
Lexical Ambiguity as Type Disjunction

Nicholas Asher
Philosophy Department

The University of Texas at Austin
1, University Station C3500

Austin, TX 78712
USA

nasher@mail.utexas.edu

Pascal Denis
Linguistics Department

The University of Texas at Austin
1, University Station B5100

Austin, TX 78712
USA

denis@mail.utexas.edu

Abstract
Phenomena such as logical polysemy and logical
metonymy have recently received a precise treat-
ment by using a rich composition logic that assumes
complex types and rich introduction and exploita-
tion rules for manipulating them (Asher and Puste-
jovsky, 2005). An interesting question is whether
this approach can be extended and applied to other
lexical semantics phenomena, in particular to con-
trastive ambiguity (aka homonymy). This paper en-
riches Asher and Pustejovsky’s Type Composition
Logic with another type of complex types, namely
disjunctive types, and accompanying exploitation
and introduction rules to model homonymy. This
results both in a more elegant and economical treat-
ment of homonymy and in a more general account
of lexical ambiguity.

1 Introduction
It has long been noted that the problem of polysemy
is not a uniform one. In particular, a distinction
is often drawn between homonymy (or contrastive
polysemy) and logical polysemy (or complementary
polysemy). Informally, the former designates words
that have two (or more) unrelated senses; the fact
that these different words share the same form is
purely accidental. When logically polysemous ex-
pressions are concerned, however, the two (or more)
word senses are closely related: they express dif-
ferent “facets” of the same meaning. Common ex-
amples of homonymy include words like bank or
pitcher. Thus, a word like bank for instance denotes
either a financial institution or a strip of land along
a river. Examples of logical polysemy are book or
lunch. Thus, a word like book either denotes a phys-
ical object or its informational content.

How do we tell homonymy and logical polysemy
apart? Among the different tests have been pro-
posed, few are really conclusive. A pretty reliable
test is so-called copredication (Pustejovsky, 1995).
Copredication occurs when the same term has si-
multaneous predications selecting for different se-

mantic types. Homonyms are usually semantically
infelicitous in such contexts, whereas polysemous
words tend to be acceptable. This is illustrated in
the following examples:

(1) a. # The bank specializes in IPO and is
being quickly eroded by the river.

b. # The pitcher was being filled up with
Hoegarden and hit a home run.

(2) a. The book was 800 pages long but turned
out to be very interesting.

b. Lunch was delicious but took for ever.

The contrast observed in these examples obviously
calls for different treatments of (logical) polysemy
and homonymy. Following (Pustejovsky, 1995) and
(Asher and Pustejovsky, 2005), one can account for
examples (2) by assuming that polysemous nouns
like book receive a dot-type, i.e. a complex type
with two (or more) constituent types. These con-
stituent types correspond to different aspects of the
object and thus license predications over either of
the two dot element types.

While a lot of work has been devoted to the treat-
ment of polysemy (e.g., in the context of the Gen-
erative Lexicon), the representation of homonymy
has received comparatively little attention. The re-
ceived view is the sense-enumeration view (Puste-
jovsky, 1995) whereby one posits different word
senses. These different senses are often taken to
correspond to different lexical entries, and at least
to different semantic representations. So, a word
like bank for instance would contribute different
bits of logical form, depending on its selected sense
(e.g., λxbank 1(x), . . . , λxbank n(x)). The question
then comes to the problem of selecting an appropri-
ate sense for a given context of predication (which
we understand generally as the application of some
predicate to some argument). A type free system
would have to test the consistency of the lexical
meanings involved in the predication, and if such
meanings are associated with a large body of back-
ground information the consistency test could be in

principle undecidable. A lexicon with a semi-lattice
of simple types on the other hand, would avoid oner-
ous consistency tests by precompiling these into the
type system itself, but there is still the matter of
checking different lexical entries for truly ambigu-
ous expressions. Our view pushes the type driven
approach one step further. We will move the ambi-
guity to the level of the semantic types (so to speak),
and consider that homonymous words introduce an-
other type of complex types: disjunctive types.

