In Theory and Applications of Sat-
isfiability Testing - SAT 2014 - 17th International Conference, pages
399–414, 2014. xiii, xvi, 39, 44, 56, 66, 85

[CER91] B. Courcelle, J. Engelfriet, and G. Rozenberg. Graph Grammars and
Their Application to Computer Science, chapter Context-free handle-
rewriting hypergraph grammars, pages 253–268. Springer Berlin Hei-
delberg, 1991. 17

[CG10] H. Chen and M. Grohe. Constraint satisfaction with succinctly speci-
fied relations. Journal of Computer and System Sciences, 76(8):847 –
860, 2010. 107

[CGH09] D. Cohen, M. Green, and C. Houghton. Constraint representations
and structural tractability. In Principles and Practice of Constraint
Programming, pages 289–303, 2009. 107

170 BIBLIOGRAPHY

[CH96] N. Creignou and M. Hermann. Complexity of Generalized Satisfia-
bility Counting Problems. Information and Computation, 125:1–12,
February 1996. xii, 39

[Che05] H. Chen. Parameterized compilability. In International Joint Confer-
ence on Artificial Intelligence, volume 19, page 412, 2005. 26

[Che06] H. Chen. Logic column 17: A rendezvous of logic, complexity, and
algebra. CoRR, abs/cs/0611018, 2006. 107

[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique width of
graphs. Discrete Applied Mathematics, 101(1–3):77 – 114, 2000. 18

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM, 1971. xi, 4, 5, 6

[Dar01a] A. Darwiche. Decomposable negation normal form. J. ACM,
48(4):608–647, 2001. 30, 33, 34, 83

[Dar01b] A. Darwiche. On the tractable counting of theory models and its ap-
plication to truth maintenance and belief revision. Journal of Applied
Non-Classical Logics, 11(1-2):11–34, 2001. 31, 73

[DF12] R. G. Downey and M. R. Fellows. Parameterized complexity. Springer
Science & Business Media, 2012. 10

[DHJ+04] P. Durǐs, J. Hromkovič, S. Jukna, M. Sauerhoff, and G. Schnitger. On
multi-partition communication complexity. Information and Compu-
tation, 194(1):49–75, October 2004. 145

[Die12] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012. 12, 88, 157, 163

[DKL+15] H. Dell, E. J. Kim, M. Lampis, V. Mitsou, and T. Mömke. Complex-
ity and Approximability of Parameterized MAX-CSPs. In 10th Inter-
national Symposium on Parameterized and Exact Computation, vol-
ume 43 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 294–306. Schloss Dagstuhl, 2015. 67, 68

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, July 1962. xi

[DM02] A. Darwiche and P. Marquis. A Knowledge Compilation Map. Journal
of Artificial Intelligence Research, 17:229–264, 2002. xiv, xv, xvii, 25,
35, 139, 156, 157

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quantification
Theory. J. ACM, 7(3):201–215, July 1960. xi, xiii, xvi, 99, 101

BIBLIOGRAPHY 171

[Dur09] D. Duris. Acyclicité des hypergraphes et liens avec la logique sur les
structures relationnelles finies. PhD thesis, Université Paris Diderot -
Paris 7, 2009. 19

[Dur12] D. Duris. Some characterizations of γ and β-acyclicity of hypergraphs.
Inf. Process. Lett., 112(16):617–620, 2012. 22, 44, 45, 46

[ES03] N. Eén and N. Sörensson. An extensible sat-solver. In Theory and
applications of satisfiability testing, pages 502–518. Springer, 2003. xi

[Fag83] R. Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. Journal of the ACM, 30(3):514–550, 1983. xii, 19

[FG04] J. Flum and M. Grohe. The parameterized complexity of counting
problems. SIAM Journal on Computing, 33(4):892–922, 2004. 12

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-
Verlag New York Inc, 2006. 10, 11, 12, 15

[FMR08] E. Fischer, J. Makowsky, and E. Ravve. Counting truth assignments
of formulas of bounded tree-width or clique-width. Discrete Applied
Mathematics, 156(4):511–529, 2008. 42, 60, 64, 65

[FRRS09] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider. Clique-
width is np-complete. SIAM J. Discret. Math., 23(2):909–939, May
2009. 18

[Gav75] F. Gavril. A recognition algorithm for the intersection graphs of di-
rected paths in directed trees. Discrete Mathematics, 13(3):237–249,
1975. 49

