Learning Rich Event Representations and Interactions
for Temporal Relation Classification

Onkar Pandit?, Pascal Denis' and Liva Ralaivola®

1- MAGNET, Inria Lille - Nord Europe, Villeneuve d’ Ascq, France
onkar.pandit@inria.fr, pascal.denis @inria.fr

2- QARMA, IUF, LIS, Aix-Marseille University, CNRS, Marseille, France,
Criteo Al Labs, Paris, France. liva.ralaivola@lif.univ-mrs.fr

Abstract. Most existing systems for identifying temporal relations between events
heavily rely on hand-crafted features derived from event words and explicit tempo-
ral markers. Besides, less attention has been given to automatically learning con-
textualized event representations or to finding complex interactions between events.
This paper fills this gap in showing that a combination of rich event representations
and interaction learning is essential to more accurate temporal relation classifica-
tion. Specifically, we propose a neural architecture, in which i) Recurrent Neural
Network (RNN) is used to extract contextual information for pairs of events, and ii)
a deep Convolutional Neural Network (CNN) architecture is used to find out intri-
cate interactions between events. We show that the proposed approach outperforms
most existing systems on commonly used datasets, while using fully automatic fea-
ture extraction and simple local inference.

1 Introduction

Recovering temporal information from texts is an essential part of language understand-
ing, and it has applications such as question answering, text summarization, etc.

Temporal relation identification is divided into two main tasks, as identified by Tem-
pEval campaigns [1]: i) the identification of EVENTSs and other time expressions (the
so-called TIMEX’s), and ii) the classification of temporal relations (or TLINKs) among
and across events and time expressions.

In this work, we concentrate on temporal relation classification, specifically EVENT-
EVENT relations, the most frequent type of TLINKs and arguably the most challenging
task. What makes this problem difficult is that, in the absence of explicit temporal con-
nectives (e.g., before, during), determining temporal relations depends on numerous
factors, ranging from tense and aspect, to lexical semantics and even world knowledge.
To address this issue, most state-of-the-art systems for EVENT-EVENT classification
[2, 3, 4] rely on manually-crafted feature sets directly extracted from annotations, com-
plemented with syntactic features, and semantic features extracted from static knowl-
edge bases like WordNet or VerbOcean. Such an approach is tedious, error-prone and
the semantics of events is poorly modelled due to lack of coverage of existing lexical
resources and blindness to event contexts.

We here propose a radically different approach where we altogether dispense with
hand-designed features, and instead learn task-specific event representations. These
representations include information both from the event words and its surrounding

context, thus giving access to the events’ arguments and modifiers. Plus, we also at-
tempt to learn the potentially rich interactions between events. Concretely, our learning
framework, as depicted in Fig.1, is based on a neural nework architecture, wherein: i)
Recurrent Neural Network (RNN) is used to learn contextualized event representations,
and ii) a deep Convolutional Neural Network (CNN) architecture is then used to acquire
complex, non-linear interactions between these representations.

This is one important step up
from the recent work of Mirza and
Tonelli [5], which simply use pre-
trained word embeddings for event
words and still have to resort to ad-
ditional hand-engineered features to
achieve good temporal classification
accuracy. We show our system based
on fully automatic feature extraction
and interaction learning outperforms
other local classifier systems.

e 2 Related Work

Fig. 1: Architecture of our proposed model. Recent temporal classification sys-
tems use machine learning tech-
niques due to the availability of annotated datasets. Earlier work[2] studied local mod-
els (i.e., making pairwise decisions on pairs of events) and used gold-standard features
extracted from TimeML annotations. State-of-the-art local models such as ClearTK [6]
relied on an enlarged set of predicted features, relying on a cascade of classifiers. A
downside of these local models is that they often generate globally incoherent tempo-
ral relations, in the sense that the symmetry and transitivity holding between relations
are not explicitly enforced at the document level. This problem has led to the devel-
opment of various global models, wherein temporal relation prediction is modeled as a
constrained optimization problem and using Integer Linear Programming [7, 8]. While
inference is global, model learning remains local. More recently, the CAVEO system
[3] proposes a multi-sieve approach in which several hand-coded rules and locally-
trained classifiers are applied in sequence, enforcing global coherence at each step.
The state-of-the-art method of [4] proposes a structured prediction approach, in which
global inference is also performed during training.

These methods all rely on manually engineered features, which fail to model the
semantics of events. To address this issue, [5] have evaluated the effectiveness of pre-
trained word embeddings of event head-word. They also demonstrated the potency of
basic vector combination schemes. However, representing events with word embed-
dings of only its head-word is not effective and important contextual information is
lost. Recently, [9] proposed an LSTM-based neural network architecture to learn event
representation. However, in that work, they lacked in finding complicated interaction
between events with only concatenation of event features. Also, they used syntactically
parsed trees as inputs to the LSTM which adds burden of pre-processing.

