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An important challenge for the automatic understanding of natural language texts is the

correct computation of the discourse entities that are mentioned therein —persons, loca-

tions, abstract objects, and so on. The problem of mapping linguistic expressions into these

underlying entities is known as reference resolution. Recent years of research in computa-

tional reference resolution have seen the emergence of machine learning approaches, which

are much more robust and better performing than their rule-based predecessors. Unfortu-

nately, perfect performance are still out of reach for these systems. Broadly defined, the

aim of this dissertation is to improve on these existing systems by exploring more advanced

machine learning models, which are: (i) able to more adequately encode the structure of the

problem, and (ii) allow a better use of the information sources that are given to the system.

Starting with the sub-task of anaphora resolution, we propose to model this task
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as a ranking problem and no longer as a classification problem (as is done in existing sys-

tems). A ranker offers a potentially better way to model this task by directly including the

comparison between antecedent candidates as part of its training criterion. We find that the

ranker delivers significant performance improvements over classification-based systems,

and is also computationally more attractive in terms of training time and learning rate than

its rivals.

The ranking approach is then extended to the larger problem of coreference reso-

lution. To main goal is to see whether the better antecedent selection capabilities offered

by the ranking approach can also benefit in the larger coreference resolution task. The ex-

tension is two-fold. First, we design various specialized ranker models for different types

referential expressions (e.g., pronouns, definite descriptions, proper names). Besides its

linguistic appeal, this division of labor has also the potential of learning better model pa-

rameters. Second, we augment these rankers with a model that determines the discourse

status of mentions and that is used to filter the “non-anaphoric” mentions. As shown by

various experiments, this combined strategy results in significant performance improve-

ments over the single-model, classification-based approach on the three main coreference

metrics: the standard MUC metric, but also the more representative B3 and CEAF metrics.

Finally, we show how the task of coreference resolution can be recast as a linear

optimization problem. In particular, we use the framework of Integer Linear Programming

(ILP) to: (i) combine the predictions of three local models (namely, a standard pairwise

coreference classifier, a discourse status classifier, and a named entity classifier) in a joint,

global inference, and (ii) integrate various other global constraints (such as transitivity con-

straints) to better capture the dependencies between coreference decisions. Tested on the

ACE datasets, our ILP formulations deliver significant f -score improvements over both a

standard pairwise model, and various models that employ the discourse status and a named

entity classifiers in a cascade. These improvements were again found to hold across the

three different evalution metrics: MUC, B3, and CEAF. The fact that B3 and CEAF scores
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were also improved is of particular importance, since these two metrics are much less le-

nient than MUC in terms of precision errors.

x



Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvii

Chapter 1 Introduction 1

1.1 The different tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Anaphora resolution . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Coreference resolution . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Relation between the two tasks . . . . . . . . . . . . . . . . . . . . 5

1.2 General motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Theoretical challenges . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Practical importance . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Robust reference resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Research objectives and contributions . . . . . . . . . . . . . . . . . . . . 11

1.5 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 State of the art: approaches and evaluation 17

2.1 A generic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xi



2.2 Brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Knowledge-based systems . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Heuristics-based systems . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Machine learning systems . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Standard machine learning approach . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Reference resolution as binary classification . . . . . . . . . . . . . 27

2.3.2 Variations on this approach . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Limitations and recent developments . . . . . . . . . . . . . . . . 31

2.4 Corpora and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 3 A ranking approach to pronoun resolution 47

3.1 Maximum entropy models . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Modeling pronoun resolution . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Antecedent selection with classification . . . . . . . . . . . . . . . 54

3.2.2 Antecedent selection as ranking . . . . . . . . . . . . . . . . . . . 58

3.3 Implemented systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Single-candidate classifiers . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Twin-candidate classifier . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Ranker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Corpus and evaluation . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Comparative results . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xii



3.5.3 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.4 Learning curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 4 Extending the ranker to coreference resolution 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Learning specialized rankers . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Linguistic motivations . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 Ranking models . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 Feature sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.4 Antecedent selection results . . . . . . . . . . . . . . . . . . . . . 82

4.3 Predicting discourse status . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Classification model . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Feature set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Baseline systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.3 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.4 Oracle results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 5 Coreference resolution as linear optimization 98

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Base models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.1 The coreference classifier . . . . . . . . . . . . . . . . . . . . . . 103

5.3.2 The discourse status classifier . . . . . . . . . . . . . . . . . . . . 103

xiii



5.3.3 The named entity classifier . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Base model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Integer programming formulations . . . . . . . . . . . . . . . . . . . . . . 107

5.5.1 COREF-ILP: coreference-only formulation . . . . . . . . . . . . . 108

5.5.2 JOINT-DS-ILP: joint discourse status-coreference formulation . . . 109

5.5.3 JOINT-NE-ILP: joint entity-coreference formulation . . . . . . . . 110

5.5.4 JOINT-DS-NE-ILP: joint discourse status-entity-coreference for-

mulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5.5 Transitivity constraints . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.6 Other global constraints . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 ILP results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Chapter 6 Conclusions 118

Bibliography 121

Vita 132

xiv



List of Tables

2.1 Feature set used by Soon et al. (2001) . . . . . . . . . . . . . . . . . . . . 29

2.2 Three hypothetical coreference partitions over 7 mentions . . . . . . . . . 45

2.3 Comparative results between MUC, B3, and CEAF . . . . . . . . . . . . . . 45

3.1 Instances for pairwise binary classification . . . . . . . . . . . . . . . . . . 56

3.2 Feature selection for pronoun resolution . . . . . . . . . . . . . . . . . . . 66

3.3 Accuracy scores for (Yang, 2005)’s single-candidate classifier (SCC1), (Kehler

et al., 2004a)’s single-candidate classifier (SCC2), the twin-candidate clas-

sifier (TCC), and the ranker (RK). . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Accuracy scores for the ranker (RK) with a window of 10 sentences. . . . . 69

4.1 Feature selection for the ranker models . . . . . . . . . . . . . . . . . . . . 80

4.2 Features used in modeling each class of referential expressions . . . . . . . 82

4.3 Distribution of the different anaphors in ACE . . . . . . . . . . . . . . . . . 83

4.4 Accuracy of the different ranker models . . . . . . . . . . . . . . . . . . . 83

4.5 Feature selection for the discourse status model . . . . . . . . . . . . . . . 86

4.6 Recall (R), Precision (P), and f -score (F) results on the entire ACE corpus

using the MUC, B3, and CEAF metrics . . . . . . . . . . . . . . . . . . . . 90

4.7 Recall (R), Precision (P), and f -score (F) results for ERK+DS-ORACLE and

LINK-ORACLE on the entire ACE corpus . . . . . . . . . . . . . . . . . . . 94

xv



4.8 Recall (R), Precision (P), and f -score (F) results on the BNEWS dataset

using the MUC, B3, and CEAF metrics . . . . . . . . . . . . . . . . . . . . 95

4.9 Recall (R), Precision (P), and f -score (F) results on the NPAPER dataset

using the MUC, B3, and CEAF metrics . . . . . . . . . . . . . . . . . . . . 95

4.10 Recall (R), Precision (P), and f -score (F) results on the NWIRE dataset us-

ing the MUC, B3, and CEAF metrics . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Feature selection for the named entity classifier . . . . . . . . . . . . . . . 105

5.2 Recall (R), precision (P), and f -score (F) using MUC, B3, and CEAF on the

entire ACE corpus for the basic coreference system, the cascade systems,

and the corresponding oracle systems. . . . . . . . . . . . . . . . . . . . . 106

5.3 Recall (R), precision (P), and f -score (F) using the MUC, B3, and CEAF

evaluation metric on the the entire ACE dataset for the ILP coreference sys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xvi



List of Figures

1.1 The task of anaphora resolution . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The task of coreference resolution . . . . . . . . . . . . . . . . . . . . . . 4

1.3 An example set of coreference relations . . . . . . . . . . . . . . . . . . . 5

2.1 An excerpt from the MUC-7 corpus . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Split-up of the ACE (Phase 2) corpus . . . . . . . . . . . . . . . . . . . . . 36

2.3 An excerpt from the ACE (Phase 2) corpus . . . . . . . . . . . . . . . . . . 37

3.1 Learning curves of SCC1, SCC2, TCC, and RK for the NPAPER dataset. . . . 70

4.1 B3 recall and precision of SCC, SCC+DS, ESCC, ESCC+DS, and ERK+DS

on the entire and the three ACE datasets . . . . . . . . . . . . . . . . . . . 92

5.1 A linear program with two variables . . . . . . . . . . . . . . . . . . . . . 102

xvii



Chapter 1

Introduction

An important requisite for the understanding of natural language texts is the correct com-

putation of the discourse entities that are mentioned therein —persons, locations, abstract

objects, and so on. The problem of mapping linguistic expressions into these underlying en-

tities (irrespective of whether these are seen as real-world objects or intermediate conceptual

constructs) is known as reference resolution.1 Computational methods for reference reso-

lution have been developed in Natural Language Processing (NLP) almost since the incep-

tion of the field (earlier treatments include Webber (1978) and Hirst (1981) inter alia) and

they still constitute an area of active research (see (Mitkov, 2002b) for a recent monograph).

These approaches have concentrated on two distinct, although closely related, instantiations

of this general problem: namely, anaphora resolution and coreference resolution. These two

tasks are presented in more detail in Section 1.1. As discussed in Section 1.2, automatic

reference resolution is an extremely challenging problem —it is in fact often considered an

“AI-complete” problem— and a crucial one —it is key for various other NLP applications.

Like in many other areas of NLP, the last decade of research in reference resolution has

seen an important shift from hand-crafted systems to machine learning systems. The appli-
1The exact nature of these entities is indeed still a matter of debate among philosophers of language. Al-

though this has no direct bearing on the the present work, we assume that discourse entities are conceptual
objects (e.g., they can be thought of as first-order logic variables as in Kamp and Reyle (1993)).
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cation of standard classification techniques to the tasks of anaphora/coreference resolution

has resulted in drastic improvements in robustness, making it theoretically possible to inte-

grate these systems into larger NLP systems (Section 1.3). Performance has also improved,

but perfect scores are still out of reach. Broadly defined, the aim of this dissertation is to

improve on these existing systems by exploring more advanced machine learning models,

which are: (i) able to more adequately encode the structure of the problem, and (ii) allow a

better use of the information sources that are given to the system. The goals and contribu-

tions of this dissertation are presented in more detail in Section 1.4, and a general outline

of the dissertation follows in Section 1.5.

1.1 The different tasks

1.1.1 Anaphora resolution

The first and most studied instantiation of the general problem of reference resolution is

anaphora resolution. In its broadest sense, anaphora describes an asymmetric relation

between two linguistic expressions, an antecedent and an anaphor, wherein the anaphor

cannot be fully interpreted without making use of the antecedent. This definition is rather

vague and potentially encompasses many different linguistic pheonomena. Consequently,

most computational approaches have often assumed a much stricter definition, where: (i)

identity of reference is required between the anaphor and the antecedent (i.e., they point

to the same entity), (ii) both of these expressions are nominal expressions, and (iii) only a

subset of anaphoric expressions (typically, pronominal ones) are considered.2 This focus

on pronouns is not surprising. Referential pronouns are in a sense the prototypical forms of

anaphor: they have no intrinsic semantic content (except gender and number), which makes

their interpretation entirely dependent on their antecedent.

The process of anaphora resolution thus defined is shown on the following excerpt
2Anaphora can indeed occur between various types of expressions and involves different semantic relations

(Clark, 1975; Partee, 1984; Asher, 1993).
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from the Automatic Content Extraction (ACE) program3 corpus in Figure 1.1.

[Clinton]0 told [National Public Radio]1 that [his]2 an-
swers to questions about [Lewinsky]3 were constrained by
[Starr]4’s investigation. [[NPR]5 reporter Mara Liasson]6

asked [Clinton]7 ”whether [you]8 had any conversations
with [her]9 about [her]10 testimony, had any conversations
at all.” ww��� ��ANAPHORA RESOLVERww�{

〈Clinton0, his2〉, 〈Clinton7, you8〉, 〈Lewinsky3, her9〉, 〈Lewinsky3, her10〉
}

Figure 1.1: The task of anaphora resolution

As illustrated above, an anaphora resolver takes a set of anaphoric expressions as

input and outputs an antecedent for each of these anaphors. Note that this description leaves

out the question of how the anaphoric expressions are first detected. Typically, anaphora

resolution systems assume that the anaphors have already been detected. Note that this

is often not a important issue with pronouns, since most uses of pronouns are anaphoric

(with the exception of pleonastic uses, for instance), but distinguishing anaphoric and non-

anaphoric uses of other types of expressions (e.g., definite descriptions) is a real challenge.4

1.1.2 Coreference resolution

Although most computational approaches have focused on anaphora resolution, recent ap-

proaches have shifted their attention to the more challenging task of coreference resolu-

tion. Coreference, also sometimes called co-specification (Sidner, 1983), describes the re-

lation that holds between two expressions that refer to the same entity: these are often called

mentions of that entity. By contrast with anaphora, coreference is an equivalence relation:
3http://www.nist.gov/speech/tests/ace/
4In their corpus study, (Vieira and Poesio, 2000) report that more than 50% uses of definite descriptions are

discourse-new (i.e., non-anaphoric).
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it is reflexive, symmetric, and transitive. Another important difference is that coreference

doesn’t imply context-sensitivity (van Deemter and Kibble, 2000). Two expressions like

George W. Bush and Barbara Bush’s son corefer without either of them depending on the

other for its interpretation. A correlate of this is that coreference is not “discourse bound”,

in the sense that coreference can hold across documents. In this dissertation, we will only

be concerned by the problem of coreference resolution at the document level. 5

The process of coreference resolution is illustrated on the same sample excerpt from

ACE in Figure 1.2. As illustrated, the goal of coreference resolution system is to construct

[Clinton]0 told [National Public Radio]1 that [his]2 an-
swers to questions about [Lewinsky]3 were constrained by
[Starr]4’s investigation. [[NPR]5 reporter Mara Liasson]6

asked [Clinton]7 ”whether [you]8 had any conversations
with [her]9 about [her]10 testimony, had any conversations
at all.” ww��� ��COREFERENCE RESOLVERww�

{Clinton0, his2, Clinton7, you8}e0,
{National Public Radio1, NPRm}e1,
{Lewinsky3, her9, her10}e2,

{Starr4}e3,
{NPR reporter Mara Liasson6}e4


Figure 1.2: The task of coreference resolution

all the coreference links between between referential expressions. The reflexive, transi-

tive closure over these links generates equivalence classes of expressions (or coreference

chains), from which entities can be abstracted. A graphical representation of the coref-

erence relation is given in Figure 1.3: all the possible coreferential links are represented

with dashed lines, but only the solid lines describe the coreference relation for the example

above.
5See (Bagga and Baldwin, 1998) for an example of work on cross-document coreference.
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Figure 1.3: An example set of coreference relations

Clearly, the task of coreference is overall a much harder task than anaphora res-

olution. Intuitively, it is harder because we have to do more than linking a mention to (a

previous mention of) its entity: we have in fact to predict the entities themselves. More tech-

nically, the complexity of the coreference resolution problem is exponential in the number

of mentions: the search space is the set of all mutually disjoint subsets that can be created

over the set of mentions. The problem of coreference resolution is indeed equivalent to the

set partitioning problem, and its search space takes the form of a Bell Tree (Luo, 2005).

Thus, the above example with only 10 mentions generates 115, 975 possible partitions (i.e.,

the 10th Bell number). By contrast, the complexity of the anaphora resolution problem is

merely square in the number of mentions: the candidate set for each anaphor is at most the

set of mentions that precede it.

1.1.3 Relation between the two tasks

Searching the set of possible coreference partitions might be feasible for small documents,

but it quickly becomes untractable for documents that have large numbers of mentions.

One common, and rather intuitive way to deal with this problem is to reduce the task of

coreference resolution to that of anaphora resolution.

There is indeed an obvious relation between between the two tasks. There is a sense

in which anaphora resolution (especially, in the restricted definition used in NLP) is a strict

sub-problem of coreference: it is coreference resolution restricted to a subset of expressions

(namely, the pairs of expressions that are in an antecedent-anaphor relation). Inversely,
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coreference resolution can be regarded as a sequence of anaphora resolutions, provided that

we make the assumption that any mention in a chain but the head of the chain is considered

“anaphoric”. (Similarly, this makes any mention of a non-singleton chain an antecedent of

the coreferential mentions that come after.) This is somewhat of a simplification, since some

expressions like proper names (e.g., Bill Clinton) can appear further along in a chain without

being strictly anaphoric to any previous mention. This assumption basically conflates the

notion of being anaphoric with that of being discourse-old (e.g., Prince (1981)).6

1.2 General motivations

1.2.1 Theoretical challenges

As noted, the problem of anaphora resolution has been on the computational linguistics

agenda since the early days. Despite the decades of work, the problem is still far from

being being solved. In fact, this problem alone has often considered one of the hardest

problems there is within AI. Given the relation between the two tasks, a similar case could

easily be made for coreference resolution.

What makes reference resolution such an intrinsically difficult problem? Basically,

the main problem is that most referential expressions are ambiguous, in the sense that

many expressions could be coreferential in a particular context, but not in some other. This

is due to the fact that the semantic content of many referential expressions is highly under-

specified: the extreme case is pronouns, which are basically compatible with any expression

provided some minimal grammatical agreement conditions are met.

An additional problem is in the dependence of anaphora and coreference resolu-

tion on a multitude of knowledge sources. Numerous factors have indeed been advanced

by linguists to account for reference resolution (Mitkov, 2002a). These range from mor-

phosyntax (e.g., gender, number, case) to syntax (e.g., grammatical relations and binding
6In the rest of this dissertation, these two terms will be used interchangeably.
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principles) to lexical and compositional semantics (e.g., semantic typing, selectional restric-

tions) to discourse structure to world knowledge.

Given the reliance on so many knowledge sources, progress in reference resolution

systems is very much contingent upon progress on advances on other tasks that come earlier

in the commonly assumed NLP pipeline, such as syntactic parsing, semantic roles, discourse

parsing, etc. The problem is that currently many of these knowledge sources are hard to

predict in a robust and non-noisy way. The problem of predicting semantic representations

for texts is at its beginnings, let alone that of predicting full discourse structures. Even the

problem of syntactic parsing isn’t a solved one.

Even if we had perfect representations for sentences and discourses, we would still

be facing the problem that none of the sources is completely reliable. Thus, most of the

constraints identified by linguists are “soft” (i.e., defeasible) constraints, rather than “hard”

(i.e., undefeasible) ones. It is indeed very hard to find constraints that work all the time.

For example, (Hirst, 1981) provides several examples of gender and number mismatches

with pronouns —although number and gender agreement are taken by many to be a hard

constraint for English pronoun resolution.

A final problem is that different referential expressions follow different resolu-

tion strategies. What this means is that different sources seem to be more or less important

depending on the expression. A common example is recency. While pronouns, due to

their lack of semantic content tend to be resolved to a nearby antecedent, other anaphoric

expressions like definites or abbreviated proper names tend to show more long-distance res-

olutions. On the other hand, (sub-)string matching is obviously very important for linking

proper names, but less so for other types of nominal expression.

1.2.2 Practical importance

An interesting challenge in itself, the proper identification of the entities that are referred

to is also important from a purely language engineering perspective. Numerous NLP tasks
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could in principle —when they haven’t already done so— benefit from the availability of

good reference resolution systems. We here focus on five specific tasks.7

Information Extraction. Generally, the goal of an information extraction system (IE) is

to automatically induce structured information (e.g., in the form of templates expressed

in a formal language) from machine-readable text. For instance, one might be interested

in extracting certain relations (e.g., live in, born in) holding between entities. Knowing

about coreference is crucial for IE: coreference can be used to merge different information

regarding the same entity that might have been extracted at different places in the document.

The importance of coreference for IE is reflected in the inclusion of the coreference task,

along with Named Entity Recognition (NER), as part of IE competition-based conferences

such as MUC-6 and MUC-7 or ACE more recently.

Question Answering. The goal of a Question Answering (QA) system is to answer a nat-

ural language question from a collection of documents (such as the web or a local database).

It is therefore a specific subtype of Information Retrieval (IR). One way to use reference

resolution for QA consists in resolving references before the indexation of documents, po-

tentially allowing easier matching of the question.

Automatic Summarization. Automatic Summarization is the task of producing sum-

maries based either on a single document or by grouping information from different docu-

ments. Several researchers have proposed to use coreference information to “guide” sum-

marization (Azzam et al., 1999). For instance, large coreference chains can thought as

important topics in a document (i.e., information that should appear in a summary).

Machine Translation. A Machine Translation (MT) system has the goal of automatically

translating text (or speech) from one source language to one or several target languages.
7Some of the discussion in this section is based on (Mitkov, 2002b) and (Ng, 2002).
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One way that anaphora/coreference resolution is relevant for MT is in the translation of

languages that show morphological discrepancies (e.g., some languages have grammatical

gender while others don’t). A concrete example is the translation of pronouns from French

into English: a pronoun like elle for instance should be translated by she when referring to

a person, but by it when referring to an inanimate object.

Natural Language Generation. Natural Language Generation (NLG) is the problem of

producing natural language from a formal representation such as a knowledge base or a

logical form. An important challenge for NLG is that of producing coherent texts. Barzilay

and Lapata (2005) show that using coreference chains help improve the coherence of texts.

1.3 Robust reference resolution

In the last section, we have described some of challenges inherent to reference resolution.

In the face of these problems, much of the earlier work in anaphora resolution has concen-

trated their effort in attempting to represent and process domain and linguistic knowledge

(Hobbs, 1978; Brennan et al., 1987; Carter, 1987; Rich and LuperFoy, 1988; Carbonell and

Brown, 1988). Some of these approaches were either targeting one particular knowledge

source (e.g., Hobbs (1978) exploits syntactic configurations to resolve anaphoric pronouns)

or trying to explicitly model all the different information sources at play in resolution (e.g.,

the multi-strategy approach of (Carbonell and Brown, 1988)). In either case, the approach

proceeds by manually writing explicit rules, therefore requiring a considerable amount of

human input. Often, additional human intervention was also present for correcting the out-

put of the different preprocessing modules.