[GLS99] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decomposi-
tions and tractable queries. In Proceedings of the eighteenth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 21–32. ACM, 1999. xii, 23, 24

[GLS01a] G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic
Conjunctive Queries. J. ACM, 48(3):431–498, May 2001. xii

[GLS01b] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions:
A survey. In Mathematical Foundations of Computer Science 2001,
pages 37–57. Springer, 2001. 23

[GM09] M. Grohe and D. Marx. On tree width, bramble size, and expansion.
J. Comb. Theory, Ser. B, 99(1):218–228, 2009. 88, 163

[GMS09] G. Gottlob, Z. Miklós, and T. Schwentick. Generalized hypertree de-
compositions: Np-hardness and tractable variants. J. ACM, 56(6),
September 2009. 23

172 BIBLIOGRAPHY

[GP04] G. Gottlob and R. Pichler. Hypergraphs in Model Checking: Acyclic-
ity and Hypertree-Width versus Clique-Width. SIAM Journal on
Computing, 33(2), 2004. 22, 57, 68, 88

[Gra96] E. Grandjean. Sorting, linear time and the satisfiability problem. An-
nals of Mathematics and Artificial Intelligence, 16(1):183–236, 1996.
2

[Hak85] A. Haken. The intractability of resolution. Theoretical Computer
Science, 39:297–308, 1985. 103

[HD05] J. Huang and A. Darwiche. DPLL with a trace: From SAT to knowl-
edge compilation. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 156–162, 2005. xvii, 73,
139

[HO08] P. Hliněný and S. Oum. Finding Branch-Decompositions and Rank-
Decompositions. SIAM Journal on Computing, 38(3):1012–1032, Jan-
uary 2008. 63

[JS02] S. Jukna and G. Schnitger. Triangle-freeness is hard to detect. Com-
binatorics, Probability & Computing, 11(6):549–569, 2002. 140, 145,
151, 152

[Juk12] S. Jukna. Boolean Function Complexity - Advances and Frontiers,
volume 27 of Algorithms and combinatorics. Springer, 2012. 149

[Kar72] R. M. Karp. Reducibility among combinatorial problems. Springer,
1972. xi

[KGS13] B. Kenig, A. Gal, and O. Strichman. A new class of lineage expres-
sions over probabilistic databases computable in p-time. In Scalable
Uncertainty Management, pages 219–232. Springer, 2013. 49

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997. 144

[Kro67] M. R. Krom. The Decision Problem for a Class of First-Order Formulas
in Which all Disjunctions are Binary. Mathematical Logic Quarterly,
13:15–20, January 1967. 103

[KS96] H. Kautz and B. Selman. Knowledge compilation and theory approx-
imation. Journal of the ACM, 43:193–224, 1996. 139

[Kus97] E. Kushilevitz. Communication complexity. Advances in Computers,
44:331–360, 1997. 144

[Lam10] M. Lampis. 18th Annual European Symposium, chapter Algorithmic
Meta-theorems for Restrictions of Treewidth, pages 549–560. 2010. 67

BIBLIOGRAPHY 173

[Lev73] L. A. Levin. Universal sequential search problems. Problemy Peredachi
Informatsii, 9(3):115–116, 1973. xi, 5, 6

[Lub87] A. Lubiw. Doubly lexical orderings of matrices. SIAM Journal on
Computing, 16(5):854–879, 1987. 22

[McC02] C. McCartin. Parameterized counting problems. In Mathematical
Foundations of Computer Science, pages 556–567. Springer, 2002. 12

[MMZ+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient sat solver. In Proceedings of the 38th
annual Design Automation Conference, pages 530–535. ACM, 2001. xi

[MP06] G. Malod and N. Portier. Characterizing Valiant’s Algebraic Com-
plexity Classes. In R. Královič and P. Urzyczyn, editors, Mathematical
Foundations of Computer Science 2006, number 4162 in Lecture Notes
in Computer Science, pages 704–716. Springer Berlin Heidelberg, Jan-
uary 2006. 141

[OD14a] U. Oztok and A. Darwiche. CV-width: A New Complexity Parame-
ter for CNFs. In 21st European Conference on Artificial Intelligence,
pages 675–680, 2014. 74