2 Many potential complex types
In general, the approach provided to lexical in-
formation by Asher and Pustejovsky supposes that
composition, the process of putting together repre-
sentations of lexical meanings to arrive at a logi-
cal form, is very strongly type-driven and that a
great deal of crucial lexical information is stored
in the type system for the lexicon. In particular,
it is type mismatch that drives processes of logical
metonymy, which is represented via a calculus of
type shifting rules, each one corresponding to some-
thing like a proof rule. This approach takes its inspi-
ration from the famous Curry-Howard isomorphism
(Howard, 1980) between types and formulas, and
proofs and operations on lambda terms. The sim-
ple application of a predicate to an argument is here
a sort of type exploitation rule that corresponds to
modus ponens: we take the predicate whose type is
the functional type α −−◦ β1 and apply it to its argu-
ment of type α to get a result of type β.

Of course, understanding application in this way
is altogether familiar from the work of Church and
Montague. But a Curry-Howard inspired perspec-
tive leads us to ask some interesting questions. We
expect that in a natural deduction style proof sys-
tem for intuitionistic logic (which is what the Curry
Howard isomorphism is based on), each logical op-
erator should have both introduction and elimina-
tion or exploitation rules. The lexical use of types
and proofs hasn’t led to a system so far where each
complex type forming operator which corresponds
in the Curry Howard way of thinking to a connec-
tive or quantifier has both an introduction and an
elimination rule; for instance, though the rule of ap-
plication corresponds as we have just seen to a con-
ditional elimination rule or MP, what would consti-
tute an introduction rule for −−◦? One thing that
comes to mind here is the lexical process, according
to which names of individuals become predicates or
verbs as in:

1We follow (Asher and Pustejovsky, 2005) in using −−◦ as
our type forming operator to keep it distinct from the object
language conditional.

(3) a. He’s no Einstein.

b. Can we pegasize that name away?

c. Every Lex Luthor has his comeuppance.

The type shifting operation of (Partee and Rooth,
1983) that lifts expressions of type e to type (e −
−◦ t) −−◦ t can also be modeled as a (two step) −−◦
introduction rule. From our perspective such type
shifting should be expected and needed —e.g., for
generalized conjunctions like Pat and three bears.

As soon as lexical theory becomes more
complex—e.g., it admits the sort of rich represen-
tations that are at the core of GL, then the matter
of constructing precise proof rules corresponding to
operations on types becomes pressing. The use in
GL of complex operations has largely been under-
constrained and under-specified formally. Exploit-
ing the correspondence to construct precise proof
rules constitutes one way to get a precise idea con-
cerning the nature of the lexical operations that GL
postulates. It will be clear, for instance, that the
introduction and elimination rules for types cor-
responding to dot objects (•) and qualia (⊗) no
longer correspond to anything in standard intuition-
istic logic. Nevertheless, once these rules are formu-
lated we can ask questions about the logical nature
of the system, and we can determine complexity re-
sults for the logic. We’ll review a couple of these
rules below.

The question that motivates this paper is, how
does homonymy fit into the type calculus? Can we
extend the lexical information as types scheme to
take account of other phenomena in lexical seman-
tics?

3 The type composition logic (TCL)
Before we answer these questions let us have a
closer look at the composition logic proposed in
(Asher and Pustejovsky, 2005). We start with the
type definitions:

(4) a. P T: e the general type of
entities and t the type of truth values.
Below σ, τ range over all simple types,
the subtypes of e as well as e and t.

b. F T: If σ and τ are types,
then so is (σ −−◦ τ)

c. D T: If σ and τ are types, then so
is (σ • τ)

d. P T: If σ and τ1, . . . τn are
types, then so is (σ ⊗R1,...Rn (τ1 . . . τn))
(where Ri is a relation over (σ, τi)).

Such a typed composition logic has several motiva-
tions. First of all, a typed composition logic seems
needed just to account for basic facts of predication.
For instance, a semantic type mismatch is a standard
way to explain semantic anomalies like:

(5) # The beer carried the table.

(6) # The quick house

Of course, some type mismatches can become good
when we avail ourselves of metaphorical interpreta-
tions. Some authors (Asher and Lascarides, 2001)
have argued that it’s precisely the type mismatch in
predication that triggers the seach for a metaphori-
cal interpretation. Second, complex types appear to
be at work in a wide array of phenomena. Thus,
GL’s account of copredication relies on the exis-
tence of •- or ”dot” types. As for dependent or ⊗-
types, these play an important role in (Pustejovsky,
2001) definition of artifacts as well as in (Asher and
Denis, 2004) analysis of the genitive construction.