The main problem of these approaches lies in their brittleness, which prevents their

integration into larger NLP interfaces like IE or QA systems. This has led first, to the de-

velopment of knowledge-poor approaches (Dagan and Itai, 1990; Lappin and Leass, 1994;

Kennedy and Boguraev, 1996; Baldwin, 1997; Mitkov, 1998), which use clever heuris-
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tics based solely on shallow processing, and more recently to the development of machine

learning approaches (McCarthy and Lehnert, 1995; Morton, 2000; Soon et al., 2001; Ng

and Cardie, 2002a). An advantage of the latter on the former is their robustness and the

fact that they are theoretically more sound. The drive toward robust approaches was further

motivated by the emergence of cheaper and more reliable NLP tools (e.g., part-of-speech

taggers and shallow parsers) and the availability of corpora annotated with coreference in-

formation and resources like lexical databases (e.g., Wordnet). With these resources also

came better evaluation practices: most earlier systems were either not evaluated at all, or

not evaluated against a common benchmark, making any comparison difficult.

With a few exceptions, most machine learning approaches to reference resolution

have been supervised approaches.8 Common to most of these approaches is that they recast

both the tasks of anaphora resolution and coreference resolution as a very simple learning

problem: that is, a binary classification problem. Specifically, annotated data are con-

verted into pairs of potential anaphors and potential antecedents. These data instances are

realized as feature vectors and are labelled with a target concept, e.g. values 1 or 0, in-

dicating whether the mentions are coreferential or not. Learning consists in finding a set

of weights (or model) which best determines the importance of each feature in predicting

the correct labelling of the mention pairs. Once trained, the classifier is applied to label

the mentions pairs that make up the test data. In general, this classification step is comple-

mented by a search or clustering algorithm, whose role is to select a unique antecedent

for anaphora resolution, or to merge the different coreferential links for coreference res-

olution. For anaphora resolution, this step is justified by the fact that we want to select

the best antecedent. For coreference resolution, this is justified by the fact that we want

filter out potentially conflicting links (i.e., links that violate transitivity). Two such algo-

rithms have been commonly used: closest-first and best-first. Both of these select a unique

antecedent for each “anaphor”: the former picks the closest coreferential mention, while
8Unsupervised approaches include (Cardie and Wagstaff, 1999) and (Bean and Riloff, 2004).
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the latter picks the antecedent that is associated with the largest probability score. These

link-selection algorithms are often used in tandem with a particular sampling method of the

training instances.

In addition to robustness, these rather simple machine learning techniques have re-

sulted in significant gains in performance over hand-crafted systems.9 These improvements

are likely to come from different advantages offered by machine learning techniques. By

definition, these techniques have built into them the ability to handle soft constraints —in

the form of features which receive particular weights through training. Furthermore, some

of these models (i.e., discriminative models) are particularly well-suited to problems that

involve many, potentially conflicting knowledge sources.

1.4 Research objectives and contributions

Despite these improvements, these systems are still far from being perfect, and performance

tends to plateau at accuracy scores in the 70% range for pronoun resolution, and f -scores

in the 60% range for coreference resolution. This brings us to the main objective of this

dissertation, namely to improve on these existing state-of-the-art systems. In the following,

we identify several factors that are potential limitations of the existing systems, and suggest

a set of alternatives that will be pursued in the rest of the dissertation:

Model type: As noted, most approaches use binary classification, in which each pair of

mentions is classified as coreferential or not. But on closer inspection, it seems that

classification is not so well-suited to the problem of anaphora/coreference resolu-

tion. Focusing for now on the problem of anaphora resolution, note that the ultimate

goal of this task is to find the “best” antecedent among a set of candidates, and not

crucially to find all the “good” antecedents. That is, we are ultimately interested in
9This has been shown for coreference resolution in the context the MUC-6 and MUC-7 competitions. See

also (Preiss, 2002) and (Kehler et al., 2004a) for some comparisons between hand-crafted and machine learning
anaphora resolution systems.
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learning a ranking function over the set of antecedent candidates rather than a binary

classification function. The crucial appeal of a ranking approach is that it brings the

comparison between antecedent candidates inside the training criterion, rather than

deriving it from the classifier’s probabilities. This results in better antecedent selec-

tion capabilities. Assuming that one recasts coreference resolution as a sequence of

anaphora resolutions, using a ranker has also the potential to improve on this larger

task.

Single model: Most of the existing approaches to anaphora resolution and coreference res-

olution proceed by learning a single classification model, therefore giving a uniform

treatment to different types of anaphors. This is problematic, given that different

anaphoric expressions are sensitive to different factors in different ways. What we

propose instead is to build several models for different anaphoric expressions: these

models use different feature sets and different sampling strategies during training.

This “distributed” approach is not entirely new, and specialized models have been

proposed both in the context of coreference resolution (Morton, 2000) and pronoun

resolution (Ng, 2005a). The originality of our contribution here is that we propose

separate ranking models.

Decision locality: The two previous problems concern the type of model that was learned.

A further potential weakness is in the application of the model during testing. This

problem is particularly critical to coreference resolution. For that task, the classifier

model is traditionally used in combination with a separate clustering algorithm that is

responsible for coordinating pairwise decisions into coreference chains. The problem

with this approach is that the clustering decisions are made independently of one

another, which means that only local coherence is ensured. Ideally, one would also

like to enforce a more global notion of coherence. The decision of merging a mention

into a chain should depend on how well it matches the entity as a whole (McCallum

and Wellner, 2003). A related problem with this approach is that classification and
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clustering are optimized separately, which means that improvements brought to the

classification model might not lead to overall performance gains (Ng, 2005b).

There are various ways to address this issue. One can actually learn a different type of

model where coreference decisions are directly conditioned on entities (i.e., chains),

rather than on mentions (Morton, 2000; Luo et al., 2004; Culotta et al., 2007). This

has the advantage of allowing one to define larger features, and therefore ensuring

better global coherence. But this also makes the search process much more com-

plicated. One alternative to these global models is to still train local models (i.e.,

mention-based models), but to incorporate global constraints during inference. One

type of global constraint that is likely to be useful for coreference resolution are

transitivity constraints: these constraints can be used to ensure that the consistency

between pairwise coreference assignments. This global inference can be cast as an

optimization problem, in particular as an integer linear program (ILP), and can be

solved using standard optimization tools. This general framework has been devel-

oped in the work of Dan Roth (e.g., Roth and Yih (2004)).

Knowledge prediction and integration: Reference resolution depends on many different

information sources. Yet most systems have to date only been relying on very small

sets of shallow features: for instance, Soon et al. (Soon et al., 2001) use 12 features.

Consequently, a prevailing view is that improving anaphora/coreference resolution

requires the incorporation of more sophisticated knowledge sources into the models

(in particular, syntactic and semantic ones). Unfortunately, attempts at adding in more

information sources have been overall disappointing, leading to small improvements

(Ponzetto and Strube, 2006; Yang et al., 2006; Ng, 2007), but also to degradation

(Kehler et al., 2004a; Ng and Cardie, 2002b; Denis and Kuhn, 2006) in performance.

Predicting linguistically rich information from raw text is indeed challenging, as

noted earlier. Given that the extracted information is likely to be noisy, the issue

of how to best incorporate this information becomes crucial. There are two typical
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ways of integrating knowledge sources into a system: (i) a pre- or post-processing

module (this corresponds to the traditional pipeline architecture), (ii) in the form

of features. None of these views is perfect. The first approach faces the problem

of error propagation: error made by the upstream model tend to propagate into the

downstream model. Integrating information as features alleviates error propagation

somewhat, since the noise is already present in the training. But this approach might

face the problem of feature “washout”, where some normally “good” features do

not have their discriminative power due to the presence of many other features. At

a more abstract level, the problem is that there are often complex, mutual depen-

dencies between the outcomes of the upstream and downstream models. Failing to

encode these dependencies means that the upstream model is going to over-constrain

the downstream model.

One way to handle these dependencies is to cast the two problems as a joint prob-

lem. In this dissertation, we focus on predicting two types of information likely to

improve coreference resolution: (i) discourse status information (aka anaphoricity),

and (ii) named entity type. Intuitively, we only should identify antecedents for the

mentions which are likely to have one (Ng and Cardie, 2002b), and we should only

make a set of mentions coreferent if they all have the same entity type (eg, PERSON

or LOCATION). Specifically, we show that the linear programming framework al-

lows these models to be optimally integrated, through the use of mutual consistency

constraints, with a coreference model.

1.5 Dissertation outline

Chapter 2 This first chapter provides the background for the rest of the dissertation. We

start by presenting a brief history of the various trends of research that have dom-

inated the field of reference resolution, focusing in particular on the recent shift to

machine learning approaches. This chapter also discusses the various corpora and
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evaluation metrics development for anaphora and coreference resolution.

Chapter 3 This chapter presents a new approach to the problem of anaphora resolution.

In particular, we propose a ranking approach to pronoun resolution as an alternative

to the traditional classification-based approach. We start by motivating the ranking

approach in the context of maximum entropy models: in particular, we show that

the ranker offers a potentially better way to model the task by directly including the

comparison between antecedent candidates as part of its training criterion. In order to

test this hypothesis, we run various experiments comparing the ranker against various

baseline classification-based systems: in particular, the standard binary classifier dis-

cussed above, and the related twin-candidate approach of (Yang et al., 2003; Yang,

2005). These experiments reveal that the ranker provides significant performance

improvements over the other systems and is also computationally more attractive in

terms of training time and learning rate.

Chapter 4 This chapter extends the ranking approach to the larger problem of corefer-

ence resolution. Roughly, the goal is to see whether the better antecedent selection

capabilities offered by the ranking approach can also benefit in the larger corefer-

ence resolution task. The extension is two-fold. First, we design various specialized

ranker models for different types referential expressions (e.g., pronouns, definite de-

scriptions, proper names). Besides its linguistic appeal, this division of labor has also

the potential of learning better model parameters. Second, we augment these rankers

with a model that determines the discourse status of mentions and that is used to fil-

ter the “non-anaphoric” mentions. As shown by various experiments, this combined

strategy results in significant performance improvements over the standard approach

on the coreference task.

Chapter 5 In this chapter, we show how the task of coreference resolution can be recast as

a linear optimization problem. In particular, we use the framework of Integer Linear
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Programming (ILP) to: (i) combine the predictions of three local models (namely,

a standard pairwise coreference classifier, a discourse status classifier, and a named

entity classifier) in a joint, global inference, and (ii) integrate various other global

constraints (such as transitivity constraints) to better capture the dependencies be-

tween coreference decisions. Tested on the ACE datasets, our ILP formulations deliver

significant f -score improvements over both a standard pairwise model, and various

models that employ the discourse status and a named entity classifiers in a cascade.

Improvements were found across the three different evaluation metrics: MUC, B3, and

CEAF.
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Chapter 2

State of the art: approaches and

evaluation

This chapter describes the state of the art in computational approaches to reference res-

olution and serves as the background for the rest of this dissertation. First, we present

in Section 2.1 a generic algorithm that describes most of existing systems proposed for

anaphora resolution and coreference resolution. In Section 2.2, we then give a brief histori-

cal overview of the different approaches offered to the problem, focusing on some milestone

approaches that reflect the evolution of the field. Over the last two decades, research on ref-

erence resolution has seen the emergence of machine learning methods. The next section,

Section 2.3, describes the “standard” learning approach to reference resolution: most of

learning approaches have in common that they recast the problem as a binary classification

problem. Some variations on this binary classification scheme are also discussed, along

with the inherent limitations of this approach. As discussed in Section 2.4, the emergence

of machine learning approaches to reference resolution has seen the increasing availability

of corpora annotated with coreference information and the development of precise evalua-

tion metrics: the most commonly used corpora and metrics are described.
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2.1 A generic algorithm

Algorithm 1 RESOLVE

Input: A document D
Output: A set of coreference links LD for D

// 1. Identification of mentions in D
M⇐ {m |m is a referential mention in D}
A ⇐M

// 2. Characterization of mentions
for all mi inM do

Compute a set of values for {ki1 , ki2 , . . . , kin} from n knowledge sources
end for

// 3. Anaphoricity determination (Optional)
A ⇐ A \ {m ∈ A |m is not anaphoric}

for all mj in A do
// 4. Generation of antecedent candidates
Cj ⇐ {m ∈M |m lies in the scope of mj}

// 5. Filtering (Optional)
Cj ⇐ Cj \ {mi ∈ Cj |mi violates a coreference constraint with mj}

// 6. Scoring/Ranking
Score or rank each mi in Cj and sort Cj w.r.t. the score

// 7. Search/Clustering
Select an antecedent for mj from Cj

end for

Despite important differences, the vast majority of the previous reference resolution

systems (be they hand-crafted or corpus-based) can seen as instantiations of a generic algo-

rithm given in Algorithm 1. The RESOLVE algorithm and its description are adapted from

(Ng, 2002). This algorithm takes a document D in raw text format as input, and computes

a set of anaphoric/coreferential links LD for D. These links LD can be encoded in the form

of pairs of mentions: in the case of coreference resolution, the chains are obtained through
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simple reflexive, transitive closure over these pairs.1

As noted in Chapter 1, a common approach to the problem of coreference resolution

is to reduce it to the simpler problem of anaphora resolution. Under this view, each pair of

mentions that is coreferential is in effect an 〈antecedent, anaphor〉 pair. Present (at least

implicitly) in most work on coreference resolution, this assumption is directly embodied

in the RESOLVE algorithm, since the algorithm initially treats each mention in the text as a

possible anaphor (step 1) and tries to find its antecedent(s) (steps 4-7).

Let us now look at the different steps of RESOLVE in more detail. The first step

consists in the identification of the referential mentions in the document D: M is the

list of all the mentions in D. Concretely, this means finding the different nominal and

pronominal expressions in D that have referential content. This leaves out pleonastic uses

of pronouns, for instance. This step is performed automatically via a preproccessing module

(built around a NP chunker or a full parser, and a named entity recognizer) or by selecting

the mentions whose boundaries are encoded in a pre-existing corpus. Most published re-

search are actually unclear regarding this point, and even when they perform automatic

mention detection, rare are the authors that report the scores for this component (although

the performance of this preprocessing module can have drastic effects on the final perfor-

mance of the resolution system).2 Note that another operation takes place during this first

step: the set of anaphoric expressionsA is initialized toM; that is, every mention is at first

assumed to be anaphoric.

The second step is the characterization of mentions, and involves determining and

extracting the different knowledge sources that characterize a mention and that might be

relevant to its linking to the other mentions in the document. Existing systems differ along

two dimensions with respect to this step. Again, some approaches are fully automatic rely-

ing on some preprocessing modules (e.g., part-of-speech tagging, named entity recognizer,

parsing, etc.), while others use gold standard information if using a corpus containing this
1This is the format used on the MUC corpora. See our discussion in Section 2.4.
2In this dissertation, we will always assume “true” mention boundaries as given by an annotated corpus.
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information or manually correct the outputs of the preprocessing modules. They also differ

in the level of sophistication of the extracted information, ranging from knowledge-rich to

knowledge-poor (this will be discussed in more detail in Section 2.2).

The third step is that of anaphoricity determination, and it consists in the filtering

fromA of the mentions that are not anaphoric. These mentions, by definition, do not have an

antecedent and hence shouldn’t be resolved. This step is always (by definition) performed

as part of anaphora resolution, but it is not always performed for coreference resolution, in

which case all mentions in effect remain possible anaphors.

While the previous steps can be seen as preprocessing steps and are performed at

the level of the entire document, the last four steps operate the resolution phase and operate

on and are performed at the level of each mention mj in A. The fourth step realizes the

generation of antecedent candidates for each possible anaphoric mention. By default,

the set of candidates Cj are the mentions that linearly precede mj in the document. For

pronoun resolution, this set is sometimes restricted to the set of mentions that lie within a

certain window of sentences (typically, the current and two or three preceding sentences).

The next step is another filtering step, and amounts to reducing the space of an-

tecedent candidates for the given anaphor. This step involves removing from Cj some un-

likely antecedent candidates based on a set of hard constraints. This step is often used in

pronoun resolution systems, where some constraints such as gender and number agreement

or binding principles are taken to be inviolable, hard constraints. This step is however not

present in every anaphora resolution or coreference resolution system.

The goal of the scoring/ranking step is basically to order the candidates that made

it through the previous steps. The ordering is obtained based on a set of rules or soft

constraints and takes one of the following forms. In some approaches, each candidate mi

receives an individual numerical score (e.g., a probability for statistical approaches) that

reflects the likelihood of mi and mj to be in a coreferential or in an anaphoric relation. The

scores obtained for each candidate can then be used for sorting them. In other approaches,
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the candidates are directly ordered through the application of various preference rules or

discourse principles.

The last step of the algorithm is searching/clustering: this step results in the actual

selection of an antecedent from the ranking obtained from the previous step. In principle,

the list of candidates can be empty, in which case mj is left unresolved, meaning that mj

is in fact not anaphoric. If it isn’t empty, the list is searched. The search proceeds either by

picking the candidate with the highest score or by going through the list in some specific

order (e.g., reverse linear order) and picking the first candidate that meets a threshold score.

Some coreference resolution systems also allow for the selection of several antecedents for

mj . Through transitive closure, these various antecedent selection techniques implicitly

amount to imposing a partition overM.

2.2 Brief history

Historically, research in computational reference resolution has seen the succession of three

main paradigms. With respect to the RESOLVE algorithm, these different approaches differ

along two three main dimensions: (i) the level of automation in the preprocessing steps

1-3, (ii) the amount of sophistication in the sources present in step 2, and (iii) the type of

methods used for resolution steps 5 and 6.3

2.2.1 Knowledge-based systems

The first reference resolution systems, developed from the sixties through the eighties, were

hand-crafted knowledge-based systems. Viewed as a whole, this body of work can be

described as an attempt to algorithmically model the linguistic knowledge (and sometimes

also domain and world knowledge) influencing anaphora resolution. These different knowl-

edge sources are encoded in the form of rules that are manually engineered according to lin-
3The review proposed in this section is by no means exhaustive. The interested reader is referred to (Hirst,

1981), (Mitkov, 2002a) and (Ng, 2002) for more complete panorama.
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guistic theories. Most of these approaches rely on a distinction between (hard) constraints

and preferences during the resolution steps 5-6. Also typical of these approaches is that they

assume perfect input: texts are pre-analyzed or at least corrected by human experts. Not all

these systems were actually implemented, and when they were, they are usually manually

tested.

Within knowledge-based approaches, one can further distinguish between approaches

that focus on the detailed modelling of one type of linguistic knowledge (either syntax, se-

mantics, or discourse), and approaches that try to combine the effects of multiple knowledge

sources. An example of the former is the syntax-based approach of (Hobbs, 1976, 1978).

In these two papers, Hobbs proposes a “naive” algorithm for pronoun resolution that solely

relies on syntactic and morphological information. This algorithm assumes full syntactic

trees for the input text and uses (i) a morphological filter to rule out unlikely antecedents

and (ii) a tree traversal search to find the “best” antecedent. This algorithm is interesting

both for its extreme simplicity: it relies solely on binding and agreement constraints, and

its good performance (especially for intra-sentential resolutions): (Hobbs, 1978) reports

accuracy scores as high as 88% based on manual evaluation. The main drawback of this

approach is that it requires full syntactic parses, which are still hard to produce in a robust

and non-noisy way.

Another type of knowledge-based approach can be found in the work of (Brennan

et al., 1987) and (Grosz et al., 1995). Often called discourse-based, these approaches are

based on Centering Theory, a theory of discourse inspired by early works of Barbara Grosz

and Candice Sidner (e.g., (Grosz and Sidner, 1986)). Roughly, centering proposes a set of

constraints and principles whose aim is to track down the focus of attention of discourse

participants. The antecedent candidate in focus is the most salient to be referred to by

the current pronominal anaphor or definite description. Interestingly, salience in this theory

ranking is primarily determined on the basis of surface syntactic information. Overall, these

“attention-based” approaches have had rather mixed results: for instance, (Walker, 1989)
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shows that the algorithm of (Brennan et al., 1987) underperforms against Hobbs’ naive ap-

proach. See (Kehler, 1997) and (Beaver, 2004) for some interesting criticisms of Centering,

and (Tetreault, 2001) for a corpus-based evaluation of these centering-based algorithms. Fi-

nally, note that other discourse-based approaches have been proposed to handle anaphora

resolution (Hobbs, 1979; Kehler, 2002; Asher and Lascarides, 2003). Instead of viewing

anaphora resolution as independent process (as is done in Centering), these “coherence-

driven” approaches instead view it as a by-product of the establishment of discourse re-

lations. Several systems can be seen as attempts to implement some of these ideas (e.g.,

Cristea et al. (1998)).

While the two previous approaches focus on modelling a particular type of informa-

tion source, (Carbonell and Brown, 1988) instead take the view that anaphora resolution can

be best accomplished through the combination of a set of strategies. Thus, this multi-factor

approach relies on a set of constraints and preferences, which are syntactic, semantic, and

pragmatic, to determine the antecedent of an anaphor. For instance, the syntactic constraints

include gender and number agreement, while the syntactic preferences include topicaliza-

tion and grammatical parallelism. The semantic constraints include selectional restrictions,

while the semantic preferences include thematic role parallelism. A characteristic of this

approach is that conflicts between various applicable preferences are not resolved: in those

cases, the anaphor is considered to be truly ambiguous.