[OD14b] U. Oztok and A. Darwiche. On Compiling CNF into Decision-DNNF.
In Principles and Practice of Constraint Programming - 20th Interna-
tional Conference, CP 2014, pages 42–57, 2014. 74

[OPS13] S. Ordyniak, D. Paulusma, and S. Szeider. Satisfiability of acyclic and
almost acyclic CNF formulas. Theoretical Computer Science, 481:85–
99, 2013. xiii, 85, 99, 105, 106

[OS06] S.-i. Oum and P. Seymour. Approximating clique-width and branch-
width. Journal of Combinatorial Theory, Series B, 96(4):514–528,
July 2006. 63

[Pap94] C. Papadimitriou. Computational Complexity. Theoretical computer
science. Addison-Wesley, 1994. 2

[Par03] B. Pargamin. Extending cluster tree compilation with non-boolean
variables in product configuration: A tractable approach to preference-
based configuration. In Proceedings of the IJCAI, volume 3. Citeseer,
2003. xiv

[PD08] K. Pipatsrisawat and A. Darwiche. New compilation languages based
on structured decomposability. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI, pages 517–522,
2008. 32, 35, 73

174 BIBLIOGRAPHY

[PD10a] K. Pipatsrisawat and A. Darwiche. Top-down algorithms for con-
structing structured dnnf: Theoretical and practical implications. In
ECAI, pages 3–8, 2010. 73

[PD10b] T. Pipatsrisawat and A. Darwiche. A Lower Bound on the Size of
Decomposable Negation Normal Form. In Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, July 2010. xv, xvii, 140, 141, 158

[Per14] S. Perifel. Complexité algorithmique. Références sciences. Ellipses,
2014. 2

[Pip10] T. Pipatsrisawat. Reasoning with Propositional Knowledge: Frame-
works for Boolean Satisfiability and Knowledge Compilation. PhD
thesis, University of California Los Angeles, 2010. 140, 158

[PSS13] D. Paulusma, F. Slivovsky, and S. Szeider. Model Counting for CNF
Formulas of Bounded Modular Treewidth. In 30th International Sym-
posium on Theoretical Aspects of Computer Science, pages 55–66,
2013. xiii, 39, 68, 85

[PT87] R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973–989, 1987. 22

[Raz14] I. Razgon. No small nondeterministic read-once branching programs
for cnfs of bounded treewidth. In Parameterized and Exact Computa-
tion - 9th International Symposium, IPEC, pages 319–331, 2014. 153

[Rob65] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution
Principle. J. ACM, 12(1):23–41, January 1965. 99

[Rot96] D. Roth. On the hardness of approximate reasoning. Artificial Intel-
ligence, 82(1–2):273 – 302, 1996. xii, 39

[RP13] I. Razgon and J. Petke. Cliquewidth and knowledge compilation. In
Theory and Applications of Satisfiability Testing - 16th International
Conference, pages 335–350, 2013. 73

[SA09] L. Simon and G. Audemard. Predicting learnt clauses quality in mod-
ern sat solver. In Twenty-first International Joint Conference on Ar-
tificial Intelligence, 2009. xi

[Sau03] M. Sauerhoff. Approximation of boolean functions by combinatorial
rectangles. Theor. Comput. Sci., 1-3(301):45–78, 2003. 163, 164

[SBB+04] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. Combin-
ing component caching and clause learning for effective model count-
ing. Theory and Applications of Satisfiability Testing, 4:7th, 2004.
xii

BIBLIOGRAPHY 175

[Sch78] T. J. Schaefer. The Complexity of Satisfiability Problems. In Proceed-
ings of the Tenth Annual ACM Symposium on Theory of Computing,
STOC ’78, pages 216–226, New York, NY, USA, 1978. ACM. xii, 39

[Sch97] U. Schöning. Resolution proofs, exponential bounds, and Kolmogorov
complexity. In I. Pŕıvara and P. Ružička, editors, Mathematical Foun-
dations of Computer Science 1997, number 1295 in Lecture Notes in
Computer Science, pages 110–116. Springer Berlin Heidelberg, August
1997. 103

[Spi93] J. P. Spinrad. Doubly lexical ordering of dense 0–1 matrices. Infor-
mation Processing Letters, 45(5):229–235, 1993. 22

[SS10] M. Samer and S. Szeider. Algorithms for propositional model counting.
Journal of Discrete Algorithms, 8(1):50–64, 2010. xiii, 39, 60, 85, 131