We now turn to the basic operations on these
types.

(7) Application:

λxφ[t], c(x:α, t:α)
φ[t/x], c

The Application rule is the classical function appli-
cation augmented with type contexts; it corresponds
in terms of the type calculus itself to a rule of modus
ponens for −−◦.

This first rule is accompanied by another rule that
allows contexts to be combined and updated:

(8) Merging Contexts:

λxφ, c[t, c′]
λxφ[t], (c∧c′)

The last rule, Type Accommodation, complements
the Application rule by allowing type unification
rather than simple type matching:

(9) Type Accommodation:

λxφ[t], c(x:α, t: β), α u β , ⊥
λxφ[t], c ∗ (x, t:α u β)

One thing not provided by Asher and Pustejovsky
is a notion of greatest lower bound that generalizes
to the complex types. To remedy this defect, let us
define:

• α u∗ β = α u β, where α, β are simple types.

• (α −−◦ β) u∗ (γ −−◦ δ) = (α u∗ γ) −−◦ (β u∗ δ)

• (α • β) u∗ (γ • δ) = (α u∗ γ) • (β u∗ δ)

• (α ⊗ (β1, . . . βn) u∗ (γ ⊗ (δ1 . . . δn) = (α u∗ γ) ⊗
((β1 u

∗ δ1, . . . βn u
∗ δn)

From now on, we take u in our rules to reflect this
generalized greatest lower bound.

Finally, here are the rules for •-Introduction
and •-Exploitation. We provide one version of •-
Exploitation which we express with a pair of substi-
tutions. They look like this χ{ φ

ψ
}, where φ uniformly

replaces every occurrence of ψ in χ. One other bit
of notation has to do with the square brackets; they
represent an application that hasn’t yet taken place.
That is with P[x] we haven’t yet applied the prop-
erty that P stands for to x; similarly the lambda ex-
pression with its typing context, [ψ, c′] hasn’t yet
been integrated with the lambda expression with its
context on its left. We enclose the complex expres-
sion that is to apply to [ψ, c′] in curly brackets to
help for readability. Below φ(P[x]) represents the
fact that the property variable P is to apply to x in
the expression φ, and ψ:

[α′

β′
]

−−◦ γ represents the
fact that ψ is typed either as α−−◦ γ or as β −−◦ γ. In
this rule and the following rules concerning •-types,
we will assume that α u α′ , ⊥, β u β′ , ⊥.

Here is the first exploitation rule:

(10) •-Exploitation (•E):

{λPφ(P(x)), c(P: (α • β) −−◦ γ)}[ψ, c′(ψ: [α
′

β′] −−◦ γ)], head(ψ)

{λPφ[
∃v(∆(φ,x)[v

x]∧O-Elab(x,v))
∆(φ,x)], c ∗ (x: [α u α

′

β u β′], v: α • β)}[ψ, c′]

This rule does two things; it adds material to the
logical form of the lambda term to which it applies
and it also revises the type contexts to reflect a shift
in the typing of some of the variables in the altered
lambda term. If we look just at what happens to the
type for x, •-Exploitation corresponds to something
like a conjunction elimination rule for •-types, but
it is more complicated than that since it forces us
in reintroduce a variable of •-type. It is in fact an
ampliative rule.

Here is the basic •-Introduction rule. Once again,
we assume α u α′ , ⊥ and β u β′ , ⊥.

(11) •-Introduction (•I):

{λPφ(P[x]), c(P: [α
′

β′] −−◦ γ)}[ψ, c′(ψ: (α • β) −−◦ γ)], head(ψ)

{λPφ[
∃v(∆(φ,x)[v

x]∧O-Elab(v,x))
∆(φ,x)], c ∗ (v: [α u α

′

β u β′], x : α • β)} [ψ, c′]

Note that in Asher and Pustejovsky’s system,
the different Exploitation and Introduction rules are
constrained by an additional principle, the so-called
Head Principle:

(12) Head Typing Principle:

Given a compositional environment X with
constituents A and B, and type assignments
A:α and B: β in the type contexts for A and B
respectively that clash, if A is the syntactic
head in the environment, then the typing of A
must be preserved in any composition rule for
A and B to produce a type for X.