2.2.2 Heuristics-based systems

Difficult and expensive to build, the knowledge-based systems suffer from the additional

problem of their lack of robustness which makes them difficult to port to other domains and

languages or to incorporate into larger NLP interfaces. These limitations, combined with

the development of cheaper and more reliable NLP tools (such as part-of-speech taggers

and chunkers), led many researchers to investigate alternative solutions. The nineties thus

saw the emergence of heuristics-based systems, also known as knowledge-poor systems.
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These systems adopt a more engineering approach and can be seen as an attempt to make

the most of limited and possibly noisy information by using carefully designed heuris-

tics. Less concerned by theoretical motivations, these systems achieve performance that are

comparable to their knowledge-based counterparts, while gaining in design simplicity and

robustness.

An example of this type of approach is the Resolution of Anaphora Procedure (RAP)

proposed by Lappin and Leass (1994) which is a salience-based algorithm for resolving

third person pronouns. The algorithm works by computing a salience measure for each

antecedent candidate based on several salience factors determined in terms of grammatical

role, parallelism of grammatical roles, frequency of mention, and sentence recency. Each of

these factors is associated with an initial, pre-defined weight (the salience sentence recency

is assigned the initial weight of 100, subject emphasis 80, etc.). These different weights

get degraded as sentences in the discourse get processed. The salience of each candidate is

computed as the sum of the salience values of the elements in its current chain. Eventually,

the candidate with the highest salience measure is chosen as the antecedent. Using the

perfect output from a morphological analyzer and a full syntactic parser, Lappin and Leass

(1994) report an accuracy score 86% (on 360 pronoun occurrences).

Kennedy and Boguraev (1996) propose an interesting extension to Lappin and Le-

ass’ approach. By contract to RAP, their system does not require in-depth and full syntactic

parsing, but relies only on POS tagging and grammatical functions of lexical items. They

reported 75% success, on a random selection of documents from different genres (from

press releases to web pages). Another extension of RAP was made by Mitkov (1998), who

investigates a wider list of different salience factors (“indicators” in Mitkov’s terms). The

weighting scheme is this approach is different in that candidates are assigned a score (2, 1,

0, −1) for each salience indicator. Mitkov’s indicators are related to salience (e.g., definite-

ness, indefiniteness, giveness, repetition), structural matches (e.g., collocation, sequential

structure), distance. This approach was evaluated on a small corpus of technical manuals
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(containing only 223 pronouns), where it achieves a success rate of 89.7%.

2.2.3 Machine learning systems

Although both knowledge-based and heuristics-based approaches have still been pursued,

the last decade of research in reference resolution has seen the emergence of statistical

and machine learning systems. These new approaches typically also use limited knowl-

edge sources (that is, they are also “knowledge-poor”), but they do away with manually

engineered rules or heuristics relying instead on numerical methods to determine the im-

portance of these sources in the resolution decisions. This makes these systems easier to

design and to port to other domains and languages, and theoretically more appealing since

they are grounded in a mathematically sound framework. This shift, also present in other

areas of NLP, has been made possible due to increasing availability of corpora annotated

with anaphoric/coreference information. Some of these have been developed in the con-

text of various IE shared-task competitions such as the Message Understanding Conference

(MUC) and the Automatic Content Extraction (ACE). These competitions have somewhat

redefined the research agenda by putting the emphasis on the larger task of coreference res-

olution (arguably more useful to IE) and have led to the development of better evaluation

standards.

Supervised approaches

Unlike manual approaches, machine learning approaches to coreference resolution induce

a model that determines the probability that two NPs are coreferent from annotated data

automatically via the use of learning algorithms. They can be characterized in terms of the

knowledge sources being employed (represented as features), the method of training data

creation (or sampling), as well as the the clustering algorithm being chosen.4

4At the core of supervised learning is the so-called inductive learning hypothesis (Mitchell, 1997), p.23,
according to which:

Any hypothesis found to approximate the target function well over a sufficiently large set of
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Since the work in this dissertation directly builds upon previous supervised machine

learning approaches, we present these approaches in more detail in Section 2.3.

Unsupervised approaches

While most of the most of the work in learning-based reference resolution has used super-

vised learning techniques, there has also been at least two attempts at developing unsuper-

vised approaches. By definition, these approaches do not make use of annotated data for

training their systems.

The first approach is proposed in Cardie and Wagstaff (1999). These authors ex-

plicitly view coreference as a clustering task and use a right-to-left single-link clustering

algorithm to partition the set of mentions into coreference equivalence classes. The cluster-

ing algorithm uses a distance metric between two mentions that is a linear combination of

the incompatibility scores computed for the two mentions. Merging is considered whenever

the distance is less than the predefined clustering radius. The knowledge sources used in

Cardie and Wagstaff (1999) include: lexical (e.g. head noun match, word overlap), syntactic

(e.g. gender, number, animacy, apposition), semantic (e.g. WordNet class compatibilities),

and positional (e.g. number of intervening noun phrases between the two NPs under con-

sideration) features. Like in the heuristic-based approaches, the weight associated with

each feature is manually determined. This approach was evaluated on MUC-6 data set, and

obtained 48.8% recall and 57.4% precision.

Another unsupervised approach is proposed by Bean and Riloff (2004) in their

BABAR system. The focus of this study is on the incorporation of contextual (or thematic)

role knowledge to identify the coreferential pairs. BABAR employs IE techniques to rep-

resent and learn role relations, and uses unsupervised learning to acquire this knowledge

from plain texts. Learning starts by generating a set of “seeds”, which are cases of anaphor-

training examples will also approximate the target function well over other unobserved exam-
ples.
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antecedent pairs that can be easily be resolved (e.g., by string matching). BABAR then

applies the AutoSlog system of Riloff (1996) to the unannotated training texts to generate a

large set of case frames coupled with a list of extracted noun phrases. For coreference res-

olution, BABAR utilizes three contextual role sources derived from the caseframe data: (i)

the caseframe network (i.e., the caseframes that co-occur in anaphor-antecedent pairs), (ii)

lexical caseframe expectations (i.e., two coreferential mentions are substitutable for each

other in their caseframes), and (iii) semantic caseframe expectations (i.e., the same as (ii)

but based on the semantic classes of the mentions). The resolution uses seven additional

sources including gender/number/semantic matching, distance, recency, etc. The system

was tested on the definite and pronominal anaphors of MUC-6 corpus. The main positive

result of this study is that the unsupervised-learned contextual roles are able to improve

recall of 15% in the resolution of pronominal anaphors. 5

2.3 Standard machine learning approach

2.3.1 Reference resolution as binary classification

The standard approach recasts the task of reference resolution as a binary classification

problem in which pairs of mentions are labelled as either coreferential or not. For coref-

erence resolution, this classification phase is combined with a clustering alogrithm that is

responsible for merging the links identified into coreference chains. As a representative

example of this approach, we describe (Soon et al., 2001): this approach is typically used

as a baseline for comparing other approaches. Recent variations on and departures from

this original approach are also discussed in the next sections.
5See also Haghighi and Klein (2007) for a new and very promising unsupervised approach to coreference.
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Model

This approach tackles coreference in two steps by: (i) estimating the probability, P (COREF|〈π, αi〉),

of having a coreferential outcome given a pair of mentions 〈π, αi〉, and (ii) applying a se-

lection algorithm that will single out a unique candidate out of the subset of candidates

αk for which the probability P (COREF|〈π, αk〉) reaches a particular value (typically .5).

For building their classifier, (Soon et al., 2001) use the C4.5 tree induction system as their

learning algorithm.

Training

Training instances are constructed based on pairs of mentions of the form 〈π, αi〉, where π

and αi are the descriptions for an anaphoric mention and one of its candidate antecedents,

respectively. Each such pair is assigned either a label COREF (i.e. a positive instance) or a

label NOT-COREF (i.e. a negative instance) depending on whether or not the two mentions

corefer. In generating the training data, we create for each anaphoric mention: (i) a positive

instance for the pair 〈π, αi〉 where αi is the closest antecedent for π, and (ii) a negative

instance for each pair 〈π, αj〉 where αj intervenes between αi and π.

Feature set

The system proposed by Soon et al. (2001) use a set of 12 simple features, describing: (i)

the anaphoric mention π, (ii) the antecedent candidate α, and (iii) the relation between the

two mentions. These features are informally described in Table 2.1.

Resolution

Once trained, the classifier is used to select a unique antecedent for each anaphoric pronoun

in the test documents. In the Soon et al. (Soon et al., 2001) system, this is done for each

pronoun π by scanning the text right to left, and pairing π with each preceding mention αi.

Each test instance 〈π, αi〉 thus formed is then evaluated by the classifier, which returns a
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Feature Description
1. ana pro π is a pronoun {1,0}
2. ana def np π is a definite NP {1,0}
3. ana dem np π is a demonstrative NP {1,0}
4. ante pro α is a pronoun {1,0}
5. distance Distance between π and α in sentences {0,1,2,. . .}
6. str match π and α have identical string {0,1}
7. both pn π and α are both proper names {0,1}
8. gender agr π and α have the same gender {0,1}
9. number agr π and α have the same gender {0,1}
10. sem class agr π and α have the same semantic class {0,1}
11. alias π is an alias (e.g., acronym) of α {0,1}
12. appositive π is an appositive of α {0,1}

Table 2.1: Feature set used by Soon et al. (2001)

probability representing the likelihood that these two mentions are coreferential. Soon et

al. (Soon et al., 2001) use “Closest-First” selection: that is, the process terminates as soon

as an antecedent (i.e., a test instance with probability > .5) is found or the beginning of the

text is reached.

2.3.2 Variations on this approach

Learning algorithm

A lot of implementations of the pairwise classifier have used Decision Trees (McCarthy

and Lehnert, 1995; Soon et al., 2001; Ng and Cardie, 2002a), but other types of learning

algorithms have also been used more recently. For instance, (Morton, 2000; Kehler et al.,

2004b) use maximum entropy models, while (Ponzetto and Strube, 2006) use SVMs. See

(Uryupina, 2004) for a comparison of different learning algorithms.

Feature set

As noted above, Soon et al. (2001) only use 12 features. A number of recent works have

focused on enhancing the feature set used by pairwise coreference classifier. For instance,
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Ng and Cardie (2002a) expand the feature set to a deeper set of 53: these features allow

more complex NP string matching operations, as well as finer-grained syntactic and seman-

tic compatibility tests. More recently, several approaches have tried to include finer-grained

syntactic information (Denis and Kuhn, 2006; Yang et al., 2006), others to use richer se-

mantic features (e.g., selectional restrictions, semantic roles) (Kehler et al., 2004a; Ponzetto

and Strube, 2006; Ng, 2007).

Sampling method

Various alternatives have been proposed to the sampling method proposed in Soon et al.

(2001). Most of these methods primarily differ in the creation of the positive (i.e., coref-

erential) instances. In McCarthy and Lehnert (1995), positive instances are created for

each anaphoric mention paired with each of its antecedents, while negative instances are

created by pairing each mention with each of its preceding non-coreferent noun phrases.

This results in many more instances being created, and can potentially make the training

process inefficient. The approach of Soon et al. (2001) is actually posterior to McCarthy

and Lehnert (1995), and was presented as an attempt at reducing training times. Another

method is proposed in Ng and Cardie (2002a). This method generates positive instances

for each anaphoric mention and its most confident antecedent, which is defined as: (i) the

closest preceding antecedent if the anaphor is a pronoun, but (ii) the closest non-pronominal

antecedent if the anaphor is a non-pronominal anaphor. Negative instances are generated

as Soon et al. (2001). Uryupina (2004) further refines the method used by Ng and Cardie

(2002a) by providing different samplings for different NP types (e.g., proper names, definite

descriptions).

Link selection

A number of different link-selection approaches have also been proposed; these often work

in tandem with a specific sampling method during training. Ng and Cardie (2002a) proposes
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a “Best-First” clustering algorithm as an alternative to the “Closest-First” algortihm of Soon

et al. (2001). The “Best-First” algorithm selects as the antecedent the (closest) mention

that has received the highest coreference probability from its set of preceding coreferent

mentions. McCarthy and Lehnert (1995) uses an “Aggressive-Merge” clustering, in which

each mention is merged with all of its preceding coreferent mentions. Note that the later

is likely to yield higher recall, while the two previous algorithms are likely to be better in

precision.

2.3.3 Limitations and recent developments

Model type

A potential drawback of pairwise classification is that it treats each antecedent candidate

as a separate, independent event, and as such fails to capture the dependencies between the

different candidates (Yang et al. (2003)). Ideally, one would like to make the competition

between these different candidates part of training and directly learn a ranking function over

this candidate set. Such a ranking approach is explored for anaphora resolution in Chapter 3

and extended for coreference resolution in Chapter 4.

Single model

Within the standard approach, anaphora resolution and coreference resolution proceed by

learning a single, monolithic classification model. This in effect amounts to giving a uni-

form treatment to different types of anaphors.6 This is problematic, given that different

anaphoric expressions are sensitive to different factors in different ways. In Chapter 4, we

propose to build several ranking models for different anaphoric expressions: these models

use different feature sets and different sampling strategies during training.
6Two noticeable exceptions are (Morton, 2000) and (Ng, 2005a), who propose using separate (classification)

models for different types of expressions.
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Decision locality

Another weakness of the standard approach is that it fails to account for dependencies be-

tween coreference decisions. This is true both during the training of the model (since the

model is trained solely based on pairs of mentions), and during its application (since the

clustering decisions are made independently). For instance, note that with the clusterings

described above, nothing prevents a situation like the following (where “=c” stands for

“corefer”):

(2.1) A =c B, B =c C, A 6=c C

This limitation affects both anaphora resolution and coreference resolution, but it is espe-

cially important for coreference resolution, where one would like to ensure that the set of

mentions in an entity forms a coherent whole. Part of the problem of the standard approach

is that the classification and the clustering steps are optimized separately. This means in

turn that any improvement brought to the classifier are not guaranteed to produce overall

improvements (Ng, 2005b).

Different “global” approaches have been proposed to tackle these problems. Some

approaches have tried to alleviate these problems while still relying on pairwise classifica-

tions of mentions. An earlier attempt is provided by (Morton, 2000) and relies on using

a discourse model. (Kehler, 1997) uses Dempster’s Rule to combine pairwise coreference

probabilities to compute the score of the global partition. A more sophisticated approach

is proposed by (Luo et al., 2004) and (Luo, 2007): these authors model the coreference

problem using a Bell tree and use beam search for constructing the final tree during testing.

(Ng, 2005b) proposes an approach where the outputs of different resolvers are reranked.

Other approaches propose to directly learn a global model where coreference decisions are

directly conditioned on entities (i.e., chains), rather than on mentions (Morton, 2000; Luo

et al., 2004; Culotta et al., 2007). A different type of global approach is proposed in Chap-

ter 5.
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Knowledge prediction and integration

Reference resolution depends on many different information sources. Yet most existing

approaches have only been using very limited information sources. Furthermore, many

recent attempts at incorporating more information sources have been disappointing, lead-

ing to degradation in performance (Kehler et al., 2004a; Ng and Cardie, 2002b; Denis and

Kuhn, 2006). The main problem faced by these approaches is the extraction of linguis-

tically rich information from raw text is very challenging, hence error-prone. This raises

the following question: how to best incorporate this potentially imperfect information? For

the most part, previous approaches have incorporated additional information sources either

as features or as a pre- or post-processing module. Both of these approaches are however

problematic. The first approach faces the problem of error propagation: error made by the

upstream model tend to propagate into the downstream model. Integrating information as

features alleviates error propagation somewhat, since the noise is already present in the

training. But this approach might face the problem of feature “washout”, where some nor-

mally “good” features do not have their discriminative power due to the presence of many

other features. At a more abstract level, the problem is that there are often complex, mutual

dependencies between the outcomes of the upstream and downstream models. Failing to

encode these dependencies means that the upstream model is going to over-constrain the

downstream model. Chapter 5 proposes a more elaborate way to combine different models

for coreference.

2.4 Corpora and evaluation

The recent improvements in robust reference resolution have been made possible due to the

increasing availability of large annotated corpora with anaphoric/coreference information

and the related development of rigorous numerical evaluation standards. This section intro-

duces the main datasets available and describes the most commonly used evaluation metrics
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for anaphora and coreference resolution.

2.4.1 Corpora

The largest and most commonly used corpora for developing and evaluating anaphora/coreference

systems are the MUC-6 corpus (muc, 1995), MUC-7 corpus (muc, 1998), and the ACE cor-

pora.7 These corpora have been created in the context of two IE government-funded com-

petitions: respectively, the Message Understanding Conference (MUC-6 and MUC-7) and

the Automatic Content Extraction (ACE) competitions. In both cases, the particular genre

represented is that of news reporting (including the different sub-genres of newswire and

broadcast news in the case of ACE). Originally designed for evaluating coreference systems,

these corpora have however also been used recently for anaphora resolution. In the follow-

ing, we briefly discuss the composition and annotation schemes used in these corpora, as

well as some of the problems (as noted for instance by (van Deemter and Kibble, 2000)).

MUC-6 and MUC-7 corpora

Successively released in 1995 and 1998, the MUC-6 and MUC-7 corpora both contain news-

paper articles from the Wall Street Journal. All the annotated texts amount to about 65,000

words. The MUC-6 documents are exclusively about business related news (leadership

changes, in particular), while MUC-7 documents are about plane crashes, space vehicles,

and missile launches. The two datasets are divided into “dryrun” and “formal” documents,

respectively used for training and testing: MUC-6 follows a 30/30 document split, while

MUC-7 follows a 30/20 split.8

According to MUC-6 and MUC-7 annotation guidelines (Hirschman and Chinchor,

1998), coreference relationships can hold between elements of the following categories:

proper names and named entities, Noun Phrases (including things like dates, currency
7These corpora are available through the Linguistic Data Consortium (LDC):

http://www.ldc.upenn.edu.
8These figures correspond to the splits used during the official evaluation. Some 150 additional documents

exist for MUC-6.
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expressions, and percentages, but not conjoined NPs), bare nouns (including modifiers),

and pronouns (including personal, possessive, and demonstrative pronouns, but not relative

ones), referred collectively as markables. As for what constitutes a coreference relation, the

guidelines go beyond so-called “basic coreference” to include bound anaphora, appositives,

predicative nominals, and metonymies (among other things).

The coreference relations, along with the text layout (e.g., headline, location, sen-

tence breaks), is encoded in an SGML format. A short excerpt from MUC-7 is reproduced

in Figure 2.1. Markables that enter in a coreference relation are enclosed inside a pair of

<s>In <COREF ID="11" TYPE="IDENT" REF="12" MIN="quarter">the
third quarter</COREF>, <COREF ID="13" TYPE="IDENT" REF="10"
MIN="company"> the company, which is 61%-owned by Murphy Oil
Corp. of Arkansas, </COREF> had <COREF ID="100" MIN="loss">a
net loss of <COREF ID="17" TYPE="IDENT" REF="100">$46.9
million</COREF>, or <COREF ID="16" TYPE="IDENT" REF="17"
MIN="91 cents">91 cents a share</COREF>.</s>

Figure 2.1: An excerpt from the MUC-7 corpus

<COREF> and </COREF> tags. Crucially, only markables that are coreferential with other

markables in the text are represented this way, which means that single-mention entities

(i.e., singleton chains) are not encoded in the annotation. (An example is the NP Murphy

Oil Corp. of Arkansas in the above excerpt.) Each coreferential markable is identified by a

unique ID attribute. The additional REF attribute is used for markables whose referent has

been previously introduced through another markable: the value of the REF attribute is the

ID value of a coreferential markable (typically, that of its closest “antecedent”). In addition

to these two attributes, a markable can also have a TYPE, MIN, STATUS attributes (see

(Hirschman and Chinchor, 1998)) for details.
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ACE corpus

The ACE corpus can be seen as a successor, as well as a refinement, of the MUC corpora. The

overall goal of ACE is indeed broader, since it consists of the “detection and characterization

of entities, relations, and events”. The first ACE corpus was released in 1999, and has

known various updates over the recent years. The discussion that follows describes only the

2002 Phase 2 release and focuses on the annotation pertaining to the “entity detection and

tracking” task.

The ACE corpus has three parts, each containing around 75,000 words and corre-

sponding to a different sub-genre: broadcast news (BNEWS), newspaper texts (NPAPER),

and newswire texts (NWIRE). Each set is split into a train of 60,000 words part and a

devtest part of 15,000 words. The precise split-up in terms of number of documents and

mentions is shown in Figure 2.2.

# documents # mentions
Dataset train devtest train devtest
BNEWS 216 51 10,086 2,608
NPAPER 76 17 11,410 2,504
NWIRE 130 29 10,868 2,630
ENTIRE ACE 422 97 32,364 7,742

Figure 2.2: Split-up of the ACE (Phase 2) corpus

There are two important differences from the MUC data. First, the annotated men-

tions in ACE are restricted to 5 entity types: FACility, GPE (geo-political entity), LOCation,

ORGanization, PERson. Second, the ACE corpus also annotates single-mention entities (i.e.,

entities whose chain contain only one mention).

The annotation format of ACE is also different from that of MUC in that it relies on

two distinct files for each document: an SGML file that marks up the raw text, and an XML

file that marks up the different entities (and their mentions) in the text. A small excerpt of an

ACE XML file is given in Figure 2.3. More specifically, the XML file is organized in terms of

entity elements: each entity has an ID attribute and contains a entity type element
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<entity ID="9801.139-E28">
<entity_type GENERIC="TRUE">PERSON</entity_type>

<entity_mention TYPE="NOMINAL" ID="28-121">
<extent>

<charseq>
<!-- string = "Americans" -->

<start>1526</start><end>1534</end></charseq>
</extent>
<head>

<charseq>
<!-- string = "Americans" -->

<start>1526</start><end>1534</end></charseq>
</head>

</entity_mention>
<entity_mention TYPE="PRONOUN" ID="28-122">

<extent>
<charseq>
<!-- string = "they" -->

<start>1541</start><end>1544</end></charseq>
</extent>
<head>

<charseq>
<!-- string = "they" -->

<start>1541</start><end>1544</end></charseq>
</head>

</entity_mention>
</entity>

Figure 2.3: An excerpt from the ACE (Phase 2) corpus

specifying one of the 5 ACE types, and a list of entity mention elements. Each of

these mentions also has an ID and TYPE attributes (the latter characterized the head word

of the mention, and has three possible values: NAME, NOMINAL, PRONOUN). Finally,

the connection to the raw text is ensured by the an extent sub-element that encodes the

character offsets of each mention.
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Linguistic objections

Although the creation MUC and ACE has been salutary to the research on reference resolu-

tion in setting standards for annotation and evaluation (see Section 2.4), some of annotation

choices are somewhat debatable from a theoretical linguistic point of view. The most severe

criticisms have been voiced by (van Deemter and Kibble, 2000).9 We briefly review some

of these objections.