3 Method

Our proposed neural architecture (Fig.1), consists of three main components: Repre-
sentation Learning, Interaction Learning and Temporal Classification. In the Represen-
tation Learning part, a bag-of-words in a fixed size window centred on each event word
is fetched and fed into a RNN to get more expressive and compact representation of
events. As output of the RNN for each event, we get a fixed dimensional vector repre-
sentation. This vector representation is then used at the Interaction Learning stage: the
vector representation of each event is fed to a convolution layer and the final pooling
layer outputs an interaction vector between the events. A dense layer is used to combine
the interaction vector before obtaining a probability score for each temporal relation at
the Relation Classification section.

3.1 Context-based Event Representation

Each word is encoded in the event-word window with word embeddings [10]. As a
result, each word is assigned a fixed d-dimensional vector representation. Let ¢; be the
context length for each event head word. Thus we consider a window of 2¢; + 1 words
as input to the RNN. We represent this as matrix W = [Wi_¢, W+ Wiie | €
R(Za+1)xd Note that while considering event context we stop at sentence boundary,
also special symbols are padded if context is less than ¢;. The relation between input
and output of RNN at each time ¢ is given as follows,

he = on(Qrwe + Uphi—1 + by))

Oy = Jo(czoht + bo) (2)
where, w; is the word embedding vector provided at each time step, h; is hidden layer
vector and oy is output vector.), U, and b are weight matrices and vector; o, and o,
are activation (ReLU) functions. For a given event, the o:y., output vector captures
a complete information about the whole sequence. The outputs of the RNN networks
give compact representations O 4 and O p of the events.

3.2 Interaction Learning

A deep Convolution Neural Network (CNN) is employed to learn nonlinear interac-
tions from O 4 and Op. It is comprised of three convolution and pooling layers placed
alternatively. We feed concatenated learned event representations
Oap =048 05 3)

to the first convolution layer, where & is the concatenation operation. Each convolution
layer ¢ use filters f;, after what we compute a feature map

mtf =o(fi.0ap+0b;) Vke{1,2,3}, (4)
where f;, b; are filters and bias matrices respectively and o is the ReLLU activation. The
output is down-sampled with a max-pooling layer to keep prominent features intact.
The output of the last layer gives the interaction between A and B (p is max-pooling).

Ocomb = P(m?) (5)

Pair Classification Temporal Awareness

Systems
P R F1 P R F1

wa @ wp 393 342 355 27.1 458 34.1
O4@®Op 357 389 372 36.5 359 36.2
DCNN (wa,wp) 39.3 36.8 38.1 426 352 385
MLP(O4,0p) 40.7 389 39.7 39.6 387 39.1
CNN(Oa,OBp) 394 419 40.6 412 383 397
DCNN(O4,0B) 424 413 418 469 415 44.1
ClearTK - - - 33.1 350 341
LSTM 38.7 43.1 405 346 517 414
Sp - - - 69.1 655 672

Table 1: Results of baseline and state-of-the-art systems

3.3 Classification

The combined O, vector is fed to a fully connected dense layer, followed by a soft-
max function to get a probability score for each temporal relation class. The temporal

relation class is determined according to the maximum probability as
exp(h, O
arg max —. p(h; Ocom) (6)
o
ieiln} Z eXp(h;'rOcomb)
5=1
where 7 is the number of temporal relations.

4 Experiments

4.1 Datasets and Evaluation

Relations Following recent work [4], reduced set of temporal relations :after, before,
includes, is_included, equal, vague are considered for classification.

Evaluation Complying with common practice, system’s performance is measured
over gold event pairs (pairs for which relation is known). Our main evaluation measure
is the Temporal Awareness metric [11], adopted in recent TempEval campaigns. We
also used standard precision, recall, and F1-score to allow direct comparison with [5].
Datasets We used TimeBank(TB) and AQUAINT (AQ) dataset for training, TimeBank-
Dense(TD) for development and Platinum (TE3-PT) dataset for testing. These are the
most popular datasets used for the task which have been provided at TempEval3[1].

4.2 Training Details

We used pre-trained Word2 Vec vectors from Google!. Each word in the context window
of event is represented with this 300-dimension vector. Hyperparameters were tuned on
the development set using a simple grid search. Considered values are: window size (¢;

https://code.google.com/archive/p/word2vec/

:3,4,5), number of neurons at RNN (#RNN:64,128,256,512), number of filters for CNN
(#filters: 32,64,128,256), dropout at input (0.1,0.2,0.3,0.4). We also explored a number
of optimization algorithms such as AdaDelta, Adam, RMSProp and Stochastic Gradient
Descent(SGD). Optimal hyper-parameter values are ¢; = 4,#RNN =256, #filters = 64,
dropout = 0.4 and Adam optimizer.> Once we got the optimal parameter values from
the validation set, we re-trained multiple models with 50 different seed values on the
combined training and development data and report the averaged test performances.