This principle make sure that heads impose their
type over that of a modifier and are also the only
ones to be able to introduce complex types. As we
will see, it seems that we actually want to have the
Head Typing Principle apply to type introduction
rules (e.g., +-Introduction) but not the elimination
rules. One possible motivation behind this is that in
composition, we are aiming to reduce ambiguity not
increase it.

4 Homonomy as Type Disjunction
We propose to model homonymy as type disjunc-
tion. This involves as a first step augmenting our
repertoire of types with a new brand of complex
type, namely disjunctive types or +-types:

(13) D T: If σ and τ are types, then
so is (σ + τ)

We suppose that some orthographic entries in the
lexicon like bank will have multiple senses. Even
though a GL style approach seeks to minimize such
multiple sense entries in the lexicon and we are
wholly in favor of that, it seems silly to think that
these can be eliminated altogether. However, we can
represent homonymous entries in a compact form
using the new sort of type constructor +.

The main objective from our perspective of con-
structing a logical form for a clause (or a discourse)
is to reduce and manage ambiguities introduced by
various lexical and compositional processes in as
efficient a manner as possible. We can exploit the
correspondence between proofs and types to reduce
homonymic ambiguity in the lexicon by means of
an exploitation rule for +-types that corresponds to
one form of disjunction exploitation, that is:

(14)
φ ∨ ψ, ¬ψ

φ

Below is the +-Exploitation rule:

(15) +-Exploitation:

{λPφ(P(x)), c(P : (α + β) −−◦ γ)}[ψ, c′(ψ : [α
′

β′] −−◦ γ)]; α u β = ⊥
{λPφ(P(x)), c ∗ (P : [α u α

′

β u β′] −−◦ γ)}[ψ, c′]

The reason why we can’t exactly mimic the proof
rule familiar from the propositional calculus is that
in our type system we don’t have anything directly
corresponding to negation, other than the idea that
two types are incompatible in the sense of αuβ = ⊥.

Note that this rule is simpler than •-Exploitation.
+-Exploitation is basically destructive: the complex
disjunctive type can be exploited once, which corre-
sponds to the intuition that ambiguity gets filtered
out as a result of semantic composition.

Let us move to a concrete application of the above
rule. Consider the following simple sentence:

(16) The bank is eroding.

We start by assuming the following semantic repre-
sentations for the NP the bank and the VP is erod-
ing, respectively:2

(17) a. [[the bank]] =
λP∃!x(bank(x) ∧ P(x))〈x:   +
, P: (  + ) −−◦ t〉

b. [[is eroding]] = λy(erode(y))〈y: 〉

Now we simply apply the different TCL rules to de-
rive the correct logical form for (16):

a. [[the bank is eroding]] = λP∃!x(bank(x) ∧ P(x))
〈x:   + , P: (  + ) −−◦ t〉
[λy(erode(y))〈y: 〉]

b. By +-Exploitation: λP∃!x(bank(x) ∧ P(x))
〈x: , P:  −−◦ t〉[λy(erode(y))〈y: 〉]

c. By Merging: λP∃!x(bank(x) ∧ P(x))[λy(erode(y))]
〈x: , P:  −−◦ t, y: 〉

d. By Application: ∃!x(bank(x) ∧ erode(x))〈x: 〉

Note that the ambiguity of bank doesn’t “survive”
the semantic composition. This is turn explains why
copredication is impossible in these cases. For in-
stance, one cannot continue sentence (16) with the
following sentence, since the VP here selects for
  type which is no longer available for bank:

(18) It was offering new interest rates.

As we mentioned above, the Head Principle doesn’t
seem to apply during the exploitation of a disjunc-
tive type. Evidence for this is that copredication
fails in in an example like

(19) The eroding bank was offering new interest
rates.

In (19), the modifier eroding like the corresponding
verb in (16), filters out the   reading, which
is selected by the the VP was offering new interest
rates.

2Time and aspect information are left out for simplicity.