The major problem with these annotation schemes is that they fail to capture any

coherent notion of coreference: they indeed adopt a very stretched-out definition of corefer-

ence (one that encompasses that of anaphora), leading to certain semantic inconsistencies.

First, these schemes include non-referring expressions in their coreference annotation, as

in (2.2)a.:

(2.2) a. Whenever a solution emerged, we embraced it

b. Every TV network reported its profits.

c. Henry Higgins, who was formerly sales director of Sudsy Soaps, became presi-

dent of Dreamy Detergents.

This is a case of (bound) anaphora (i.e., it is clearly anaphoric to a solution), but not of

coreference. There can’t be coreference, since there isn’t reference in the first place.10 In-

cluding instances of bound anaphora in coreference chains may lead to additional problems,

as shown in (2.2)b.: by positing coreference between Every TV network and it, one wrongly

predicts that the referent of it is the set of all TV networks.

Bound anaphora are not the only type of expressions whose referentiality is prob-

lematic. Predicative Noun Phrases are also problematic, as illustrated in example (2.2)c.

The issue in this example concerns intensionality: relating the three underlined mentions
9These authors’ criticisms are about the MUC coreference annotation scheme, but they carry over to that of

ACE.
10Unless one regards coreference as a relation, not between actual (model) objects, but between abstract

discourse entities.
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by a coreference relation wrongly predict that the sales director of Sudsy Soaps and the

president of Dreamy Detergents are the same person.

2.4.2 Evaluation metrics

In addition to annotated corpora, the proper evaluation of anaphora/coreference systems

also requires adequate scoring methods. These constitute an important aspect of study in

the field by providing a way to compare systems and thus also shaping new directions of

research. Most of the evaluation work on reference resolution has been so-called intrinsic

evaluation, that is evaluation against a gold standard (in the form of an annotated corpus

such as MUC or ACE). A lot less attention has been given to extrinsic evaluation: that

is, evaluation through the embedding of resolver into another application. The work of

(Kehler, 1997) and (Morton, 1999) can however be regarded as attempts in that direction,

since these authors study the impact of coreference resolution in the context of larger tasks

such as IE and QA, respectively.

The following discussion is limited to the main scoring metrics developed for in-

trinsic evaluation.

Anaphora resolution

Anaphora resolution is defined as the task that of finding the correct antecedent for each

anaphoric mention. This means that anaphora resolvers can be evaluated using a simple

accuracy measure, as defined in (2.3).

Accuracy =
|correctly resolved anaphors|

|all anaphors|
(2.3)

That is, the accuracy of an anaphora resolver for a given document D is expressed as the

ratio between the number of anaphora for which the system finds the correct antecedent in

D and the total number of anaphora in D.11 The use of this particular metric comes with
11(Mitkov, 2002b) call this measure the success rate of the anaphora resolution algorithm.
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two important assumptions. First, the resolver is only allowed to pick a single antecedent

for each anaphor. To see why this is important, imagine the extreme case of a system that

would pick all mentions in D as antecedents: such a trivial system would get a perfect

accuracy score. Second, all the “true” anaphors are given to the system: that is, the only

errors made by the system are resolution errors (i.e., errors in antecedent selection). Again,

one can think of an extreme case, such as a system that would only resolve “easy” cases.

As just noted, the accuracy measure is useful for measuring the performance of a

system in the resolution phase (basically, steps 4-7 of RESOLVE). Other metrics have how-

ever been proposed with the aim of evaluating the anaphora resolution system as a whole

(with potential errors made in the preprocessing steps 1-3). As an illustration, (Baldwin,

1997) propose an evaluation metric in terms of recall and precision; the computation for

each of these is given in (2.4) and (2.5), respectively.

RecallAR =
|correctly resolved anaphors|

|all anaphors|
(2.4)

PrecisionAR =
|correctly resolved anaphors|

|anaphors identified by the system|
(2.5)

RecallAR is basically the same as the Accuracy measure above, but it is now coupled with

PrecisionAR measure, which computes the ratio between the number of correctly resolved

anaphors divided by the number of anaphors identified by the system.

Coreference resolution

The evaluation of coreference resolution systems is slightly more delicate, since one has to

consider the entire partition (i.e., the set of chains) produced by the system and determine

how well it matches the gold standard partition. Applying the anaphora resolution metrics

above would only give an imprecise way of evaluating a coreference system: these metrics

score pairwise 〈antecedent, anaphor〉 decisions and would miss implicit links that are

only present through transitive closure. For instance, a system that produces two links
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{〈A,B〉,〈B,C〉} would not get credit for the link 〈A,C〉.

Three different metrics have been proposed for evaluating coreference performance:

the MUC metric (Vilain et al., 1995), the B3 metric (Bagga and Baldwin, 1998), the CEAF

metric (Luo, 2005). Common to these metrics is: (i) they operate by comparing, for each

document, the set of chains S produced by the system against the “true” chains T , and (ii)

they report performance in terms of recall and precision.12 There are however important

differences in how each metric computes these scores, each producing a different bias.

MUC metric: a link-based evaluation The MUC metric directly relies on the notion of

coreference links (i.e., pairs of mentions) for computing its scores. Recall and precision

are indeed obtained by determining the number of links that are common to S and T .13

Specifically, recall is the ratio between the number of links that are common to S and T

and the total number of links in the T , whereas precision is the ratio between the number

of links common to S and T and the total number of links in S . In terms of errors made

by the system, recall penalizes the missing links (i.e., the links present in T but not in S),

whereas precision penalizes the spurious links (i.e., the links present in S but not in T ).

Let us see concretely how these different numbers can be computed. Suppose that

S is one of the chains composing S, and T one of T . First, note that the number of links

in a chain S (respectively T ) can be simply computed as |S| − 1 (respectively, |T | − 1).

This is because chains are equivalence classes: one only needs of n − 1 links to connect

all the elements of a chain with n elements. The computation of the total number of links

in S (respectively T ) obtains straightforwardly as a simple summation over the constitutive

chains. The number of links common to S and T can also be computed efficiently by taking

the intersection between the different S and T . Following the same rationale as above, there

are indeed |S ∩ T | − 1 common links between S and T (provided the S ∩ T is not empty).

12As usual, f -score is obtained by taking the harmonic mean of recall and precision. That is: f -
score = 2×Recall×Precision

Recall+Precision
.

13Technically, these sets of chains have first to be computed by taking the reflexive, transitive closure over
the pairs in the so-called response and key files.
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The precise definitions for recall and precision are given in (2.6) and (2.7).14

RecallMUC =

∑
S∈S∩T∈T 6=∅ |S ∩ T | − 1∑

T∈T |T | − 1
(2.6)

PrecisionMUC =

∑
S∈S∩T∈T 6=∅ |S ∩ T | − 1∑

S∈S |S| − 1
(2.7)

By far the most widely used, the MUC metric has however a number of shortcom-

ings (see (Bagga and Baldwin, 1998), (Popescu-Belis and Robba, 1998), (Luo, 2005)). The

first problem is that it favors systems that create large chains (and therefore fewer enti-

ties). This bias can sometimes lead to situations where a trivial strategy receives a better

score than an intuitively better system. Thus, a system that produces a single chain of-

ten achieves a perfect recall without always having severe degradation in precision (see

example below); this tendency is especially true for documents that have “large” chains.

This lenience with respect to large chains comes from the fact that MUC, in effect, only

counts as errors the miminum number of links required to map two S and T chains onto

another. For instance, two sets of chains T = {{m1,m2,m3,m6}, {m4,m5,m7}} and

S = {{m1,m2,m3,m4,m5,m6,m7}} can be reunited by positing a single extra link (i.e.,

there is only one spurious link). A second, related problem with this metric is that it doesn’t

give any credit for separating singleton chains. Recall that single mention entities are sim-

ply absent from the MUC annotation scheme. It is actually unclear how the MUC metric

would score these, since it relies on pairwise links: by definition, singleton chains contain

no such link.

B3 metric: a mention-based evaluation The B3 metric was directly designed to address

the MUC metric’s shortcomings. While MUC is link-based, B3is mention-based: both recall

and precision scores are computed at the level of each mention. Let Sm be the system

chain containing mention m, and Tm be the true chain containing m. The recall for m is
14The implementation proposed here is slightly different from, but equivalent, to that of (Vilain et al., 1995).

Vilain et al. use an intermedidate partition function for computing the common links. See the paper for details.
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calculated as the ratio between the number of common mentions in Sm and Tm (i.e., the

mention in |Sm ∩ Tm|) and the total number of mentions in Tm. Similarly, the precision

for m is calculated as the ratio between the number of mention in |Sm ∩ Tm| and the total

number of mentions in Sm.

The recall and precision scores for the document are then obtained by averaging

over the individual recall and precision scores, as shown in (2.8) and (2.9).

RecallB3 =
1
|M|

∑
m∈M

|Sm ∩ Tm|
|Tm|

(2.8)

PrecisionB3 =
1
|M|

∑
m∈M

|Sm ∩ Tm|
|Sm|

(2.9)

It is easy to see that this new metric, by definition, solves the problems faced by

MUC. First, B3 has no difficulty in the scoring of singleton chains, since the metric is

no longer based on pairwise links but on individual mentions. Second, large chains are

no longer unjustly favored: the number of errors in a given chain are being compounded,

since these errors affects the computation of each mention’s score. Finally, note that the B3

formulation provides some extra flexibility: although all errors receive the same weight in

(2.8) and (2.9), one can potentially introduce different weights for different mentions.

CEAF: an entity-based evaluation Yet another evaluation strategy is proposed with The

Constrained Entity Aligned F-Measure (CEAF) of (Luo, 2005). While MUC was link-based

and B3 was mention-based, this metric can be described as entity-based. The guiding prin-

ciple of CEAF is that each entity should only used once in the evaluation of the entire

partitioning. That is, each system chain S is mapped to at most one true chain T . This was

neither the case with MUC or B3, where each chain can in principle be used several times.

More concretely, this metric works by first computing the best of all possible one-

to-one mappings, G(S, T ), between the sets of chains S and T . The best mapping, g∗,

is the one that maximizes the total similarity, Φ(g) for a map g, which is just the sum

43



over the pairwise similarity φ(Si, Ti) over pairs of aligned Si and Ti chains. The pairwise

similarity φ(Si, Ti) is simply the number of common mentions to the two chains: that is,

φ(Si, Ti) = |Si ∩ Ti|. The entity alignment problem, although potentially very hard (there

is an exponential number of possible maps), is equivalent to finding the optimal alignment

in a bipartite graph for which there are polynomial time algorithms.15

Once the best map is found, the recall and precision can be easily computed, as in

(2.10) and (2.11).

RecallCEAF =
Φ(g∗)∑
i φ(Ti, Ti)

(2.10)

PrecisionCEAF =
Φ(g∗)∑
i φ(Si, Si)

(2.11)

In words, recall is computed as the ratio between total similarity for the best map

g∗ and the number of mentions in all the T (i.e., the self-similarity between each T of T ).

Precision, on the other hand, is the ratio between the total similarity for g∗ and the the

number of mentions in S(i.e., the self-similarity between each S of S).

Clearly, CEAF also constitutes an improvement over the MUC metric. In particular,

exceedingly large chains are strongly penalized by CEAF: each of them can indeed only be

used once during evaluation. Note that CEAF is arguably the toughest metric, since it is the

only metric within which predicting a valid coreference link might not receive any credit.

For instance, imagine a case where a system predicts a chain {m1,m2,m3,m4,m5,m6}

but the true partition consists of two chains: {m1,m2,m3} and {m4,m5,m6}. Under

CEAF, the predicted chain can only be used once: that is, the predicted chain can only

be mapped onto one of two true chains. The consequence is that two valid links will not

receive any credit whatsoever. Overall, it remains unclear to us whether CEAF represents an

improvement over B3. In this dissertation, we will report the coreference scores in terms of

the three metrics presented above.
15(Luo, 2005) uses the so-called Kuhn-Munkres algorithm. See the paper for more details.

44



A simple example Table 2.2 provides a simple example illustrating how the three above

coreference metrics operate. T is the set of true chains, S1 and S2 are the partitions pro-

duced by two hypothetical coreference resolvers.

T =
{
{m1,m3,m5}, {m2}, {m4,m6,m7}

}
S1 =

{
{m1,m2,m3,m6}, {m4,m5,m7}

}
S2 =

{
{m1,m2,m3,m4,m5,m6,m7}

}
Table 2.2: Three hypothetical coreference partitions over 7 mentions

Recall (R), precision (P), and f-score (F) scores for the three metrics for this exam-

ple are summarized in Table 2.3.

Metric S1 S2

R P F R P F
MUC .50 .40 .44 1.0 .66 .79
B3 .57 .42 .48 1.0 .39 .56
CEAF .57 .57 .57 .43 .43 .43

Table 2.3: Comparative results between MUC, B3, and CEAF

The bias of the MUC metric for large chains is shown by the fact that it gives better

recall and precision scores for S2 even though this partition is totally uninformative. More

intuitively, B3 highly penalizes the precision of this partition: precision errors are here

computed for each mention. CEAF is the harshest on S2, and in fact is the only metric that

prefers S1 over S2. Finally, note that CEAF assigns the same recall and precision: this is

because the two systems partitions the same set of mentions.

2.5 Summary

In this chapter, we gave an overview of: (i) the previous computational treatments to refer-

ence resolution, and (ii) the corpora and metrics used for evaluating the resolution systems.

We started by presenting a generic algorithm, RESOLVE, that details the different steps in-

volved in reference resolution, and that describes the majority of previous approaches.
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The main trends of research were briefly described from an historical perspec-

tive, from knowledge-based to heuristic-based to learning-based systems. Using Soon

et al. (2001) as an illustration, we describe the standard machine learning approach in

more detail: as discussed, most existing learning-based systems recast the problem of

anaphora/coreference resolution using a binary classifier. In the case of coreference resolu-

tion, this classifier is coupled with a link-selection algorithm that selects a single antecedent

per each anaphor. In effect, this approach amounts to reducing the task of coreference reso-

lution to that of anaphora resolution. We also discuss the main challenges faced by this stan-

dard approach (in particular, the potential inadequateness of both the classification model

and the clustering algorithm, as well as the lack of adequate and reliable knowledge), and

some recent work that addresses them.

Finally, we presented the various corpora annotated with coreference information

(the main ones being the MUC-6-MUC-7 and the ACE corpus) and the different evaluation

metrics proposed for anaphora resolution and coreference resolution (in particular, the MUC,

the B3, and the CEAF metrics).
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Chapter 3

A ranking approach to pronoun

resolution

In this chapter, we propose a maximum entropy ranking approach to pronoun resolution as

an alternative to commonly used classification-based approaches. Classification approaches

consider only one or two candidate antecedents for a pronoun at a time, whereas ranking

allows all candidates to be evaluated together. We argue that this provides a more natural

fit for the task and show that it also delivers important performance improvements. Tested

on the ACE datasets, the ranker obtains error reductions ranging from 5.4% to 31% when

compared to three previously proposed classifier-based approaches. Furthermore, we show

the ranker offers some computational advantage over the best performing classifier-based

approach, since it easily allows the inclusion of more candidate antecedents during training.

This approach leads to a further error reduction of 8.1%.1

1This chapter is based on and extends (Denis and Baldridge, 2007a).
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3.1 Maximum entropy models

A decisive step in applying machine learning techniques to a particular task is the identifi-

cation of a well-defined learning problem. This problem has to: (i) adequately capture the

structure of the task, and (ii) be suited to a particular learning algorithm. For many tasks,

this often means classification. Mathematically well understood, classification problems

have the advantage that they can be learned with a wide range of learning methods. Fur-

thermore, numerous NLP tasks, from part-of-speech tagging to syntactic parsing to seman-

tic role labelling, have been successfully modeled or decomposed in terms of classification

problems. As explained in Chapter 2, anaphora and coreference resolution has also been

cast in terms of classification. In this chapter, we develop an alternative view in which

anaphora resolution (in particular, pronoun resolution) is cast in terms of ranking. As we

will see, the ranking approach provides a more natural way to capture the structure of the

task.

In this section, we first introduce classification and ranking in general terms, and

show how each task can be formulated using log-linear (aka maximum entropy) models. In

the light of this formal introduction, we then turn in the next section to a critical assessment

of the classification-based approaches proposed in the literature and motivate our ranking

approach.

3.1.1 Classification

In a classification problem, one seeks to learn a function cl : X → Y , which maps an input

x ∈ X to a predefined class label y ∈ Y . The determination of each input x’s label is based

on a vector of m features describing an input and a label f̄ = 〈f1(x, y), . . . , fm(x, y)〉,

where fj : X × Y → <, and an associated vector of m parameters (i.e., weights) w̄ =

48



〈w1, . . . , wm〉, where wj ∈ <, that have been learned during training.2 In linear classifica-

tion, this is accomplished by summing over the different weights:

cl(x) = argmax
y∈Y

m∑
j=1

wjfj(x, y) (3.2)

The training data in the classification scheme takes the form of a set of n examples Tcl =

{(xi, yi)}ni=1, where each input xi has been annotated with its correct class yi.

The task of learning is that of finding the optimal set of parameters given the set

of training examples: that is, we want to learn the set of parameters that maximize the

likelihood of the training data. A common learning technique is to use maximum entropy

models, also known as log-linear or exponential models (e.g., (Berger et al., 1996)). Widely

used within NLP, these discriminative models have some important advantages: (i) their

focus is on directly modelling a discriminative function rather than on the probabilities

of the observations, and (ii) they make it easier to incorporate many information sources

without making independence assumptions. Crucial to our concern, these models can also

be used for ranking, as we will see shortly.3 Detailed presentations of these models are

given in (Berger et al., 1996; Ratnaparkhi, 1998). The following discussion is inspired from

and borrows the notation of (Collins and Koo, 2005).

In MaxEnt models, the parameters w̄ are used to define a conditional probability,
2For instance, a generic binary feature takes the following form:

fp,y′(x, y) =

(
1 ify = y’ and p(x) = true
0 otherwise

(3.1)

where p is known as a contextual predicate.
3Note that other learning algorithms, such as perceptrons and support vector machines (SVMs), can also be

used to learn classifiers and rankers.
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which takes the following exponential form:

Pw̄(y|x) =

exp
m∑
j=1

wjfj(x, y)

∑
y′∈Y

exp
m∑
j=1

wjfj(x, y′)
(3.3)

The task of learning is defined as that of finding the set of parameters w̄ that maximize the

log-likelihood of the training data Tcl.4 Equivalently, this can be formulated as minimizing

the following loss function with respect to Tcl:

LTcl(w̄) =
n∑
i=1
−logPw̄(yi|xi)

=
n∑
i=1
−log

exp
mP
j=1

wjfj(xi,yi)P
y∈Y

exp
mP
j=1

wjfj(xi,y)

=
n∑
i=1
−log 1

1+
P

y 6=yi∈Y
exp−(

mP
j=1

wjfj(xi,yi)−
mP
j=1

wjfj(xi,y))

=
n∑
i=1

log

(
1 +

∑
y 6=yi∈Y

exp− (
m∑
j=1

wjfj(xi, yi)−
m∑
j=1

wjfj(xi, y))

)
(3.4)

As shown in this final equality of the objective function,5 the goal of estimation is to find

the set of parameters that maximizes for each input xi from Tcl the following margin Mcl

between the correct class yi and the incorrect ones y:

Mcl =
m∑
j=1

wjfj(xi, yi)−
m∑
j=1

wjfj(xi, y) (3.5)

Intuitively, this means that the goal of estimation is to increase the weights of the features

that predict the correct class xi and to decrease those of the features predicting the other
4The relation to the concept of maximum entropy is the following: the model that maximizes the likelihood

of the training data is also the model that maximizes the entropy over the set of models consistent with the
empirical observations on the training data (Berger et al., 1996).

5The various manipulations in (3.4) follow for the most part from the definitions of logarithm and exponen-
tiation.

50



classes xj .

Before turning to ranking, note that the objective function above is slightly incom-

plete. Given the observed tendency of log-linear models to over-fit the training data (es-

pecially with sparse data), one often incorporates a regularization term in the objective

function. Typically, this is done by using a Gaussian prior on the weights which has the

effect of penalizing extreme values (Chen and Rosenfeld, 1999). That is, the actual loss

function in (3.4) should really be:

LTcl(w̄) =
n∑
i=1

−logPw̄(yi|xi) +
m∑
j=1

w2
i

2σ2
i

(3.6)

Finally, note that different algorithms for effectively estimating parameters have been pro-

posed (see (Malouf, 2002) for a comparison); in this dissertation, we used the limited mem-

ory variable metric optimization method implemented in the Toolkit for Advanced Dis-

criminative Modeling6.

3.1.2 Ranking

While numerous NLP problems have been cast as classification, others have been cast as

(re)ranking problems. A common example is parse selection. (e.g., (Collins and Duffy,

2002; Charniak and Johnson, 2005; Osborne and Baldridge, 2004; Toutanova et al., 2004)).7

In parse selection, one must identify the best analysis out of some set of parses produced by

a grammar. Different sentences of course produce very different parses and very different

numbers of parses, depending on the ambiguity of the grammar. To our knowledge, classi-

fication has never been explored for this problem. Other uses of rankers involve question-

answering (Ravichandran et al., 2003) and tactical generation (Velldal and Oepen, 2006).