[SS13] F. Slivovsky and S. Szeider. Model Counting for Formulas of Bounded
Clique-Width. In Algorithms and Computation - 24th International
Symposium, ISAAC, pages 677–687, 2013. xiii, 39, 74, 75, 76, 85

[Str10] Y. Strozecki. Enumeration complexity and matroid decomposition.
PhD thesis, Université Paris Diderot - Paris 7, 2010. 2, 34

[STV14] S. H. Sæther, J. Telle, and M. Vatshelle. Solving MaxSAT and #SAT
on structured CNF formulas. In Theory and Applications of Satisfia-
bility Testing, pages 16–31, 2014. xiii, xiv, xv, xvi, 39, 57, 58, 59, 61,
73, 74, 76, 80, 82, 85

[Sze04] S. Szeider. On fixed-parameter tractable parameterizations of SAT.
In E. Giunchiglia and A. Tacchella, editors, Theory and Applications
of Satisfiability, 6th International Conference, volume 2919 of LNCS,
pages 188–202. Springer, 2004. 85, 103

[Thu06] M. Thurley. sharpsat–counting models with advanced component
caching and implicit bcp. In Theory and Applications of Satisfiability
Testing, pages 424–429. Springer, 2006. xii

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566–579, July
1984. 20

[Urq87] A. Urquhart. Hard Examples for Resolution. J. ACM, 34(1):209–219,
January 1987. 103

[Val79a] L. Valiant. The Complexity of Enumeration and Reliability Problems.
SIAM Journal on Computing, 8(3):410–421, August 1979. 39

176 BIBLIOGRAPHY

[Val79b] L. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189 – 201, 1979. 8, 9

[Vat12] M. Vatshelle. New Width Parameters of Graphs. PhD thesis, Univer-
sity of Bergen, 2012. 19

[Weg88] I. Wegener. On the complexity of branching programs and decision
trees for clique functions. Journal of the ACM (JACM), 35(2):461–
471, 1988. 139

[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams.
SIAM, 2000. 27, 28, 29, 32, 139, 144, 158

[Žák84] S. Žák. An exponential lower bound for one-time-only branching pro-
grams. In Mathematical Foundations of Computer Science, pages 562–
566. Springer, 1984. 139

	Preliminaries
	Complexity
	Classical complexity
	The problem
	Counting complexity
	Parametrized complexity

	Graphs, hypergraphs and decompositions
	Generalities on graphs and hypergraphs
	Graph measures and decompositions
	Hypergraphs: acyclicity and decompositions

	Knowledge compilation
	Generalities
	Binary decision diagrams
	DNNF and its restrictions

	Structural restrictions of
	Structure of a -formula
	Primal and dual graphs
	Incidence graph and hypergraph
	Structural restriction of -formulas

	A first tractable class: disjoint branches
	Disjoint branches hypergraphs
	Model counting of disjoint branches formula
	Finding a disjoint branches decomposition

	Tractability frontier
	Parametrized polynomial time algorithms
	Hardness results
	Unknown complexity hardness

	Parametrized compilation of -formulas
	Compilation of bounded PS-width formulas
	Shapes
	Constructing a Structured d-DNNF

	Consequences of the compilation algorithm
	Compilation for other graph measures
	Solving

	Compilation of -acyclic formulas
	Incomparability with other measures
	Structure of -acyclic hypergraphs
	Orders
	Applications

	The compilation algorithm
	Compilation to dec-DNNF
	Corollaries

	Conclusion

	Weighted DP-resolution
	DP-Resolution
	A well-known algorithm for
	Resolution on [2]
	Resolution on bounded primal tree width
	Resolution on -acyclic formulas

	Weighted DP-resolution for -acyclic instances
	Encoding using CSP with default values
	Computing the weight of a chain
	Computing the weight of -acyclic instances
	Runtime of Algorithm 8

	Weighted DP-resolution on general instances
	Description of the algorithm
	Cover-width

	Conclusion

	Unconditional separations
	Preliminaries
	Certificates
	Rectangles and covers

	Separating -formulas from DNNF
	A weakly exponential lower bound
	Lifting known lower bound from communication complexity
	A family of having no small DNNF
	Corollaries

	Separating structured DNNF from FBDD
	Rectangle covers of structured DNNF
	Rectangle covers of graph
	Separations

	Conclusion