4.3 Comparison to Baseline Systems

We first compare our RNN-Deep CNN approach to various baseline systems to assess
the effectiveness of the learned event representations. We also want to disentangle the
respective role of the representation learning and interaction learning components.
Baseline systems First, we re-implemented the system of Mirza and Tonelli [5]
(noted w4 @ wp). Specifically, we used scikit-learn Logistic regression module, us-
ing l5 regularization. Word embeddings w4 and wp of events A and B, obtained from
Word2Vec, were simply concatenated (as this is their best performing system). As addi-
tional baselines, we used our Representation Model to learn O 4 and Op, but combined
these vectors with simple concatenation (O4 © Op). We did representation learning
over pre-trained word embeddings of events to get CN N (w4, wg). In another setting
learned representation is combined with simple multi-layer perceptron (MLP) and with
single-layer convolution (CNN).

Results Table 1 summarizes the performance of these different systems in terms of
pairwise classification accuracy and temporal awareness scores. Looking at the first two
rows of the table, we see that, as hypothesized, contextually rich features outperform
pre-trained event head word embeddings when combined with simple concatenation,
both in pairwise classification and in temporal awareness. The gains are more substan-
tial in the latter metric, with a 2.1 absolute F1 increase. Comparing CNN (w4, wp)
to wy P wp, we also see that allowing for richer, non-linear interactions between
event representations also results in important performance gains in pairwise F1 and
temporal awareness F1. Leveraging both contextualized event representations learn-
ing and interaction learning yield the best scores overall, cf. CNN(O4,0Op) and
DCNN(O4,0pg), which shows their complementarity. There, the Deep CNN out-
performs the single-layer CNN, with F1 scores of 44.1 and 39.7, respectively.

4.4 Comparison with State-of-the-art

Finally, we now compare the performance results of our best system, DCNN (O 4, Op),
with recently proposed systems : ClearTK [6], which was the winner of the TempE-
val 2013 campaign, the structured prediction (SP) approach[4], which is the best system
to date and recently proposed LSTM based system [9]. Our system(Table 1) delivers
substantial improvements over ClearTK and performs very well compared to LSTM
based system. However our system lags in comparison with SP as it relies only on sim-

2We tried different unidirectional and bidirectional variations of RNN-LSTM and GRU, but RNN gave
the best development results.

ple local inference opposed to global inference at learning step in SP. We intend to do
global inference with our system as well for more appropriate comparison.

5 Conclusion and Future Work

In this work, we proposed RNN based neural architecture to learn event representation
and CNN model to get interaction between events. A new perspective towards combi-
nation of events proved to be effective in getting compound interactions. We compared
result of our system with multiple baselines and state-of-the art systems and shown
effectiveness. We now plan to learn features as well as interaction while considering
global consistency in the relations of event pairs.

Acknowledgement

This work was supported by ANR Grant GRASP No. ANR-16-CE33-0011-01, as well
as by a grant from CPER Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020.

References

[1] N. UzZaman, H. Llorens, L. Derczynski, J. Allen, M. Verhagen, and J. Puste-
jovsky. Semeval-2013 task 1: Tempeval-3: Evaluating time expressions, events,
and temporal relations. ACL, 2013.

[2] I. Mani, M. Verhagen, B. Wellner, C. M. Lee, and J. Pustejovsky. Machine learn-
ing of temporal relations. ACL, 2006.

[3] N. Chambers, T. Cassidy, B. McDowell, and S. Bethard. Dense event ordering
with a multi-pass architecture. TACL, 2014.

[4] Q.Ning,Z. Feng, and D. Roth. A structured learning approach to temporal relation
extraction. EMNLP, 2017.

[5] P. Mirza and S. Tonelli. On the contribution of word embeddings to temporal
relation classification. COLING, 2016.

[6] S. Bethard. ClearTK-TimeML: A minimalist approach to tempeval 2013. ACL,
2013.

[7] P. Bramsen, P. Deshpande, Y. K. Lee, and R. Barzilay. Inducing temporal graphs.
EMNLP, 2006.

[8] P.Denis and P. Muller. Predicting globally-coherent temporal structures from texts
via endpoint inference and graph decomposition. IJCAI, 2011.

[9] Y. Meng, A. Rumshisky, and A. Romanov. Temporal information extraction for
question answering using syntactic dependencies in an Istm-based architecture.
CoRR, abs/1703.05851, 2017.

[10] T. Mikolov, I. Sutskever, K. Chen, G. S Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. NIPS, 2013.
[11] N. UzZaman and J. F. Allen. Temporal evaluation. ACL, 2011.