Common to these different problems is that one is concerned with the identification of a
6Available from tadm.sf.net.
7A reranker is ranker that is applied to the output of a previous model used to produce a n-best list of

candidates.
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single “best” candidate among a set of possible candidates.

More formally, the goal in ranking is to learn a scoring function rk : Y(x) → <,

which maps a candidate y ∈ Y(x) for a given input x to a score. For instance, y might

be one candidate among a set of parses Y(x) for a sentence x. By assigning a score to

each candidate xi, this function defines a total ordering over the entire candidate set Y(x).

As for classification, one computes this score based on a set of weighted features, with the

difference that features are now defined solely based on the candidate (instead on being

based on input-label pair): that is, features are fj : Y(x)→ <. The score assigned to each

candidate y is computed as follows:

rk(y) =
m∑
j=1

wjfj(y) (3.7)

Given a set of candidates Y(x), the most likely candidate ŷ is simply the one that gets the

highest score:

ŷ = argmax
y∈Y(x)

rk(y)

= argmax
y∈Y(x)

m∑
j=1

wjfj(y)
(3.8)

In ranking, the training data Trk = {(xi,Y(xi), y∗i )}ni=1 is a set of tuples where each object

xi is associated with a set of candidates Y(xi) among which one candidate y∗i is singled out

as the correct candidate.8

In MaxEnt models, the conditional probability of y being the correct candidate for

an input x takes the following exponential form:

Pw̄(y|x) =

exp
m∑
j=1

wjfj(y)

∑
y′∈Y(x)

exp
m∑
j=1

wjfj(y′)
(3.9)

8For ease of exposition, we restrict the discussion to the case in which there is a unique correct candidate,
but this is by no means a requirement (that is, one can have various correct candidates).
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The objective function for ranking takes the following form:

LTrk(w̄) =
n∑
i=1
−logPw̄(y∗|x)

=
n∑
i=1
−log

exp
mP
j=1

wjfj(y)

P
y′∈Y(x)

exp
mP
j=1

wjfj(y′)

(3.10)

Using the same manipulations as in (3.4):

LTrk(w̄) =
n∑
i=1

log

(
1 +

∑
y 6=y∗∈Y(x)

exp− (
m∑
j=1

wjfj(y∗)−
m∑
j=1

wjfj(y))

)
(3.11)

That is, the goal of estimation is here to find the set of parameters that maximizes for each

set of candidates Y(x) the following margin Mrk between the correct candidate y∗ and the

incorrect ones y:

Mrk =
m∑
j=1

wjfj(y∗)−
m∑
j=1

wjfj(y) (3.12)

That is, one seeks for each candidate set the parameters that best teases the correct candidate

y∗ apart from all the other candidates y.

3.2 Modeling pronoun resolution

We now turn to the actual modeling of the pronoun resolution task. As introduced in Chap-

ter 1, the task of anaphora resolution —of which pronoun resolution is an instance— boils

down the process of selecting the correct antecedent for each anaphor in a given document.

More specifically, this process is a function σ : A → Cπ which takes as input an anaphoric

pronoun π ∈ A and a set of possible antecedent candidates Cπ = {α1, . . . , αn}, and out-

puts one of the candidates α̂ ∈ Cπ.9 Since A and Cπ are both subsets of the set of mentions

M in the document, σ is in fact a partial function overM. Typically, the candidate set Cπ
9This formulation makes the assumption that the resolution of an anaphor is independent from the resolu-

tions of other anaphors, which is of course incorrect. This issue will be directly tackled in the treatment we
give to coreference resolution in Chapter 5.
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is assumed to be the mentions that linearly precede the anaphor π.

3.2.1 Antecedent selection with classification

Given the description of classification in the previous section, it is easy to see that trying

to cast antecedent selection in terms of classification faces some important challenges. A

naive approach would be to regard the different anaphors π ∈ A as inputs and the different

antecedent candidates αi ∈ Cπ as class labels. Under this approach, antecedent selection

would simply equal class assignment. This approach is however not tenable in practice,

since the number of classes would be prohibitively large (leading to important sparsity

issues) and will vary considerably from one anaphor to the other (classification problems

traditionally use a stable set of class labels).

Given that antecedent selection doesn’t directly lend itself to classification, re-

searchers have investigated ways to coerce this task into a classification problem. We dis-

cuss two approaches presented in the literature: the Single-Candidate Classifier and the

Twin-Candidate Classifier. Common to both approaches is that antecedent selection is bro-

ken down into separate binary classification decisions, which are then used to impose a

ranking on the candidate set.

The Single-Candidate Classifier

As discussed in Chapter 2, the most common approach has been to recast the task as a

pairwise binary classification problem (e.g., (Morton, 2000; Kehler et al., 2004a)). Under

this approach, a classifier maps pronoun-candidate pairs, 〈π, αi〉 ∈ M×M, into one of two

class labels: COREF or ¬COREF. Viewed in probabilistic terms, we model Pscc(c|〈π, αi〉),

where c ∈ {COREF,¬COREF}. The corresponding exponential model is as follows:

Pscc(COREF|〈π, αi〉) =

exp
n∑
j=1

wjfj(〈π, αi〉, COREF)

∑
c

exp
n∑
j=1

wjfj(〈π, αi〉, c)
(3.13)
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In effect, the classifier determines for each candidate αi whether αi is (or is not) a “good”

antecedent with respect to the anaphoric pronoun π.

Note that under this approach, the simple application of the model doesn’t guarantee

that an antecedent is predicted for each anaphor. Thus, there will be cases in which the

model classifies several candidates as COREF, and cases in which no candidate will be

classified as COREF. This means that an extra step is required to effectively select one

antecedent. An obvious approach here is to compare the scores of the different candidates

and pick as antecedent the one that receives the highest score w.r.t. to the COREF class. This

decision rule is given in (3.14).

α̂ = argmax
αi∈Cπ

m∑
j=1

wjfj(〈π, αi〉, COREF) (3.14)

This comparison is problematic however since the probabilities outputed by the single-

candidate model are indirect, potentially imperfect, estimates of the true candidate proba-

bilities w.r.t. to antecedent selection. This comes from the fact that during training the dif-

ferent antecedent candidates are never compared. The different candidates for the a given

pronoun are considered independently, since only a single candidate is evaluated at a time.

Each pronoun-candidate pair is indeed modeled as a separate event: given an anaphor π and

a set of candidates Cπ, there are |Cπ| distinct events pairs (i.e., |Cπ| events). The contribu-

tion of each feature during training is determined based on how well this feature predicts the

two possible classes, instead of being determined based on how well it helps tease apart the

actual antecedent from the non-antecedents. For instance, assuming a correct antecedent αi

for the pronoun π, we are here trying to maximize for the following margin:

Mscc =
m∑
j=1

wjfj(〈π, αi〉, COREF)−
m∑
j=1

wjfj(〈π, αi〉,¬COREF) (3.15)

The problem is that we could potentially have situations in which a given feature f1 is

assigned a bigger weight than a second feature f2 despite of f2 being more discriminating
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than f1 wrt antecedent selection. Consider for instance the toy example in Table 3.2.1:

this example has only three anaphors π1, π2, and π3, each with different candidate sets

(among which is the correct antecedent), and two features: f1 and f2. Since each antecedent

Anaphor Candidate Set Class Feature vector
π1 απ1,1 ¬COREF f1

απ1,2 COREF f2

π2 απ2,1 ¬COREF f1

απ2,2 COREF f2

π3 απ3,1 COREF f1

απ3,2 ¬COREF f2

απ3,3 ¬COREF f2

απ3,4 ¬COREF f2

απ3,5 ¬COREF f2

απ3,6 ¬COREF f2

Table 3.1: Instances for pairwise binary classification

generates a distinct event, we have 10 different events overall (3 positive, and 7 negative)

for this example. The features are distributed as follows: f1 is associated with a positive

instance 1 out of 3 times, while f2 is associated with a positive instance 2 out of 7 times.

This means that f1 is likely to receive a larger weight than f2 w.r.t. to the COREF class, even

though f2 predicts the right antecedent more reliably than f1 (in 2 out of 3 cases).

The Twin-Candidate Classifier

To overcome the deficiencies of the single-candidate model, (Yang et al., 2003) propose a

model in which pairs of candidate antecedents are considered: the so-called twin-candidate

model.10 In this approach, classification is still binary (the labels now represent the two

candidates being compared), but the probabilities are now conditioned on the anaphoric

pronoun π and a pair of candidates 〈αi, αk〉 ∈ M ×M. Concretely, the model takes the

10While the twin-candidate approach is often associated with the work of X. Yang, the idea of using pairs of
candidates actually originates in (Connolly et al., 1997).
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following form: Ptcc(c|〈π, αi, αk〉), and can be given the following exponential form:

Ptcc(FIRST|〈π, αi, αk〉) =

exp
n∑
j=1

wjfj(〈π, αi, αk〉, FIRST)

∑
c

exp
n∑
i=1

wjfj(〈π, αi, αk〉, c)
(3.16)

Here, c ranges over the two classes {FIRST, SECOND} which correspond to choosing αi or

αk, respectively, as a “better” antecedent with respect to the anaphoric pronoun π.

During training, each triple contains: (i) the anaphor, (ii) an antecedent mention,

and (iii) a non-antecedent mention. Instances are labelled as FIRST or SECOND depending

on whether the antecedent comes either before or after the non-antecedent in the text, re-

spectively. The model induced through training is a preference model between any two can-

didates: as with the single-candidate classifier, the simple application of the model doesn’t

yet yield a predicted antecedent. That is, finding the final antecedent requires an extra step.

(Yang et al., 2003; Yang, 2005) use a round-robin algorithm, which works by comparing

all candidates in a pairwise fashion, and picking as the antecedent the one that accumulates

the most victories.11 This is captured in the decision rule in (3.17):

α̂ = argmax
αi∈Cπ

∑
αk 6=αi∈Cπ

αi � αk (3.17)

where:

αi � αk =



1 if
m∑
j=1

wjfj(〈π, αi, αk〉, FIRST) >
m∑
j=1

wjfj(〈π, αi, αk〉, SECOND)

or
m∑
j=1

wjfj(〈π, αk, αi〉, SECOND) >
m∑
j=1

wjfj(〈π, αk, αi〉, FIRST)

0 otherwise
(3.18)

Note that the twin-candidate approach is computationally much more intensive than the
11(Connolly et al., 1997) instead uses a greedier procedure by which each pairwise comparison results in the

elimination of the loser candidate.
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single-candidate approach, both during the training and the application of the model. Each

pronoun indeed potentially generates |Cπ|2 distinct events (instead of just |Cπ| for the single-

candidate classifier). That is, the total complexity is now cubic in the number of mentions

in the document; it was only square in the case of the single-candidate classifier. This is

potentially an important drawback, especially with documents that contain a large number

of mentions.

On paper, the twin-candidate classifier seems to be a better alternative than the

single-candidate classifier: its main advantage is to make the competition between pairs of

candidates part of the training criterion. That is, this model directly captures the relative

goodness of different antecedent candidates for the same pronoun. From this point of view,

this approach is similar to error-correcting output coding (Dietterich, 2000), an ensemble

learning technique which is especially useful when the number of output classes is large. It

can thus be seen as a group of models that are individual experts on teasing apart two dif-

ferent candidates. Nonetheless, this approach is still hampered by the fact that this model’s

probability estimates are only based on two candidates rather than all that are available.

This means that unjustified independence assumptions are still made during model training

and usage potentially hurting performance. In particular, it is –incorrectly– assumed in this

model that the preference between a candidate αi and αj is independent of the preference

between αi and any other candidate αk. As just noted, another potential problem for this

approach is its computational cost.

3.2.2 Antecedent selection as ranking

While the twin-candidate strategy is an improvement over the single-candidate approach,

it does not address the fundamental problem that pronoun resolution is not characterized

optimally as a classification task. The nature of the problem is in fact much more like

that of parse selection. Thus, we can view a text as presenting us with different analyses

(candidate antecedents) which each pronoun could be resolved to.
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Under the ranking approach, one is directly estimating the probability P (αi|π),

which is the probability of αi being the “best” antecedent for the pronoun π.

Prk(αi|π) =

exp
m∑
j=1

wjfj(π, αi)

∑
k

exp
m∑
j=1

wjfj(π, αk)
(3.19)

The advantage of the ranker lies in the fact that it compares all the candidates at once,

rather than in a piecemeal fashion. From that perspective, the ranker can be seen as a

generalization over the twin-candidate classifier. The crucial point is that the comparison

is part of the training criterion: each candidate αi for a pronoun π is assigned a score with

respect to the entire candidate set Cπ. Recall from the previous section that in ranking the

parameters are adjusted in a way that maximizes the margin between the correct candidate

and the bad candidates. In the present case, this means, for each anaphoric pronoun π,

maximizing the margin between the antecedent α∗ and the non-antecedents α:

Mrk =
m∑
j=1

wjfj(α∗)−
m∑
j=1

wjfj(α) (3.20)

Once the parameters have been estimated, determining the “best” candidate α̂ is simply

performed by picking the candidate in Cπ that has the highest score.

α̂ = argmax
αi∈Cπ

m∑
j=1

wjfj(αi) (3.21)

Given that the comparison between different candidates is directly part of the training cri-

terion, we know that the score received by a candidate αi is a true estimate of how well αi

fares against all the other candidates w.r.t. to being the best antecedent.

Another potential advantage of the ranking approach lies in the fact that features

simply are the contextual predicates instead of being the combination of a contextual pred-

icate combined with a class label, as is the case with classification. This has two impli-
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cations. First, the total number of features is much smaller than with the classifiers (half

the number of the features of the Single-Candidate Classifier and a fourth of the number

of the features of Twin-Candidate Classifier).12 Second, features can now be shared across

different outcomes. This sharing is part of what makes rankers work well for tasks that

cannot be easily cast in terms of classification: features are not split across multiple classes

and instead receive their weights based on how well they predict correct outputs rather than

correct labels.

3.3 Implemented systems

In the following, we compare four different pronoun resolvers: the first three systems are

reimplemented versions of systems that have been proposed in the literature. In particular,

we implemented two versions of the single-candidate classifier as found in (Kehler et al.,

2004a) and (Yang, 2005), respectively. For the twin-candidate classification system, we fol-

lowed the approach of (Yang, 2005). The implementation of the ranking system is entirely

new.

Since the probability models used for the different models have been described in

the previous section, we focus here on the different training and testing procedures. Before

describing each individual system, note that all systems were developed, trained and tested

on the ACE corpus, that is a corpus originally annotated with coreference chains. This means

that in principle, an anaphoric pronoun can have several antecedents. In order to guide

learning toward the mention that is the most likely to have caused the pronominalization,

we take the closest antecedent as the only true antecedent: all coreferential mentions except

the closest were eliminated before training. The different systems were tested on the ACE

corpus: true mention boundaries from the corpus were assumed.
12The Twin-Candidate Classifier produces twice the number of features of the Single-Candidate Classifier,

since it creates distinct features for each of the two candidates being compared.
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3.3.1 Single-candidate classifiers

For the two single-candidate classifiers, we use training and test procedures proposed in

(Yang, 2005)13 and in (Kehler et al., 2004a), respectively. These two implementations differ

in terms of both the way they sample the training instances, and in the way they select the

antecedent candidate set during testing.

Training

Training instances are constructed based on pairs of mentions of the form 〈π, αi〉, where π

and αi are the descriptions for an anaphoric pronoun and one of its candidate antecedents,

respectively. Each such pair is assigned either a label COREF (i.e. a positive instance) or a

label NOT-COREF (i.e. a negative instance) depending on whether or not the two mentions

are marked as coreferential. The number of instances thus created is at worst square in the

number of mentions in the document (if one assumes that all mentions preceding a pronoun

are potential candidates).

Both systems coincide in the way they produce the positive instances: these are

created for each anaphor π by selecting the closest antecedent αi. They diverge however

in the way they produce the negative instances. In (Yang, 2005), negative instances are

created for each non-antecedent αj that intervenes between αi and π.14 (Kehler et al.,

2004a) instead propose to generate negative instances for all non-antecedents that precede

the anaphor.

Resolution

Once trained, the classifier is used to select a unique antecedent for each anaphoric pronoun

in the test documents. This is done in two steps. First, each pronoun π is paired with

each mention αi in the candidate set Cπ, and the instance thus created in submitted to the
13This first model is the baseline used by (Yang, 2005) to evaluate his Twin-Candidate model.
14As discussed in Chapter 2, this way of selecting training instances is that of (Soon et al., 2001).
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classifier. Second, the antecedent candidate α̂ which receives the highest score w.r.t. to

the COREF class is selected as the correct antecedent.15 The two implementations of the

single-candidate classifiers differ in the way they define the candidate set, in a way that is

consistent with the way they each sample the training data. In (Yang, 2005), Cπ contains

only the mentions that appear in a window of 3 sentences from the anaphor π: this is

motivated by the fact that pronouns show a strong tendency to take very local antecedents.

(Kehler et al., 2004a), by contrast, consider all mentions that precede the anaphor π.

3.3.2 Twin-candidate classifier

The twin-candidate model was first proposed by Yang et al. (Yang et al., 2003) in the

context of coreference resolution. (Yang, 2005) and Ng (Ng, 2005a) more recently used it

specifically for the pronoun resolution task. In the following, we describe the training and

testing procedures of (Yang, 2005).

Training

Training instances are constructed based on triples of mentions of the form 〈π, αi, αj〉,

where π describes a pronominal anaphor and αi and αj are the descriptions for two of its

candidate antecedents and αi is stipulated to be closer to π than αj . These instances are

labeled either FIRST if αi is the correct antecedent or SECOND if αj is the correct antecedent.

For this to work, one has to add an additional constraint on the creation of instances, namely:

exactly one and only one of the two candidates can be coreferential with the pronoun. As

we already pointed out, the number of instances created is much larger than with the single-

candidate classifier: it is now cubic in the number of mentions in the document. In order to

obviate this problem, (Yang, 2005) suggests restricting the set of candidate set to a window

of 3 sentences including the sentence of the pronoun, and the immediately preceding two
15Note that this score didn’t always reach a probability for the COREF class of over .5. Concretely, this means

that the use of the standard link-selection techniques (as described in Chapter 2) would have resulted in some
anaphors not being resolved.
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sentences.

Resolution

Once trained, the twin-candidate classifier is used to select a unique antecedent for the given

anaphoric pronoun π. Like Yang et al. (Yang, 2005) and Ng (Ng, 2005a), we use a round

robin algorithm to compare the members of the candidate set for π. More specifically, test

instances are created for each pair of candidates, αi and αj , where αj precedes αi. These

instances are presented to the classifier, which determines which one of the candidates is

preferred; the winner of the comparison gets one point. Finally, the candidate with the most

points at the termination of the round robin competition gets selected as the antecedent for

π. Following (Yang, 2005), we use a window of 3 sentences as was done in training.

3.3.3 Ranker

The following describes our training and resolution procedures for the ranking system.

Training

The training instances for the ranker system are built based on an anaphoric pronoun π and

the set of its antecedent candidates Cπ. The candidate set is composed of: (i) the closest

antecedent for π, which is singled out as such, and (ii) a set of non-antecedents. The con-

struction of the latter set proceeds by taking the closest antecedent as an anchor and adding

all the non-antecedents that occur in a window of 3 sentences around it (including the cur-

rent sentence of the antecedent, the preceding sentence, and the two following sentences).

Resolution

Once trained, the ranker is used to select a unique antecedent for each anaphoric pronoun.

We build our candidate set in the same way as was done for the twin-candidate model: that

is, by considering the preceding mentions that occur in a window of 3 sentences, including
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the pronoun’s sentence and the 2 sentences preceding it. The selection of the antecedent

is straightforward with the ranker, since it simply boils down to picking the candidate for

which the model outputs the highest score.

3.4 Feature set

This section describes the feature set used in the different systems. Although this won’t be

made explicit in the description below, recall from Section 3.2 that features are different

objects for classifiers and rankers. Also, note that in the twin-candidate model, each feature

describing a candidate will in fact give rise to two distinct features, corresponding to each

of the two candidates being compared.

Our focus in feature design was to capture linguistically relevant information, while

relying on very limited linguistic processing. In particular, we only made use of a sentence

detector, a tokenizer, a POS tagger (as provided by the OpenNLP Toolkit16) and the Wordnet

database17. Recall that we assume the mention boundaries as given by the corpus.

The features were hand-selected and they fall into five main categories, which are

developed below. Roughly, all of these features describe properties of either the antecedent

candidate, or the relation between the anaphor and the candidate. The detailed feature set

is summarized in table 3.2.

Linguistic form: This includes features pertaining to the referential form of the antecedent

candidate: in particular, whether it is a proper name, a definite description, an indefi-

nite NP, or a pronoun.

Context: This includes features describing the context of the antecedent candidate: these

features can be seen as approximations of the grammatical roles, and as such inform

us on the salience of the potential candidate (Grosz et al., 1995). For instance, we
16Available from opennlp.sf.net.
17http://wordnet.princeton.edu/
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include as features the part of speech tags surrounding the candidate, as well as a

feature that indicates whether the potential antecedent is the first mention in a sen-

tence (approximating subject-hood), and a feature indicating whether the candidate

is embedded inside another mention.

Distance: This includes features capturing the distance between the anaphor and the po-

tential antecedent: pronouns due to their lack of lexical meaning are known to favor

antecedents that are close-by (e.g., (Ariel, 1988; McEnery et al., 1997)). More specif-

ically, we measured distance both in terms of the number of sentences and mentions

intervening between them. Binned values were used for these different distance mea-

sures.

Morphosyntactic agreement: This includes features that encode the gender, number, and

person of the two mentions. These are determined for non-pronominal NPs using

heuristics based on the part of speech tags (e.g., NN vs. NNS for number) and the

actual strings of the mentions (e.g., whether the mention contains a male/female first

name or honorific for gender). These features take the form of pairs of attributes,

making sure that not only strict agreement (e.g., singular-singular) but also mere

compatibility (e.g., masculine-unknown) is captured.