4.1 A slightly more complex example
Let us move to a slightly more complex example
and to another language. In Spanish, the adjective
listo is ambiguous between a individual-level mean-
ing where it means clever and a stage-level meaning
where it means ready. As is often the case in Span-
ish, this difference is correlates with a difference
in terms of auxiliary selection: the individual-level
meaning requires the use of copular ser while the
stage-level meaning requires the use of estar. This
is shown in the following examples:

(20) a. Joan és listo. (Joan is clever/#ready)

b. Joan está listo. (Joan is #clever/ready)

We propose to account for this contrast as follows.
First, we posit the following lexical entry for listo,
wherein the types  and  stand for stage and in-
dividual (cf. (Carlson, 1977)), respectively:

(21) [[listo]] = λx listo(x)〈x:  + 〉

We could also assume a couple of meaning pos-
tulates to transform the disambiguated listo into a
more transparent logical form:

(i) λx listo(x)〈x: 〉 7→ λx ready(x)

(ii) λx listo(x)〈x: 〉 7→ λx intelligent(x)

The semantic representations for ser and estar are
as follows:

(22) a. [[ser]] = λPλxP(x)〈x: , P:  −−◦ t〉

b. [[estar]] = λPλxP(x)〈x: , P:  −−◦ t〉

That is, the verb ser is a function from stage prop-
erties to stage properties, whereas the verb estar is
a function from individual properties to individual
properties.

As it stands, the +-Exploitation rule doesn’t han-
dle these examples. That is, we need a second, sym-
metrical version of that rule:

(23) +-Exploitation (bis):

{λPφ(P(x)), c(P : [α
′

β′] −−◦ γ))}[ψ, c′(ψ : (α + β) −−◦ γ]; α u β = ⊥
{λPφ(P(x)), c}[ψ, c′ ∗ (ψ : [α u α

′

β u β′] −−◦ γ)]

A comparison with English be is instructive.
Given that copular be in English can take both stage-
level and individual-level predicates, we assume
that be has the following logical representation:

(24) [[be]] = λPλxP(x)〈x:  + , P: ( + ) −−◦ t〉

Note once again that we locate the ambiguity at the
level of types by assuming a complex disjunctive

type, hence providing a more economical manage-
ment of homonymy. In English, it will be the com-
plement of be that disambiguates the verb’s func-
tion.

An interesting issue that crops up in connec-
tion with these types concerns the conjunction of
stage-level and individual-level predicates. Thus,
assuming as usual that conjunction like and require
type identity of the conjoined constituents, then one
predicts that conjoining a stage-level predicate and
an individual-level predicate results is unfelicitous.
This prediction seems to be, to a large extent, born
out:

(25) # Jim is sick and six feet tall.3

Also, note that if we take stages and individuals to
be of incompatible types, then we also predict that
a NP like a sick banker cannot be interpreted in the
standard generalized conjunction way (as in (Heim
and Kratzer, 1998) for instance).

We are committed to stage-level and individ-
ual level (and kinds) types in the type hierarchy.
But how do these relate to the extant type lattice?
Should we assume a multi-dimensional lattice? In a
way the GL framework invites a multi-dimensional
lattice with the postulation of complex types. But
we leave the details for future research.

4.2 Disambiguation through complementation
In the nominal and adjectival cases we looked so far,
disambiguation is done through predication. Now,
moving to the verbal predicates, there are also ex-
amples where ambiguity reduction arises through
complementation (i.e., where it is the direct object
that disambiguate the predicate).4 This is shown in
the following example:

(26) a. George shot his gun.
b. George shot a rabbit.

The direct object is the instrument of the shooting in
(26a), but it is the target in (26b). It is worth noting
that “co-complemenation” is impossible:

(27) # George shot his gun and a rabbit.

This suggests the use of a disjunctive type, rather
than a dot type; more precisely, the type for shoot
is:

This suggests the use of a disjunctive type, rather
than a dot type; more precisely, the type for shoot
is:

3The fact that proper nouns like Jim can be predicated of
either stage-level or individual-level predicate suggests that its
type is also complex (i.e., either  +  or  • ).

4We thank one of our anymous reviewers for this observa-
tion.