Semantic compatibility: This includes features designed to assess whether the two men-

tions are semantically compatible. For these features, we use the Wordnet database:

in particular, we collected pairs of Wordnet senses from the synonym set (or synset)

as well as from the synset of the direct hypernyms of this synset associated with each

mention. In the case of common nouns, we used the synset associated with the first

sense associated with the mention’s head word. In the case of proper names, we used

the synset associated with the name if available, and the string itself otherwise. For

pronouns (which are not part of Wordnet), we simply used the pronominal form.18

18This strategy produces a large number of potentially sparse features, but we find it to work better than using
similarity measures developed for Wordnet (e.g., Pedersen et al. (2004)).
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In addition to the simple features described above, we design composite features,

combining distances and the type of the pronoun (e.g., reflexive, possessive).

Linguistic Form
pn α is a proper name {1,0}
def np α is a definite description {1,0}
indef np α is an indefinite description {1,0}
pro α is a pronoun {1,0}
Context
left pos POS of the token preceding α
right pos POS of the token following α
surr pos pair of POS for the tokens surrounding α
Distance
s dist Binned values for sentence distance between π and α
np dist Binned values for mention distance between π and α
Morphosyntactic Agreement
gender pairs of attributes {masc, fem, neut, unk} for π and α
number pairs of attributes {sg, pl} for π and α
person pairs of attributes {1, 2, 3, 4, 5, 6} for π and α
Semantic compatibility
wn sense pairs of Wordnet senses for π and α

Table 3.2: Feature selection for pronoun resolution

3.5 Experiments and results

3.5.1 Corpus and evaluation

The training and testing datasets used for our experiments come from the ACE corpus, as

described in Chapter 2. The devtest material was only used once, namely for final test-

ing. Progress evaluation (including the estimation of the best regularization priors) during

the development phase was done solely by jackknifing the training set (we used a 5-fold).19

19For each model, we tried the following regularization priors: 0,1,2,4,5,10,100,1000,10000,100000. All
models except Kehler et al.’s reimplementation of the single-candidate classifier benefited from Gaussian
smoothing. This is in accordance with what (Kehler et al., 2004a) found.
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In our experiments, we used all forms of third person pronoun (including reflexive

and possessive forms) that were annotated as ACE “markables”. This excludes pleonastics

and references to eventualities or to non-ACE entities (that is, mentions that didn’t fall into

one of the five entity types used in ACE). Together, the three ACE datasets contain 4, 389

and 1, 093 referential pronouns, for training and testing, respectively.

Also, note that in building our antecedent candidate sets, we restricted ourselves to

the true ACE mentions. Our focus is on evaluating the classification approaches versus the

ranking approach rather than on building a full pronoun resolution system.

Following common practice in pronoun resolution, we report results in terms of

accuracy, which is simply the ratio of correctly resolved anaphoric pronouns. Since the ACE

data is annotated with coreference chains, we assumed that correctly resolving a pronoun

amounts to selecting one of the previous elements in the chain as the antecedent.20

3.5.2 Comparative results

The results obtained for the four systems on the entire data set and the three ACE datasets

are summarized in Table 3.3. They are compared with a naive baseline that picks the closest

preceding mention as the antecedent.

System ENTIRE ACE BNEWS NPAPER NWIRE

Baseline 53.6 54.3 52.5 54.5
SCC1 74.2 74.7 73.5 69.9
SCC2 79.6 78.9 77.9 73.5
TCC 81.4 77.0 78.3 78.9
RK 82.4 80.3 79.2 79.5

Table 3.3: Accuracy scores for (Yang, 2005)’s single-candidate classifier (SCC1), (Kehler
et al., 2004a)’s single-candidate classifier (SCC2), the twin-candidate classifier (TCC), and
the ranker (RK).

As shown by this table, the ranker system outperforms the three classifier systems,

with an accuracy of 82.4% on the entire ACE corpus. This corresponds to improvements
20This means that a pronoun can potentially be resolved to another pronoun.
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of 8% and 2.8% (error reductions of 31% and 13%, respectively) over the single-candidate

classifiers and of 1% (i.e., an error reduction of 5.4%) over the twin-candidate classifier.21

But note that only the gains over the two single-candidate classifiers are statistically signif-

icant.22 Although not significant, the gains over the twin-candidate classifier are however

consistent across the different datasets.

3.5.3 Additional results

In this section, we discuss an additional experiment aimed at getting additional insight into

the potential of the ranker. In the previous experiments, we provided a rather limited context

for training: we only considered mentions in a window of 3 sentences around the correct

antecedent. Our main motivation for doing this was to stay as close as possible to the test-

ing conditions given in (Yang, 2005) for the twin-candidate approach, thereby giving it the

fairest comparison possible. As noticed, this model is computationally much more intensive

than the other models, making it difficult within this model to widen the candidate set during

training and testing. The comparison of the two single-candidate models however suggests

that extending the context lead to better performance: the model that uses the largest train-

ing and test windows outperforms the model that uses a smaller context. An open question

is whether the ranker can also benefit from widening the window of candidates. To answer

this question, we ran an experiment on the same three ACE datasets and widened the win-

dow of sentences by collecting, in addition to the closest antecedent, all non-antecedents

preceding the anaphor up to 10 sentences before the antecedent (the test window was also

widened accordingly). The results for this experiment are reported in table Table 3.4:

These figures show slight, although not significant, improvements on the entire ACE

dataset and on the three datasets, with an overall score of 83.1%: the largest gain is found

on the BNEWS where there is an error reduction of 8.1%. Note finally that using the train-
21Note that (Kehler et al., 2004a)’s original implementation had accuracy of 75.7% on the entire ACE data

using a similar feature set. A difference however is that they didn’t use the true ACE markables.
22Throughout our experiments, significance was examined by running a t-test, with p < 0.05.
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System ENTIRE ACE BNEWS NPAPER NWIRE

RK (w = 2) 82.4 80.3 79.2 79.5
RK (w = 10) 83.1 81.9 80.1 80.1

Table 3.4: Accuracy scores for the ranker (RK) with a window of 10 sentences.

ing/test settings of SCC1 (that is, an even larger context) didn’t yield additional improve-

ments.

3.5.4 Learning curves

An important question is how the size of the training data impacts the performance of the

various systems. Given the cost associated with the annotation of anaphora and coreference,

this issue can be crucial in the choice of a system for a new language or a new domain. In or-

der to address this question, we tested the different pronoun resolvers on the NPAPER dataset

using different numbers of training documents.23 Figure 3.1 plots the learning curves of the

different systems.

The ranker outperforms all the other systems even when the number of training

documents is as small as 20 documents. Beyond that point, the ranker systematically beat

the other systems. The number of documents to outperform the SCC models is less than

that, since the ranker consistently beat these models with 10 or more documents. Finally,

note that the learning curves for the different models all show a tendency to plateau rather

quickly (at 35 documents): this suggests that the current feature set is probably not rich

enough.

3.6 Conclusions

We have demonstrated that using a ranking model for pronoun resolution performs better

than a classification model. On the three ACE datasets, the ranker achieves error reduc-
23The NPAPER dataset is the largest among the three datasets, with 1, 591 third person pronouns for training

and 457 for testing.
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Figure 3.1: Learning curves of SCC1, SCC2, TCC, and RK for the NPAPER dataset.

tions ranging from of 31%, 13%, and 5.4% over the different classifier models. Our results

thus corroborate Ravichandran et al.’s (Ravichandran et al., 2003) similar finding that rank-

ing outperforms classification for question-answering. Clearly, the ability to consider all

potential antecedents together, rather than independently, provides the ranker with greater

discriminating power.

The main difference between the twin-candidate approach and the ranking approach

is that under the former, candidates are compared by pairs (the best candidate is the one that

has won the most times), whereas in the latter an ordering is imposed on the entire set at

once. A potential advantage of the ranking approach is that it could allow one to define

features on the candidate set itself. Another advantage of the ranker over the preference

classifier is how ranking is obtained: only the ranker guarantees a global winner.

Besides performing better, the ranker is also the most attractive system from a

strictly computational perspective. The round robin nature of the pairwise contests in the

twin-candidate approach imposes a restrictive computational cost on its use which limits the
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number of NP mentions that can be considered in a candidate set (both during training and

testing). The ranker does not suffer from this limitation, and in fact we show that the ranker

achieves a further error reduction of 8.1% by increasing the size of the candidate set used

in training and testing. While the ranker has the same complexity as the single-candidate

classifier, it is however slightly faster to train and test since the ranker uses only half the

number of features used by the single-candidate classifier. Finally, we have shown through

the use of learning curves that the ranker has a fast learning rate and does not require a lot

of training data to outperform the classification-based models.

There are a number of ways that this model can be improved. First, notice that the

feature set that was used is still rudimentary: in particular, it includes very little syntactic

information (since it is here approximated in terms of POS contexts). Access to syntactic

configurations and grammatical roles is likely to improve performance (see e.g., Yang et al.

(2006)). While the ranker outperforms the classifiers outright, some benefit might also be

gained by using both approaches together. It would be straightforward to integrate classi-

fiers and rankers in an ensemble model. For example, a ranker could use the results of the

classifier as features in its model.
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Chapter 4

Extending the ranker to coreference

resolution

This chapter extends the ranking approach proposed for pronoun resolution to the larger

problem of coreference resolution. This extension consists in two important modifications,

both motivated by the more complex nature of the coreference task. First, we create special-

ized ranking models for different classes of referential expressions, in particular: (i) third

person pronouns, (ii) speech pronouns (i.e., first and second person pronouns), (iii) proper

names, (iv) definite descriptions, (v) other types of phrases. Second, we augment these

various rankers with a classifier model that predicts the discourse status of each mention.

Specifically, this model is used as a filter for the different expert models: that is, all and only

the mentions classified as discourse-old are resolved through their respective ranker. Evalu-

ated on the ACE datasets, this simple cascade strategy yields significant improvements over

a standard classifier-based coreference system on the three metrics described in Chapter 2.
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4.1 Introduction

In the previous chapter, we have shown that a ranking model provides a theoretically more

adequate and empirically better alternative approach to pronoun resolution than the tradi-

tionally used classification-based approaches. An open question is whether the superior

antecedent selection capabilities offered by the ranker can also benefit in the larger task of

coreference resolution. The nature of this task introduces two important challenges. The

first extra difficulty introduced by the coreference task is that we are now dealing with var-

ious possible types of anaphoric expressions: in addition to third person pronouns, we now

have to also handle speech pronouns (i.e., first and second person pronouns), proper names,

definite descriptions, as well as other types of nominals (e.g., anaphoric uses of indefinite,

quantified, and bare NPs). A large body of literature by theoretical linguists and psycholin-

guists suggest that different anaphoric expressions exhibit different patterns of resolution

and are sensitive to different factors ((Ariel, 1988; Gundel et al., 1993) inter alia).1 Most

machine learning approaches have largely ignored these differences and have handled these

different phenomena through a single monolithic model. A few exceptions are worth noting,

though. Thus, (Morton, 2000) and (Ng, 2005a) propose different (classification) models for

different NPs for coreference resolution and pronoun resolution, respectively. Other ap-

proaches (e.g., (Ng and Cardie, 2002a; Uryupina, 2004)) can be seen as partial attempts to

capture the differential preferences between different anaphors by using different sample

selection strategies during training. In this chapter, we propose different specialized ranker

models corresponding to different types of referential expressions. In particular, we create

models for: (i) third person pronouns, (ii) speech pronouns, and (iii) proper names, (iv)

definite descriptions, and (v) all the others. These models are developed in Section 4.2.

The second challenge introduced by coreference resolution is that not all referen-
1Formal semanticists often distinguish pronouns, definite descriptions, and proper names in terms of their

presuppositional behaviors: roughly, pronouns are most often bound, definite descriptions can be either bound
or accommodated, and proper names are most often accommodated (e.g., van der Sandt (1992)). Note that the
idea of treating definite descriptions and proper names as anaphors is fairly recent within formal semantics: the
former were first treated as Russelian descriptions, while the later were treated as so-called rigid designators.
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tial expressions in a given document are anaphors: some expressions introduce a discourse

entity, rather than accessing an existing one. Thus the question of preventing the resolver

to link these “discourse-new” expressions becomes an issue. Note that this is in principle

a problem for any approach that tackles coreference resolution as a sequence of anaphora

resolutions. This problem is easily handled in the standard classification approach (i.e., the

single-candidate classifier): a mention will not be resolved if none of its candidates is clas-

sified positively. From this perspective, the pairwise classification model can be viewed as

doing both discourse-status determination and resolution in a single step. The problem is

however more troublesome for the ranker (or the twin-candidate classifier for that matter),

which (by definition) always pick(s) out an antecedent. There are a number of possible sce-

narios to address this issue.2 A natural solution is to use a model that specifically predicts

the discourse status (discourse-new vs. discourse-old) of each expression: only the expres-

sions that are classified as “discourse-old” by this model are considered by the rankers.

Interestingly, this strategy has been used (unsuccessfully) as an attempt to improve the per-

formance of the standard pairwise model ((Ng and Cardie, 2002b),(Ng, 2004)).3 A variation

of this approach would be to use a classifier model to output a list of valid candidates (i.e.,

those classified positively by the classifier) and use the ranker to identify the best among

this list. This use of the ranker (a re-ranker in this case) is reminiscent of the work on parse

selection which we mentioned in Chapter 3. Another solution is to use a threshold score:

only the mentions for which at least one of the antecedent candidates meets a specified

score are resolved. This option has the apparent advantage that no additional model needs

to be created, but determining a proper threshold still requires additional experimentation.

Furthermore, it is unclear whether a particular threshold will generalize well on new data.

Maybe more problematic is that a threshold might not be able to distinguish between cases,

where there is no good antecedent at all from cases in which the ranker is simply unsure
2See also (Yang, 2005) for a related discussion concerning the twin-candidate model.
3The detection of the discourse-new/discourse-old contrast has also generated research outside the context

of coreference resolution: see for instance (Poesio et al., 2004).

74



about several, potentially good antecedents. Yet another solution is inspired by (Morton,

2000) who uses this option in the context of the pairwise classifier: it relies on the inclu-

sion during training and testing of a “dummy” candidate, which serves as the antecedent

for discourse-new expressions. In the rest of this chapter, we only discuss the first scenario

(namely, the use of a discourse status determination module), leaving the others for future

work. The discourse status determination module is presented in Section 4.3.

4.2 Learning specialized rankers

4.2.1 Linguistic motivations

In order to design different specialized models corresponding to different anaphoric expres-

sions, one first has to decide along which dimension to split these expressions. A variety

of options are in principle possible. As in (Ng, 2005a), one could for instance decide to

learn a model for each set of anaphors that are lexically identical. That is, (Ng, 2005a)

learns a model for I, he, they, and so on. While this option is possible for a closed category

like pronouns, it is untenable in practice for other types of anaphors like proper names and

definite descriptions. An important practical desideratum for acquiring adequate models

is indeed to have sufficient data for training each of the models. Ideally, one would like

to learn the classes of model that provide the best performance. Determining the optimal

classes of models could potentially be achieved based on experimentation, but this is rather

tedious and our models may not be able to generalize well. Instead, one could simply guide

our split based on the particular linguistic form of the different expressions, as signaled for

instance by the head word category and the determiner (if any).

That there is a correlation between the form of a referential expression and its

anaphoric behavior is actually central to various linguistic and psycholinguistic theories

((Clark, 1975; Prince, 1981; Ariel, 1988; Gundel et al., 1993) inter alia). Basically, the

idea is that linguistic form is an indicator of the status of the corresponding referent in the
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discourse model. That is, the use by the speaker of a particular linguistic form corresponds

to a particular level of activation (or familiarity or salience or accessibility) in (what she

thinks is) the addressee’s discourse model. For many authors, the relation takes the form of

a continuum and is often represented in the form of a referential hierarchy. For instance,

Ariel’s “accessibility hierarchy” is given below:

Accessibility Hierarchy (Ariel, 1988)

Zero pronouns >> Pronouns >> Demonstrative pronouns >> Demonstrative

NPs >> Short PNs >> Definite descriptions >> Full PNs >> Full PNs +

appositive

The higher up, the more accessible (or salient or familiar), and the lower down the hierarchy,

the less accessible (or salient or familiar) the entity. At the extremes of the hierarchy stand

pronouns (these forms typically require a previous mention in the local context) and proper

names (these forms are often used without previous mentions of the entity). This type of

hierarchy is validated by corpus studies of the distribution of different types of expressions.

For instance, (Ariel, 1988) who relies on recency as an estimation of salience (or accessibil-

ity in her terminology) shows that pronouns find their antecedents very locally (in a window

of 1-2 sentences), while proper names predominantly find theirs at longer distances. Using

discourse structure, (Asher et al., 2006) show that while anaphoric pronouns systematically

obey the right-frontier constraint (i.e., their antecedents have to appear on the right edge of

the discourse graph), this is less so for definites, and even less so for proper names.

From a machine learning perspective, these findings suggest that features encoding

salience (e.g., distance, syntactic context) are likely to receive different sets of parameters

depending on the form of the anaphor. This therefore suggests that better parameters are

likely to be learned in the context of different models.4 While the above studies focus pri-

marily on salience, there are of course other dimensions according to which anaphors differ
4Another possible approach would consist in introducing different salience-based features encoding the

form of the anaphor.
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in their resolution preferences. Thus, the resolution of lexical expressions like definite de-

scriptions and proper names is likely to benefit from the inclusion of features that compare

the strings of the anaphor and the candidate antecedent (e.g., string matching) and features

that identify particular syntactic configurations like appositive structures. This type of in-

formation is however much less likely to help in the resolution of pronominal forms. The

problem is that, within a single model, such features are likely to receive strong parame-

ters (due to the fact that they are good predictors for lexical anaphors) in a way that might

eventually hurt pronominal resolutions.

In the following, we propose different ranking models corresponding to five types of

referential expressions: (i) third person pronouns, (ii) speech pronouns, (iii) proper names,

(iv) define descriptions, and (v) others (i.e., all expressions that don’t fall into the previous

categories). Note that this split only partially maps the referential hierarchy of (Ariel, 1988).

Thus, there is no separate model for demonstrative NPs and pronominal forms: the main

reason is that demonstrative NPs are very rare in the corpus we used (i.e., the ACE corpus).5

These expressions were handled through the “others” model.6 There is however a model

for first and second person pronouns (i.e., speech pronouns): this is justified by the fact that

these pronouns behave differently from their third person counterpart. These forms indeed

often behave like deictics (i.e., they refer to discourse participants) or they appear within a

quote.
5There are only 114 demonstrative NPs and 12 demonstrative pronouns in the entire ACE training.
6From a linguistic point of view, it would probably have made more sense to use one of the other models for

these (e.g., the third person pronoun model for the demonstrative pronouns and the definite description model
for the demonstrative NPs).
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4.2.2 Ranking models

All the models are ranking models and they take the following generic log-linear form,

repeated below for convenience from Chapter 3:

Prk(αi|π) =

exp
m∑
j=1

wjfj(π, αi)

∑
k

exp
m∑
j=1

wjfj(π, αk)
(4.1)

where π stands for the anaphoric expression, αi for an antecedent candidate, fj the weighted

features of the model. The denominator consists of a normalization factor over the k men-

tions present in the candidate set. As before, model parameters were estimated with the

limited memory variable metric algorithm implemented in TADM (Malouf, 2002). Gaus-

sian smoothing was used to avoid extreme parameter values.

For the training of the different ranking models, we use a procedure similar to that

described in Chapter 3. That is, for each model, instances are created by pairing each

anaphor of the proper type (e.g., definite description) with a set of candidates which con-

tains: (i) a true antecedent, and (ii) a set of non-antecedents. The selection of the true

antecedent varies depending on the model we are training: for pronominal forms, the an-

tecedent is selected as the closest preceding mention in the chain; for non-pronominal

forms, we used the closest preceding non-pronominal mention in the chain as the an-

tecedent.7 For the creation of the non-antecedent set, we simply follow the approach in

Chapter 3: in this set are collected all the non-antecedents that appear in a window of 2

sentences around the antecedent.8

7This sample selection has been proposed by (Ng and Cardie, 2002a) in the context of the standard approach.
See discussion in Chapter 2.

8We suspect however that different sample selections might be more appropriate for different types of ex-
pressions.
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4.2.3 Feature sets

This section describes the feature set used in the different ranking models. As in Chapter 3,

our feature extraction relies on limited linguistic processing: we only made use of a sentence

detector, a tokenizer, a POS tagger (as provided by the OpenNLP Toolkit9) and the Wordnet

database10. Table 4.1 describes in detail the entire feature set, while Table 4.2 shows which

features were used for which models.

First, we use the same five categories of features that were used for pronoun resolu-

tion, repeated below for convenience:

Linguistic form: This includes features pertaining to the referential form of the antecedent

candidate: in particular, whether it is a proper name, a definite description, an indefi-

nite NP, or a pronoun.

Context: This includes features describing the context of the antecedent candidate: these

features can be seen as approximations of the grammatical roles, and as such inform

us on the salience of the potential candidate (Grosz et al., 1995). For instance, we

include as features the part of speech tags surrounding the candidate, as well as a

feature that indicates whether the potential antecedent is the first mention in a sen-

tence (approximating subject-hood), and a feature indicating whether the candidate

is embedded inside another mention.

Distance: This includes features capturing the distance between the anaphor and the po-

tential antecedent: pronouns due to their lack of lexical meaning are known to favor

antecedents that are close-by (e.g., (Ariel, 1988; McEnery et al., 1997)). More specif-

ically, we measured distance both in terms of the number of sentences and mentions

intervening between them.

Morphosyntactic agreement: This includes features that encode the gender, number, and
9opennlp.sf.net.