(28) shoot: ((  + ) −−◦ ) −−◦ t

Neither of the two versions of +-Exploitation al-
ready introduced will apply directly. Rather, we
will have to invoke a type-shifted version of this
rule, which we dubb +-ExploitationTS (on the
model of •-ExploitationTS in (Asher and Puste-
jovsky, 2005)):

(29) +-ExploitationTS :

{λPφ, c(P : ((α + β) −−◦ γ) −−◦ δ)}[λPψ(P(x)), c′ (P : [α
′

β′
] −−◦ γ)];αu β = ⊥

{λP, c(P : ([α u α
′

β u β′
] −−◦ γ) −−◦ δ)}[ψ, c′]

Now that we have this rule, the derivation for (26b)
becomes straightforward:

a. First, we type-raise the type for shoot to:
λPλxP[λy(shoot(x, y))]〈x: , y:  + ,
P: (( + ) −−◦ t) −−◦ t〉

b. [[shoot a rabbit]] =
λPλxP[λy(shoot(x, y))]〈x: , y:   + ,
P: ((  + ) −−◦ t) −−◦ t〉(λP∃z(rabbit(z) ∧
P(z))〈z: , P:  −−◦ t〉)

c. By + − ExploitationTS :
λPλxP[λy(shoot(x, y))]〈x: , y: ,
P: ( −−◦ t) −−◦ t〉(λP∃z(rabbit(z) ∧ P(z))
〈z: , P:  −−◦ t〉)

d. By Merging and Application: λx[∃z(rabbit(z) ∧
shoot(x, z))]〈x: , z: 〉

4.3 Ambiguous derived nominals: + or •
The type of disambiguation through complementa-
tion that we discuss in the previous section is not
limited to the verbal domain stricto sensu. There is
indeed a class of derived nominals (e.g., invention,
repreduction, examination, destruction) discussed
in (Grimshaw, 1990) that show a similar, though
slightly more complex, behavior. Typically, these
nominals are said to be ambiguous between a pro-
cess and result reading:

(30) a. The invention of the phonograph took
place in the late 19th century. ()

b. The invention was presented at the Paris
Universal Exposition. ()

According to (Grimshaw, 1990), this ambiguity re-
flects different argument-taking properties of the
nominal: the nominals that denote a process would
be the nominals that have retained the argument
structure of their verb, whereas the nominals that
denote a result the nominals that haven’t. This pro-
posal seems to make some correct prediction; for
instance, it predicts that the invention of the phono-
graph can only have a process reading:

(31) # The invention of the phonograph was
presented at the Paris universal exposition.

But this proposal also faces serious problems. On
the one hand, derived nominals can have a process
reading without realizing their object (overtly). On
the other hand, certain nominals have a result read-
ing even when they realize their object. Both points
are illustrated in (32a) and (32b), respectively:

(32) a. The examination lasted three hours.

b. A reproduction of the Sunflowers was
sold for one million dollars.

Before moving to the analysis, it is also worth not-
ing that some of these nominals allow for copredi-
cation:

(33) a. The reproduction (of the painting) took
place in that workshop and is eight feet
tall.

b. The translation that took place in this
room is a classic.

But this is by no means a general phenomenon, and
many examples are zeugmatic at best:

(34) *? The examination lasted three hours and is
now ready for you to grade.

The way we propose to deal with these nominals
is to assume that these nominals: (i) always pre-
serve their (verbal) internal structure, and (ii) have a
unique complex type. This type can be of either two
forms, depending on whether the nominals allow for
copredication:

(35) a. (- −−◦ ({, } −−◦ t)) + ( −−◦
({, -} −−◦ t))

b. (- −−◦ ({, } −−◦ t)) • ( −−◦
({, -} −−◦ t))

The above types  and  stand for agent and even-
tuality, respectively; and they remain unordered in
the lexical entry, thus making our ambiguity a dis-
junction between polymorphic types. The notation
{ ~λx} is borrowed from (Asher, 1993) and allows for
“unordered” function application. The -
corresponds to the entity created by the verb; the
term whose logical form it decorates is the direct
object of the verb. This characteristic only holds for
certain nominals like invention, in contrast to other
nominals like reproduction or proof (with which the
created object and the entity referred to by the direct
object are distinct). To spell this out fully would re-
quire us to look at another sort of dependent ⊗-type,
but we defer a detailed analysis to a future time.

Let’s turn instead to the analysis of one of the exam-
ples, namely (30a). The logical form for a nominal
like invention is as follows:

(36) [[invention]] : {λyλeλx} invention(e, x, y)

The derivation for sentence (30a) runs as follows:

a. [[of the phonograph]]: λP∃!z(phonograph(z)∧
P(z))〈z: , P:  −−◦ t〉

b. We type-raise invention distributively across +
to combine with its object, giving it the com-
plex type:5

(((-−−◦ t)−−◦ t)−−◦ ({, }−−◦ t))+ (((−
−◦ t) −−◦ t) −−◦ ({, -} −−◦ t))

c. We assume  u  = ⊥, so the generalized
greatest lower bound of the argument and func-
tor here is ⊥, when invention has type (((( −−◦
t) −−◦ t) −−◦ ({, -} −−◦ t)). But since
- u  = -, the generalized
greatest lower bound of the complement’s meaning
and invention is not ⊥. So, by +-Exploitation, the
type of [[invention]] becomes:
((- −−◦ t) −−◦ t) −−◦ ({, } −−◦ t).

d. By type Accommodation, the semantics for
[[of the phonograph]] is adjusted to:
λP∃!z(phonograph(z)∧ P(z))〈P: -−−◦ t〉

e. Finally, by Application and Merging contexts:
{λe, λx}∃!z(phonograph(z) ∧ invention(e, x, z))
which has type {, } −−◦ t.

f. We assume the ent is either specified by a DP in
the genitive or by an adjoining by-PP. In the ab-
sence of these constructions, the agent argument
is closed off via an operation of existential closure
(Asher, 1993). Combining the logical form in (e)
with the determiner’s meaning together then yields
the right, event interpretation for the nominal.

Now what happens with a nominalization like re-
production? We postulate that such a nominaliza-
tion has in fact a similar argument structure that
it shares with its root verb, but the type of one of
the arguments is already complex: it consists of an
(ent), a - • , and an ect (which is
the ”source” of the reproduction). But here the λ
binders are at least partially ordered:

(37) [[reproduction]] =
{λyλz}λu reproduction(u, z, y)〈y : , z : ,
u : - • 〉

5We conjecture that type raising is always distributive with
respect to +; we leave open the question as to whether type
raising across other complex types can be distributive as well.
We conjecture not, pointing to a fundamental logical difference
between polysemy and homonymy.

This entry would predict that we can copredicate on
the argument of the complex type which would be
the head argument of the nominal that will combine
with the determiner meaning. Notice that in this ex-
ample we do not have a homonomy but rather a log-
ical polysemy.

To conclude, note that our treatment of de-
rived nominals sharply contrasts with Pustejovsky’s
account of these nominals (e.g., in (Pustejovsky,
1995)): (i) he always assumes dot objects, and (ii)
he assumes  • . We think that these nominals
come in two varieties: they may have arguments of
complex type or they may themselves come with a
complex type of the +-variety, even though all their
arguments may have simple type.

4.4 +-Introduction
One might hypothesize something like the follow-
ing for the rule of +-Introduction:

(38) +-Introduction:

{λPφ(P(x)), c(P : [α
′

β′] −−◦ γ)}[ψ, c′(ψ : (α + β) −−◦ γ)]; α u β = ⊥
λPφ(P(x))[ψ], c ∗ (P : (α + β) −−◦ γ)

Prima facie, there doesn’t seem to be much room
for such a rule. And this is what one might expect,
for ambiguity tends to decrease (not to increase) as
a result of semantic composition. There is however
a case where this operation appears to be required,
namely definitional cases like the following:

(39) A bank is either a financial institution or the
shore of a river.

Here, the conjunction a financial institution or the
shore of a river seems to force the introduction of
the type   + .

In its current form, +-Introduction would terribly
overgenerate, producing spurious ambiguities. So
we would have to put a guard on the +-Introduction
rule, limiting it to discourse contexts of certain
types. This kind of endeavor opens up a whole
new territory for exploration: particular type rules
mandated by a particular discourse context. This
is something we believe is crucial to understanding
the nature of the interaction between lexical infor-
mation and discourse, but we forego this topic for
another time.