10http://wordnet.princeton.edu/
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Linguistic Form
pn α is a proper name {1,0}
def np α is a definite description {1,0}
indef np α is an indefinite description {1,0}
pro α is a pronoun {1,0}
Context
left pos POS of the token preceding α
right pos POS of the token following α
surr pos pair of POS for the tokens surrounding α
Distance
s dist Binned values for sentence distance between π and α
np dist Binned values for mention distance between π and α
Morphosyntactic Agreement
gender pairs of attributes {masc, fem, neut, unk} for π and α
number pairs of attributes {sg, pl} for π and α
person pairs of attributes {1, 2, 3, 4, 5, 6} for π and α
Semantic compatibility
wn sense pairs of Wordnet senses for π and α
String similarity
str match π and α have identical strings {1,0}
left substr one mention is a left substring of the other {1,0}
right substr one mention is a right substring of the other {1,0}
hd match π and α have the same head word {1,0}
Apposition
apposition π and α are in an appositive structure {1,0}
Acronym
acronym π is an acronym of α or vice versa {1,0}

Table 4.1: Feature selection for the ranker models

person of the two mentions. These are determined for non-pronominal NPs using

heuristics based on the part of speech tags (e.g., NN vs. NNS for number) and the

actual strings of the mentions (e.g., whether the mention contains a male/female first

name or honorific for gender). These features take the form of pairs of attributes,

making sure that not only strict agreement (e.g., singular-singular) but also mere
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compatibility (e.g., masculine-unknown) is captured.

Semantic compatibility: This includes features designed to assess whether the two men-

tions are semantically compatible. For these features, we use the Wordnet database:

in particular, we collected the synonym set (or synset) as well as the synset of their di-

rect hypernyms associated with each mention. In the case of common nouns, we used

the synset associated with the first sense associated with the mention’s head word. In

the case of proper names, we used the synset associated with the name if available,

and the string itself otherwise. For pronouns (which are not part of Wordnet), we

simply used the pronominal form.

All these features were used in all five models. While one may question the use of

distance for non-pronominal anaphors,11 we think that their inclusion is justified by the fact

that they might predict some “obviation” effects. As claimed by (Ariel, 1988) and others,

definite descriptions and proper names are sensitive to distance too, although not in the

same way as pronouns are: they show a preference for antecedents that appear outside a

window of 1 or 2 sentences.

In addition to these core features, we add several other features which are only used

by specific models (in particular, the models for definite descriptions and proper names):

String similarity: This includes features that test how similar the anaphor’s and the an-

tecedent candidate’s strings are. Examples are perfect string matching (i.e., the two

mentions are identical), substring matchings (i.e., one of the mentions is a substring

of the other), and head matching (i.e., the two mentions share the same head word).

These features are only used in the three non-pronominal models.

Appositive: This feature tests whether the anaphor is an apposition of the antecedent can-

didate. Since we don’t have access to syntactic structure, we used various heuristics
11In fact, (Morton, 2000) doesn’t use distance features in this case.
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(e.g., the presence of a comma between the two mentions) to compute this feature.

This feature was used only by the proper name and definite NP models.

Acronym: This feature determines whether the anaphor’s string is an acronym of the

antecedent candidate’s string (and vice versa): e.g., NSA and National Security

Agency. This feature was used only by the proper name model.

Features/Types 3rd pron. speech pron. proper names def. NPs others
Ling. form

√ √ √ √ √

Context
√ √ √ √ √

Distance
√ √ √ √ √

Morphosynt. agr.
√ √ √ √ √

Sem. compat.
√ √ √ √ √

Str. sim.
√ √ √

Apposition
√ √

Acronym
√

Table 4.2: Features used in modeling each class of referential expressions

4.2.4 Antecedent selection results

In this section, we report the performance of the different ranker models with respect to

anaphora resolution. That is, we specifically evaluate the ability of each resolver of select-

ing a correct antecedent for each anaphor. The training and testing datasets used for our

experiments come from the ACE corpus, as described in Chapter 2. The total number of

anaphors (i.e., of mentions that are not chain heads) in the data is 19, 322 and 4, 599 for

training and testing, respectively. The distribution of each anaphoric type is presented in

Table 4.3. Roughly, third person pronouns account for 22-24% of all anaphors in the entire

corpus, speech pronouns for 11-13%, proper names for 33-40%, and definite descriptions

for 16-17%. The distribution is slightly different from one dataset to another, probably re-

flecting genre differences. For instance, BNEWS shows a larger proportion of pronouns in

general (pronominal forms account for 40-44% of all the anaphoric forms).
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Type/Count ENTIRE ACE BNEWS NPAPER NWIRE
train test train test train test train test

3rd pron. 4, 389 1, 093 1, 419 304 1, 591 457 1, 379 332
speech pron. 2, 178 610 1, 056 330 373 158 749 122
proper names 7, 868 1, 532 1, 902 448 3, 386 534 2, 580 550
def. NPs 3, 124 796 858 250 1, 155 271 1, 111 275
others 1, 763 568 361 225 716 230 686 203
Total 19, 322 4, 599 5, 596 1, 557 7, 221 1, 560 6, 505 1, 482

Table 4.3: Distribution of the different anaphors in ACE

For this set of experiments, we used exactly the same development cycle as de-

scribed in Chapter 3. In testing the different systems, we again assume perfect mention

boundaries: only the true ACE mentions were considered as potential candidates. The candi-

date set during testing was formed by taking all the mentions that appear before the anaphor.

Also, we assumed that correctly resolving an anaphor amounts to selecting one of the pre-

vious mentions in the entity as the antecedent. The accuracy scores for the different models

are presented in Table 4.4.

System ENTIRE ACE BNEWS NPAPER NWIRE

3rd pron. 82.2 81.6 80.4 80.2
speech pron. 66.9 64.8 63.9 58.2
proper names 83.5 81.5 81.5 85.3
def. NPs 66.5 67.6 67.9 57.5
others 63.6 62.1 57.0 62.8

Table 4.4: Accuracy of the different ranker models

The best accuracy results on the entire ACE corpus are found first for the proper

name resolver with a score of 83.5%, then for the third person pronoun resolver with 82.2%,

then for the definite description and speech pronoun resolvers with 66.9 and 66.5 respec-

tively. The worst scores are obtained for the “others” category. This pattern is not really

surprising. The high scores for the third person pronoun and the proper name rankers most

likely follow from the fact that the resolution of these expressions relies on “cheap” and re-

liable predictors, such as distance and morphosyntactic agreement for pronouns, and string
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similarity features for proper names. The resolution of definite descriptions and other types

of lexical NPs (which are handled through the backup “others” model) are much more chal-

lenging in relying on lexical semantic and world knowledge information, which is only par-

tially encoded via our Wordnet-based features. Finally, note that the resolution of speech

pronouns is also much harder than that of the other pronomimal forms: these expressions

are much less (if at all) constrained by recency and agreement. Furthermore, these expres-

sions show a lot of cataphoric uses (e.g., in structures like “My energy policy encourages

conservation,” declared George Bush), which are not considered by our models. The low

scores for the “others” category is attributable to the fact that this model, which works as a

sort of backoff model, encompasses very different referential expressions.

4.3 Predicting discourse status

We now turn to the presentation of the model used for determining the discourse status of

mentions, starting with the form of the model and then describing the feature selection.

4.3.1 Classification model

The task for the discourse status determination component is the following: one wants

to decide for each mention α in a document whether α is discourse-new (i.e., the mention

introduces a new entity) or discourse-old (i.e., the mention accesses an existing entity). This

task can be performed using a simple classifier with two possible outputs: NEW and OLD.

The classifier estimates the conditional probabilities P (c|α), where c ∈ {NEW, OLD}, and

predicts the class that receives the highest score. This model takes the following log-linear

form:

Pds(OLD|α) =

exp
m∑
j=1

λjfj(α, OLD)

∑
c∈{NEW,OLD}

exp
m∑
j=1

wjfj(α, c)
(4.2)
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where fj(α, c) is the number of times feature j occurs for mention α, and wj is the weight

assigned to j during training. The denominator consists of a normalization factor over

the two possible outcomes NEW and OLD. Model parameters are estimated with the lim-

ited memory variable metric algorithm implemented in TADM (Malouf, 2002). Gaussian

smoothing was used to avoid extreme parameter values. The training procedure for creat-

ing this model is very straightforward: the set of mentionsM in each document is iterated

over and each mention α is assigned a label: NEW if α is the head of a chain (this includes

single-mention entity) or OLD otherwise.

4.3.2 Feature set

For constructing our discourse status classifier, we rely on three main types of information

sources. Our feature set is similar, although not identical, to that proposed by (Ng and

Cardie, 2002a). First, we design features that describe the mention itself, ranging from

the number of tokens in the mention to finer-grained features encoding the linguistic form

of the mention. The first set of features are directly inspired by “accessibility hierarchy”

above: there is indeed a correlation between both the lexical “heaviness” and the form of

an expression and its discourse status. For instance, shorter expressions are more likely to

access entities that are already in the discourse model (i.e., to be discourse-old). A second

set of features pertains to the position of the mention in the text: in particular, we rely on the

intuition that expressions mentioned earlier are more likely to be discourse-new. Finally,

a third set of features compares the given mention to the mentions that precede it in the

text. Examples include whether or not the mention’s string matches that of a preceding

mention, and whether or not the mention appears in particular configuration like appositive

structures.
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Word count
wd count number of words in α {1,2,3,. . .}
Linguistic form
pro α is a pronoun {1,0}
speech pro α is a speech pronoun {1,0}
refl pro α is a reflexive pronoun {1,0}
pn α is a proper name {1,0}
short pn α is a single word proper name {1,0}
def np α is a definite description {1,0}
short def np α is a single noun definite description {1,0}
indef np α is an indefinite description {1,0}
quant np α is a quantified description {1,0}
poss np α is a possessive description {1,0}
bare np α is a bare noun {1,0}
rel cl α contains a relative pronoun {1,0}
Position in text
first sent α appears in the first sentence {1,0}
first 5 sent α appears in the first 5 sentences {1,0}
first 10 sent α appears in the first 10 sentences {1,0}
Relation to previous mentions
embedding α is embedded within another mention {1,0}
str match α’s string matches that of a previous mention {1,0}
hd match α’s head word matches that of a previous mention {1,0}
apposition α’s is an apposition to a previous mention {1,0}
acronym α’s is an acronym of a previous mention (or vice versa){1,0}

Table 4.5: Feature selection for the discourse status model

4.3.3 Results

In this section, we report on the performance of the discourse status classifier. This system

was evaluated on the ACE datasets, training the model on the train texts, and applying

the classifier to the devtest texts. As a baseline measurement, we used the majority class

(OLD in this case); this strategy obtains an accuracy of 59.7% on the entire ACE corpus. The

discourse status model, on the other hand, achieves an overall accuracy score of 80.8%. The

results for the model trained/tested on the different datasets are as follows: 80.1 for BNEWS,
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82.2 NPAPER, and 81.1 for NWIRE.12

It is instructive to look at the errors made by the discourse status determination clas-

sifier. Error analysis on the development data reveal that the model successfully identifies

78.8% of the true anaphors, and 83.8% of the non-anaphors. That is, the classifier does

a better job at detecting discourse-new entities than discourse-old ones. In terms of errors

made for the different types of expressions, we found that the most errors were made in clas-

sifying non-pronominal forms: in particular, proper names and definite descriptions. Thus,

misclassified proper names account for 35.3% of the “missed anaphors” (i.e., anaphors mis-

classified as NEW) and 29.5% of the “spurious anaphors” (i.e., non-anaphors misclassified

as OLD). Misclassified definites account for 22.8% and 29.5% of these errors, respectively.

This makes a certain amount of sense given that these expressions are more versatile than

pronouns in terms of their discourse status. While a vast majority of pronouns are anaphoric

(95.7% for third person pronouns, and 79.4 for speech pronouns), definite descriptions and

proper names are often ambiguous in terms of their discourse status (57.8% of definites

and 58.7% of proper names are anaphoric). Note finally that quite of few speech pronouns

were also misclassified in being wrongly identified as NEW: they account for 18.5% of the

“spurious anaphors”.

4.4 Experiments

4.4.1 System architecture

We are now ready to deploy the ranking approach to the task of coreference resolution. The

overall system architecture is straightforward. For each mention m ∈ M encountered in

the current document D, the discourse status model is first applied to determine whether m

introduces a new discourse entity (i.e., it is classified as NEW) or refers back to an existing

entity (i.e., it is classified as OLD). If m is classified as NEW, the process terminates and
12These results are slightly below the results of (Ng and Cardie, 2002a), who report score of ∼ 85% on the

MUC-6 and MUC-7 datasets.
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goes to the next mention. If m is classified as OLD, m along with its set of antecedent

candidates Cm is sent to the corresponding resolver (e.g., the third person pronoun model if

m is a third person pronoun) which picks the “best” candidate among Cm. The candidate set

here includes all the mentions that linearly precede m. The output of the system consists of

a list of mention pairs (i.e., the coreference links) which in turn defines (through reflexive,

transitive closure) a partition over the set of mentionsM in D. In the following, we will

refer to this coreference system as ERK+DS.

4.4.2 Baseline systems

In this section, we present four baseline coreference systems against which we will evaluate

ERK+DS. All these systems are variations on the standard approach described in Chapter 2,

and are based on the pairwise classification approach: that is, they are all single-candidate

classifiers.

SCC This first system is an implementation of the standard approach described in Chap-

ter 2. In particular, we follow the training and test procedures proposed by (Ng and

Cardie, 2002a). During training, instances are formed by pairing each anaphor with

each of its preceding candidates, until the antecedent is reached: the closest preced-

ing antecedent in the case of a pronominal anaphor, or the closest non-pronominal

antecedent in the case of a non-pronomninal anaphor. During testing, instances are

formed by pairing each mention with each of its preceding mentions. Each instance is

then submitted to the classifier, which determines whether the pair under inspection

is coreferential or not. If none of the pairs created for a given mention is classified

positively, the mention is left unresolved. If several pairs for a given mention are

classified positively, then the pair with the highest score is selected (i.e., this is the

“Best-First” link selection).

SCC+DS This second system augments the previous system with the discourse status clas-

sifier. That is, like ERK+DS, the discourse status model is first used to filter the
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non-anaphors. In turn, all the mentions that are classified as anaphoric are sent to

the coreference model, which is then used to produce an antecedent for each anaphor

(i.e., the candidate with the highest score with respect to the COREF class). This

system is very similar to the approach proposed in (Ng and Cardie, 2002b).13

ESCC This third system implements various single-candidate classifiers for the different

referential types. That is, we built expert classification models for: (i) third person

pronouns, (ii) speech pronouns, (iii) proper names, (iv) definite descriptions, (v) other

types of phrases. The training and test procedures are the same as for the SCC.

ESCC+DS Finally, this last system augments the ESCC with the discourse status classifier.

That is, the application of a given expert model to a given mention is conditioned on

that mention being classified as OLD by the discourse status model.

The feature set used in the baseline systems includes all the features that were used

for the rankers (Table 4.5). In accordance with how previous approaches have designed

feature sets in the standard pairwise approach, we have also added extra features describing

the linguistic form of the potential anaphor (whether it is a pronoun, a proper name, and so

on). For the baseline systems that use expert models, that is ESCC and ESCC+DS, we use

the same feature split as for the expert rankers (as described in Table 4.2).

4.4.3 Main Results

This section describes the performance of the ERK+DS in comparison to the different

classifier-based systems. The different systems were trained and tested on the ACE corpus;

we again assume perfect mention boundaries: only the true ACE mentions were considered
13An important difference is however that the system proposed in (Ng and Cardie, 2002b) does not neces-

sarily yield an antecedent for each of the anaphors proposed by the discourse status model. In (Ng and Cardie,
2002b), the coreference classifier is applied as in SCC, which means some of the proposed anaphors might not
be resolved (i.e., in the case where none of the pairs for that anaphor is classified positively). In this case, the
coreference model can act as an additional filter. Not suprisingly, these authors report gains in precision but
comparatively larger losses in recall. Our development experiments revealed that the approach implemented in
SCC+DS provided a better performing baseline.
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both during training and testing. For evaluating these systems, we use the three different

coreference resolution metrics described in Chapter 2, namely: the MUC metric of (Vilain

et al., 1995), the B3 metric of (Bagga and Baldwin, 1998), and the CEAF metric of (Luo,

2005). The results for the entire ACE corpus are summarized in Table 4.6.

System MUC B3 CEAF

R P F R P F R P F
SCC 60.8 72.6 66.2 62.4 77.7 69.2 62.3 62.3 62.3
SCC+DS 64.9 72.3 68.4 65.6 74.1 69.6 63.4 63.4 63.4
ESCC 64.8 74.5 69.3 65.3 79.1 71.5 65.0 65.0 65.0
ESCC+DS 66.8 74.4 70.4 66.4 77.0 71.3 65.3 65.3 65.3
ERK+DS 67.9 75.7 71.6 66.8 79.8 72.7 67.0 67.0 67.0

Table 4.6: Recall (R), Precision (P), and f -score (F) results on the entire ACE corpus using
the MUC, B3, and CEAF metrics

The first thing to note about these results is that the ERK+DS system significantly

outperforms the different classifier-based systems on the three different metrics.14 The f -

scores for this system are 71.6% with the MUC metric, 72.7% with the B3, and 67% with

the CEAF metric. These scores place the ERK+DS among the best coreference resolution

systems, since most existing systems are typically well under the bar of the 70% in f -score

with the MUC and B3metrics (Ng, 2005b). The fact that improvements are consistent across

the different evaluation metrics is remarkable, especially given that these three metrics are

quite different in the way they compute their scores. The gains in f -score range from 1.2

to 5.4% on the MUC metric (i.e., error reductions of 4 to 15.9%), from 1.4 to 3.5% on the

B3 metric (i.e., error reductions of 4.8 to 11.4%), and from 1.7 to 4.7% on the CEAF metric

(i.e., error reductions of 6.9 to 17%).

The larger improvements come from recall, with improvements ranging from 1.9 to

7.1% with MUC, from 2.4 to 5.6% with B3.15 This suggests that ERK+DS is predicting a lot
14Statistical significance was examined by running a t-test for both recall and precision scores, with p <

0.05.
15Recall that recall and precision scores are identical with CEAF, due to the fact that we are using true mention

boundaries. See Chapter 2 for details.
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more valid coreference links than the baseline systems. Although smaller, significant gains

are also made in precision: this means that ERK+DS is at the same time able to reduce the

proportion of invalid links that are being produced. Both these improvements result in an

overall better partition of the set of mentions.

These overall improvements found with the ERK+DS system can be attributed to the

combination of two main factors. First, these results suggest that this system is able to cap-

italize on the better antecedent selection capabilities offered by the ranking approach. This

is supported by the error analysis we performed on the development data. Errors made by

a coreference system can be conceptualized as falling into three main classes: (i) “missed

anaphors” (i.e., an anaphoric mention that fails to be linked to a previous mention), (ii)

“spurious anaphors” (i.e., an non-anaphoric mention that is linked to a previous mention),

and (iii) “invalid resolutions” (i.e., a true anaphor that is linked to a incorrect antecedent).

The two first types of errors pertain to the determination of the discourse status of the men-

tion, while the third type of errors pertains to the selection of an antecedent (i.e., anaphora

resolution). When looking at the invalid resolutions made by the different systems, we

found that the ERK+DS had a much lower error rate: only 17.9% of all true anaphors were

incorrectly resolved by this system, against 23.1% for SCC, 24.9% for SCC+DS, 20.4%

for ESCC, and 22.1% for ESCC+DS. Large error reductions were made, in order of mag-

nitude, in the resolution of third person pronouns, definite descriptions and proper names.

Interestingly, no error reduction was found in the resolution of speech pronouns.

The second factor responsible for the good performance of ERK+DS is in the use of

specialized models. Having a separate, expert model for each type of referring expressions

allows the various features to be weighted differently depending on the type of anaphors we

are dealing with. This in turn provides the specialized models with additional discriminative

power over a single model. The advantage of having specialized models can actually be

seen by comparing the baseline systems that use separate models (ESCC and ESCC+DS)

against those that use a single model (SCC and SCC+DS): in both cases, the system that
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uses specialized models outperforms the counterpart system that relies on a single model

with significant gains in both recall and precision.

The results on the different ACE datasets are given in Table 4.8-Table 4.10. Overall,

these results show the same pattern as on the entire ACE corpus: the ERK+DS system con-

sistently outperforms the baseline systems. The largest gains are made on NPAPER, while

the smallest ones are made on BNEWS. We attribute the relatively poorer results on this

later dataset to the high proportion of speech pronouns therein. As noted, the antecedent

selection accuracy for these expressions was rather low and didn’t improve from the use of

a specialized ranker. In Figure 4.1, we report the different B3 recall and precision rates for

the different systems on the entire and the different ACE datasets.

Figure 4.1: B3 recall and precision of SCC, SCC+DS, ESCC, ESCC+DS, and ERK+DS on
the entire and the three ACE datasets

Finally, it is instructive to compare the different baselines together. Two main pat-

terns emerge from the comparison of these systems. First, as noted, the systems that use

specialized coreference models (i.e., ESCC and ESCC+DS) respectively outperform the sys-
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tems that rely on a single model (i.e., SCC and SCC+DS). The improvements are made both

in recall and precision. Second, the systems that use a discourse status model (i.e., SCC+DS

and ESCC+DS) also tend to produce f -score improvements over the models that don’t (i.e.,

SCC and ESCC). This is at least true for two of the metrics: MUC and CEAF. Note that the

gains there are exclusively made in recall, sometimes with important losses in precision (es-

pecially with B3). The boost in recall suggests that the discourse status model has a positive

effect in “rescuing” some true anaphors for which the coreference model(s) alone wouldn’t

have produced any coreference link. The drop in precision, on the other hand, suggests that

not all these rescued anaphors are properly resolved by the classifier model(s). The fact that

the precision losses are more important in B3 than in MUC comes from the way these two

metrics work. Recall than with B3, errors are computed at the level of each mention: this

means that the addition of invalid links to a chain will be compounded for each mention.