Before we leave the subject of definitions, how-
ever, we note that something related may also be at
work with negation:

(40) A rock is not an animal.

It seems that the effect of negation in this case is
to select the complement of the type present in the
predication; that is, it’s a little like negation gets into
the types, so to speak.

4.5 Comparison with ambiguity-as-set
There is another way one could account for lexical
ambiguity, namely by assuming that ambiguous lex-
ical items are associated with a set of types, and that
this set gets filtered through composition. This view
can be simply implemented by reviewing the Type
Accommodation rule as follows:

(41) Type Accommodation (generalized to sets):

λxφ[t], c(x: {α1, . . . , αn}, t: {β1, . . . , βm}); {αi u β j:αi u β j , ⊥} , ∅

λxφ[t], c ∗ (x, t: {αi u β j:αi u β j , ⊥})

How does this view compare to type disjunction?
Well, there’s a very close connection of course
because we can define any finite set of elements
{a1, . . . , an} via a disjunction:

(42) ∃x∀y(y ∈ x↔ (y = a1 ∨ y = a2 ∨ . . . ∨ y = an))

We can model any finite sense enumeration of a
homonymy via our +-Exploitation rule and our use
of +-types. This seems preferable to us to introduc-
ing sets of types into the lexicon, which would com-
plicate the type calculus considerably (right now it
corresponds to a simple propositional calculus sys-
tem with rules that are very constrained and so pro-
vide easy computations) and by introducing sets
into the picture, even just finite sets, we would need
much more resources.

5 Conclusion
What remains of the sense-enumeration view? It
looks as though we might still need different lex-
ical entries for cases of ambiguity where there is
a change in syntactic category and in valence (e.g.
book as a verb or a noun). But there may be a way to
finesse this issue as well using complex types. For
instance book could have the following complex +-
type:

(43) ((- • ) −−◦ t) + ((- + ) −−◦
( −−◦ ( −−◦ t)))

If we hypothesize that combining two functional
types with different numbers of arguments are in-
compatible, then we could use +-Exploitation in the
same way as we have done here to build up logi-
cal forms for sentences with ambiguous words like
book. Thus, we conjecture that our +-types may
be quite useful to encoding all sorts of ambiguities
other than logical polysemies.

6 Acknowledgements
We would like to thank Sabrina Parent and two
anonymous reviewers for their comments and sug-
gestions.

References
N. Asher and P. Denis. 2004. Dynamic typing for

lexical semantics. a case study: the genitive con-
struction. In A.C. Varzi and L. Vieu, editors,
Formal Ontology in Information Systems. Pro-
ceedingds of the Third International Conference
(FOIS 2004), pages 165–176. IOS Press.

N. Asher and A. Lascarides. 2001. The semantics
and pragmatics of metaphor. In P. Bouillon and
F. Busa, editors, The Language of Word Meaning,
pages 262–289. Cambridge University Press.

N. Asher and J. Pustejovsky. 2005. Word mean-
ing and commonsense metaphysics. University
of Texas at Austin and Brandeis University, avail-
able from nasher@bertie.la.utexas.edu.

N. Asher. 1993. Reference to Abstract Objects in
Discourse. Kluwer Academic Publishers.

Gregory N. Carlson. 1977. Reference to kinds in
English. Ph.D. thesis, Umass, Amherst.

Jane Grimshaw. 1990. Argument Structure. MIT
Press, Cambridge, Mass.

Irene Heim and Angelika Kratzer. 1998. Semantics
in Generative Grammar. Blackwell Publishers,
Oxford.

W.A. Howard. 1980. The formulas-as-types notion
of construction. In J.P. Seldin and J.R. Hindley,
editors, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism. Aca-
demic Press, New York.

Barbara Partee and Mats Rooth. 1983. Generalized
conjunction and type ambiguity. In C. Schwarze
R. Bauerle and A. von Stechow, editors, Mean-
ing, Use and Interpretation of Language, pages
361–383. Walter de Gruyter, Berlin.

James Pustejovsky. 1995. The Generative Lexicon.
MIT Press, Cambridge, MA.

James Pustejovsky. 2001. Type construction and
the logic of concepts. In P. Bouillon and F. Busa,
editors, The Syntax of Word Meaning. Cambridge
University Press.