4.4.4 Oracle results

So far, we have shown that an approach combining the use of specialized rankers with a

discourse status classifier yields coreference performance superior to those given by various

classification-based baseline systems. Crucially, these improvements have been possible

using a discourse status model that has an accuracy of just 80.8% (when trained and tested

on the entire ACE data). Clearly, the performance of the discourse status module has a direct

impact on the performance of the entire coreference system. On the one hand, misclassified

anaphors are simply not resolved by the rankers: this limits the recall of the coreference

system. On the other hand, misclassified non-anaphors are linked to a previous mention:

this limits the precision of the coreference system.

In order to better assess the negative impact of the errors made by the discourse

status classifier, we build two different oracle systems. The first oracle system, ERK+DS-

ORACLE, uses the specialized rankers in combination with a perfect discourse status clas-

sifier. That is, this system knows for each mention whether it is anaphoric or not: in turn,
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System MUC B3 CEAF

R P F R P F R P F
ERK+DS 67.9 75.7 71.6 66.8 79.8 72.7 67.0 67.0 67.0
ERK+DS-ORACLE 79.1 79.1 79.1 75.4 76.0 75.7 76.9 76.9 76.9
LINK-ORACLE 78.8 100.0 88.1 74.3 100.0 85.2 79.7 79.7 79.7

Table 4.7: Recall (R), Precision (P), and f -score (F) results for ERK+DS-ORACLE and
LINK-ORACLE on the entire ACE corpus

the only errors made by such a system are “invalid resolutions”. From this perspective,

ERK+DS-ORACLE provides us with an upper-bound for the ERK+DS approach. The results

for this oracle are given in Table 4.7: they show substantial improvements over ERK+DS,

which suggests that the ERK+DS has also the potential to be further improved if used in

combination with a more accurate discourse status classifier.

The second oracle system, LINK-ORACLE, uses the discourse status classifier pre-

sented in section Section 4.3 with a perfect anaphora resolver. That is, this system has

perfect knowledge regarding the antecedents of anaphors: the errors made by such a system

are only errors in the discourse status of mentions. The results for LINK-ORACLE are also

reported in Table 4.7. What these results mean is that however accurate our rankers get at

picking a correct antecedent for a true anaphor, the best our system can achieve in terms of

f -scores is: 88.1% with MUC, 85.2% with B3, and 79.7% with CEAF.

4.5 Summary and discussion

In this chapter, we have proposed an extension of the ranking approach presented in Chap-

ter 3 for pronoun resolution to the larger problem of coreference resolution. Relying on

linguistic motivations, this extension consists in: (i) the creation of separate, expert ranker

models corresponding to different types of referring expressions, and (ii) the use of dis-

course status classifier which determines the mentions that are sent to the rankers. This

simple pipeline architecture results in significant improvements over various implementa-

tions of the standard, classifier-based coreference system. Importantly, these improvements
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System MUC B3 CEAF

R P F R P F R P F
SCC 60.9 73.2 66.5 63.2 79.2 70.3 63.8 63.8 63.8
SCC+DS 64.2 73.7 68.7 66.0 76.0 70.6 64.1 64.1 64.1
ESCC 64.9 76.9 70.4 66.4 80.3 72.7 66.4 66.4 66.4
ESCC+DS 65.6 75.3 70.1 66.5 77.2 71.4 64.9 64.9 64.9
ERK+DS 65.7 75.4 70.2 65.9 78.8 71.8 65.7 65.7 65.7

Table 4.8: Recall (R), Precision (P), and f -score (F) results on the BNEWS dataset using the
MUC, B3, and CEAF metrics

System MUC B3 CEAF

R P F R P F R P F
SCC 63.0 72.9 67.6 60.7 74.5 66.9 59.9 59.9 59.9
SCC+DS 68.6 71.3 69.9 66.2 65.4 65.8 59.6 59.6 59.6
ESCC 64.5 73.5 68.7 62.5 75.3 68.3 61.5 61.5 61.5
ESCC+DS 69.4 72.2 70.8 66.7 67.3 67.0 61.0 61.0 61.0
ERK+DS 70.8 73.6 72.2 66.2 73.3 69.5 65.3 65.3 65.3

Table 4.9: Recall (R), Precision (P), and f -score (F) results on the NPAPER dataset using
the MUC, B3, and CEAF metrics

System MUC B3 CEAF

R P F R P F R P F
SCC 58.2 69.3 63.2 62.0 78.1 69.1 61.9 61.9 61.9
SCC+DS 64.5 69.6 66.9 65.1 73.4 69.0 62.4 62.4 62.4
ESCC 64.1 72.7 68.1 66.5 79.6 72.5 66.4 66.4 66.4
ESCC+DS 66.6 71.8 69.1 67.3 76.4 71.6 65.7 65.7 65.7
ERK+DS 68.1 73.4 70.7 68.8 79.0 73.6 68.1 68.1 68.1

Table 4.10: Recall (R), Precision (P), and f -score (F) results on the NWIRE dataset using
the MUC, B3, and CEAF metrics

are consistent across the three main coreference evaluation metrics: MUC, B3, and CEAF.

We attribute the good performance of the proposed approach to: (i) the better antecedent

selection capabilities offered by the ranking approach, and (ii) the division of labor between

specialized models for different types of anaphors.
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There are a number of ways to improve on the current approach. As seen in the or-

acle experiments, there is still a lot of room for improvement both on the side of the rankers

and on the side of the discourse status classifier. The different ranking models can probably

be enhanced both in terms of feature selection and in terms of the sampling of the training

instances. For instance, we have noted that the ranker for speech pronouns didn’t produce

very high resolution scores. We suspect that this is due to the lack of adequate features for

this type of expression. The use of additional semantic information, which can mined from

web-based resources like Wikipedia (e.g., (Ponzetto and Strube, 2006)), is also likely to

improve in the resolution of definite descriptions. As for training, we have used the same

sample selection for the different types of expressions (modulo the split between pronomi-

nal and non-pronominal forms): using different sample selections is also likely to improve

the performance of the different models (Uryupina, 2004). Finally, note that the split we

used in building the different rankers is also likely not to be optimal. In particular, the “oth-

ers” model covers very different types of expressions (from demonstratives pronouns and

NPs to bare nouns to indefinite descriptions) which are likely to be better handled by differ-

ent models. Some improvements are also possible on the side of the discourse status model.

For instance, it would probably make sense to design different discourse status models for

different types of referring expressions.

Despite its good performance, the approach proposed in this chapter only departs

from the standard approach presented in Chapter 2 in the use of a different type of model:

it uses a ranking function instead of a classification function. That is, the general approach

still relies on the simplistic assumption that coreference resolution can be reduced to a se-

quence of anaphora resolutions. Under this view, the creation of the coreference chains

is simply achieved through reflexive, transitive closure over the set of anaphor-antecedent

pairs (where an anaphor is given exactly one antecedent). Notwithstanding its intuitive ap-

peal, this method of clustering mentions is ad hoc and as such unlikely to be optimal in

providing us with the best overall partition. First, note that this way of linking mentions

96



is very conservative: since only one antecedent is posited for each anaphor, the number of

generated links is bound to be small. This explains why the results for such systems usually

show high precision but comparatively much poorer recall. An important part of the prob-

lem with this approach is that it fails to ensure any sort of global coherence on the creation

of the coreference chains. Resolutions are always made independently from one another:

this potentially calls for situations in which, because of transitive closure, two incompatible

mentions “accidentally” end up in the same chain. Finally, the interaction of the models in

the pipeline architecture is also likely to be sub-optimal. As noted, a lot of true anaphors

(over 21%) are left unresolved, while a lot of true non-anaphors (over 16%) are incorrectly

forced to be resolved. The main problem here is that the decisions of discourse status

model are always taken on faith by the rankers, irrespective of the internal confidence of the

models. That is, a mention that is —maybe incorrectly— classified as anaphoric by the dis-

course status model is forced to be resolved, irrespective of the confidence the coreference

model has with respect to its resolution. Similarly, a mention that is —maybe incorrectly—

classified as non-anaphoric by the discourse status model is left resolved, irrespective of the

confidence the coreference model might have with respect to its resolution. The problem

is again that of making too strong independence assumptions, but this time between the

discourse status model decisions and the coreference model decisions. Ideally, one would

instead like the discourse status and the coreference models to mutually inform each other

and make a common decision. We turn to these different issues in the next chapter.
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Chapter 5

Coreference resolution as linear

optimization

In this chapter, we show how the task of coreference resolution can be recast as a linear

optimization problem. In particular, we use the framework of Integer Linear Programming

(ILP) to: (i) combine the predictions of three local models (namely, a standard pairwise

coreference classifier, a discourse status classifier, and a named entity classifier) in a joint,

global inference, and (ii) integrate various other global constraints (such as transitivity con-

straints) to better capture the dependencies between coreference decisions. Tested on the

ACE datasets, our ILP formulations deliver significant f -score improvements over both a

standard pairwise model and various models that employ the discourse status and a named

entity classifiers in a cascade. Improvements were found across the three different evalua-

tion metrics: MUC, B3, and CEAF. 1

1This chapter is based on and extends (Denis and Baldridge, 2007b).
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5.1 Introduction

The previous chapters have primarily focused on investigating the use of a different type

of model (namely, ranking models) in order to improve the anaphora and coreference reso-

lution. In particular, we have shown that the objective function used in ranking provides a

more adequate way to model the process of antecedent selection, resulting in performance

improvements in both tasks. The present chapter turns to two other problems that currently

limit the performance of state-of-the-art coreference resolution systems.

The first problem is that of knowledge prediction and integration. As noted in

Chapter 1, reference resolution depends on a multitude of information sources. Although

machine learning systems have been reasonably successful by simply utilizing a few shal-

low features, it is generally agreed that drastic improvements will only be possible by in-

corporating a wider set of information sources (in particular, semantic and pragmatic ones).

Quite a few approaches have actually tried to incorporate richer feature sets into their coref-

erence system, but their results have been overall disappointing, sometimes leading to small

improvements (Ponzetto and Strube, 2006; Yang et al., 2006; Ng, 2007), but also to degra-

dation (Kehler et al., 2004a; Ng and Cardie, 2002b; Denis and Kuhn, 2006) in performance.

The main problem faced by these approaches is that predicting linguistically rich infor-

mation from raw text is challenging, which in turn means that their automatic extraction

is likely to be noisy. This raises the question of how to best incorporate this imperfect

information into our coreference system.

In this chapter, we propose to enrich a standard coreference model with information

coming from two main information sources: discourse status information and name entity

information. These are predicted through separately learned models. Intuitively, we only

should identify antecedents for the mentions which are likely to have one (i.e., discourse-old

mentions) (Ng and Cardie, 2002b), and we should only make a set of mentions coreferent

if they all have the same entity type (eg, PERSON or LOCATION). Richer information of

this sort has generally been incorporated into coreference systems either as pre- or post-
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processing modules during search or in the form of features in the coreference model. Both

of these approaches are problematic, as noted in Chapter 1. They fail to model the complex

dependencies between the different models; this leads to a situation in which one model

(and the errors it makes) over-constrains the other.

The use of a discourse status classifier in a cascade with different coreference mod-

els (i.e., rankers and classifiers) was discussed in the previous chapter. As pointed out,

augmenting the coreference classifier(s) with a discourse status filter provides only small

(if any) f -score improvements due to the fact that: (i) many true anaphors were left un-

resolved, and (ii) many true non-anaphors were resolved. Interestingly, Ng (2004) reports

that incorporating discourse status information in the form of (binary) features also fails

to provide decisive improvements. This author in turn proposes to tune the classification

threshold used by the discourse status model in a way that provides improvements on the

coreference task.2 While it achieves global optimization over the two models, this method

involves a fair amount of tuning.

In the following, we suggest a different approach for combining the predictions of

the various classifiers. That is, we treat the three tasks of discourse status determination,

named entity classification, and coreference resolution as a joint problem. Specifically, the

outcomes of the three locally learned models are represented as a collection of random

variables for which we seek an optimal global assignment. This optimization is subject

to a set of declarative constraints that encode the dependencies between the models and

that have the effect of mutually constraining their final outcomes. We use Integer Linear

Programming (ILP) to cleanly integrate the predictions of the local models and to perform

the global inference over these models. A crucial advantage of the ILP approach over that

of Ng (2004) is that it does not require careful weighting of the models (though this can be

done) —the emphasis is instead on ensuring consistency between model assignments.

The second problem that we address in this chapter is that of locality of the corefer-
2In Ng (2004), the best probability threshold for the class OLD is .3 (instead of .5). Concretely, this means

that some additional “anaphors” are submitted to the coreference model, leading to recall increases.
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ence decisions. In the standard coreference classification approach (or the ranking approach

for that matter), both the classification and clustering decisions are made solely based on

pairs of mentions: that is, the coreference decisions are made independently of one another.

This is clearly a simplification. The different coreference decisions should instead be con-

ditioned on how well it matches the entity as a whole (McCallum and Wellner, 2003). This

problem has motivated different authors to explore globally trained models, in which coref-

erence decisions are conditioned on entities (i.e., chains), rather than on mentions (Morton,

2000; Luo et al., 2004; Culotta et al., 2007). This has the advantage of allowing one to

define larger features, and therefore ensuring better global coherence. But this also makes

the search and inference process more complicated. Another option is again to use ILP. An

interesting property of ILP is that it performs global inference based on the output of local

models rather than formulating a new inference procedure for solving the basic task. As

we will see, ILP allows us to add global constraints (e.g., transitivity constraints) to ensure

better global coherence between the various pairwise coreference decisions.

5.2 Integer Linear Programming

In this section, we give a very brief overview of the framework of ILP (see Cormen et al.

(2001) for a detailed presentation). Developed during the second world war, linear pro-

gramming (LP) is a well-known optimization technique that is now used by many industries

(e.g., airline companies) in their daily planning. Its invention is generally attributed to three

mathematicians: George B. Dantzig, John von Neumann, and Leonid Kantorovich.

In its standard form, a LP problem is an optimization problem consisting of two

main parts:

• an objective function (to maximize) that can be specified as a linear function of cer-

tain variables: c1x1 + c2x2 + . . . cnxn (where ci are assignment costs)

• problem constraints can be formulated as equalities or inequalities on those variables:
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a1x1 + a2x2 + . . . anxn ≤ b

An ILP problem is an LP problem in which all the unknown variables are required to be

integers.

Geometrically, the linear constraints define a convex polyhedron, called the feasible

region. Since the objective function is also linear, hence a convex function, all local optima

are automatically global optima. An example of a simple ILP problem and its feasible region

is provided in Figure 5.1.

maximize: x1 + x2

subject to: x1, x2 ≥ 0
x1 + 2x2 ≤ 10
4x2 − x1 ≤ 8
5x1 − 2x2 ≤ −2

solutions: x1 = 6;x2 = 2
x1    

x2

Figure 5.1: A linear program with two variables

Various methods have been developed for solving LP problems, but the most well-

known method is the Simplex algorithm, originally developed by Dantzig. Very roughly,

this algorithm solves LP problems by constructing an admissible solution at a vertex of the

feasible region, and then walking along edges of that region to vertices with successively

higher values of the objective function until the optimum is reached. Although quite effi-

cient in practice, this algorithm has a poor worst case complexity, since it is polynomial.

ILP problems are worse since they are NP-hard when they utilize bounded variables.

ILP formulations have a number of advantages for NLP problems. They are very

expressive in allowing to represent many types of constraints in declarative fashion. They

are also optimal: one is always guaranteed to find the optimal solution. And despite their
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complexity, they are usually very fast: existing packages (e.g., CPLEX, GLPK, LPSOLVE)3

are able to quickly solve very large problems. Previous uses of ILP in NLP include Roth

and Yih (2004), Barzilay and Lapata (2006), Clarke and Lapata (2006), Riedel and Clarke

(2006).

5.3 Base models

5.3.1 The coreference classifier

The first base model we use is a standard pairwise coreference classifier as described in

Chapter 2. That is, this classifier determines for any pair of mentions 〈i, j〉 whether i and

j coreferential or not. That is, this model estimates the probability Pscc(COREF|〈i, j〉).

The construction and the application of this model follow the description from the previous

chapter, and we will here refer to it as COREF-PAIRWISE. Specifically, this classifier was

modeled using log-linear models, and the creation of the training instances follows the

method described by Ng and Cardie (2002a). The feature set is also the same as the one

used in Chapter 4. During testing, this model uses a “Best-First” link selection mechanism:

that is, for each anaphor j, the predicted antecedent is the mention associated with the

positive test instance that receives the highest score.

5.3.2 The discourse status classifier

A large number of errors made by coreference systems such as the one presented in Sec-

tion 5.3.1 actually originate in errors in determining the discourse status of mentions. Thus,

numerous errors come from when: (i) the system mistakenly identifies an antecedent for

non-anaphoric mentions, and (ii) the system does not try to resolve an actual anaphoric

mention. One way to counter such problem is to augment the coreference resolution system

with a separate classifier which is used to determine the discourse status of mentions.
3CPLEX is a commercial software, while the later two are open-source. These can be found at:

http://www.gnu.org/software/glpk/ and http://lpsolve.sf.net/.
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The discourse status model we used here follows the description given in Chapter 4,

where the model was used in combination with specialized rankers. That is, discourse

status determination is treated as binary classification problem with two outcomes: OLD

and NEW. Through training, the classifier estimates the conditional probability Pds(c|i),

where c ∈ {OLD, NEW} and i is a mention. This probability model is based on log-linear

models. The training procedure and the feature set for this model have been detailed in

Chapter 4. As noted, the discourse status model achieves an overall accuracy score of

80.8% on the entire ACE dataset. The results for the model trained/tested on the different

datasets are as follows: 80.1 for BNEWS, 82.2 NPAPER, and 81.1 for NWIRE.

5.3.3 The named entity classifier

In contrast to the previous binary tasks, named entity classification involves 5 class la-

bels (namely, the ACE labels). The set of named entity type T are: FACility, GPE (geo-

political entity), LOCation, ORGanization, PERson. The classifier estimates the conditional

probabilities Pne(t|i) for each t ∈ T and predicts the named entity type t̂ for i such that

t̂ = argmaxt∈T Pne(t|i).

Pne(t|i) =

exp
m∑
j=1

λjfj(i, t)

∑
t′

exp
m∑
j=1

wjfj(i, t′)
(5.1)

The same development cycle as described for the other models was used for this

model. The features for named entity classification include: (i) the string of the mention,

(ii) features defined over the string (e.g., whether it is capitalized, whether it contains punc-

tuation, the head word), (iii) features describing the word and POS context around the men-

tion, (iv) the Wordnet senses (including all the senses in the hypernym closure) associated

with the head word of the mention. The feature set is described in more detail in Table 5.1.
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String-based
full str the entire string for i
hd wd the head word in i
first wd the first word in i
all caps all the letters in i are capitalized {1,0}
all caps periods the string for i is a mixed of caps and periods {1,0}
starts with cap the first letter in i is capitalized {1,0}
comma the string for i contains a comma {1,0}
Context
left pos POS of the token preceding i
right pos POS of the token following i
surr pos pair of POS for the tokens surrounding i
left wd word token preceding i
right wd word token following i
surr wd word tokens surrounding i
Wordnet
wn sense Wordnet senses for i

Table 5.1: Feature selection for the named entity classifier

The named entity classifier achieves 79.5% on the ENTIRE ACE corpus (BNEWS:

79.8, NPAPER: 73.0, NWIRE: 72.7).

5.4 Base model results

This section describes the performance of the pairwise coreference classifier, both when

used alone (COREF-PAIRWISE) and when used in a cascade with: (i) the discourse sta-

tus classifier acting as a filter on which mentions should be resolved (DS-CASCADE), (ii)

the named entity classifier acting as a filter on which mentions should be considered as

antecedent candidates during resolution (NE-CASCADE), (iii) the two classifiers acting as

combined filters (DS-NE-CASCADE).4

We also provide results for the corresponding oracle systems: (i) ORACLE-DS

has perfect knowledge about discourse status (i.e., only true anaphors are resolved), (ii)
4The DS-CASCADE system corresponds to the SCC+DS in the previous chapter.
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System MUC B3 CEAF

R P F R P F R P F
COREF-PAIRWISE 60.8 72.6 66.2 62.4 77.7 69.2 62.3 62.3 62.3
DS-CASCADE 64.9 72.3 68.4 65.6 74.1 69.6 63.4 63.4 63.4
NE-CASCADE 56.3 75.2 64.4 59.6 82.4 69.2 61.6 61.6 61.6
DS-NE-CASCADE 61.3 68.8 64.8 62.5 73.8 67.7 61.9 61.9 61.9
ORACLE-DS 75.6 75.6 75.6 71.4 70.7 71.1 71.5 71.5 71.5
ORACLE-NE 62.5 81.3 70.7 62.9 85.5 72.4 65.2 65.2 65.2
ORACLE-DS-NE 83.2 83.2 83.2 79.0 78.2 78.6 78.7 78.7 78.7

Table 5.2: Recall (R), precision (P), and f -score (F) using MUC, B3, and CEAF on the entire
ACE corpus for the basic coreference system, the cascade systems, and the corresponding
oracle systems.

ORACLE-NE has perfect knowledge about named entities (i.e., only mentions of the same

entity than the current “anaphor” are considered as candidates), (iii) ORACLE-DS-NE has

perfect knowledge about both discourse status and named entities.

Table 5.2 summarizes the results in terms of recall (R), precision (P), and f -score

(F) on the three coreference metrics: MUC, B3, and CEAF, respectively. Some overarching

patterns emerge from these results. The first thing to note is the use of the cascade models in

general fails to produce significant overall f -score improvements over the pairwise model

COREF-PAIRWISE. These systems are far behind in performance from their corresponding

oracles. This tendency is even stronger when the two filter models are applied, since DS-

NE-CASCADE does significantly worse than COREF-PAIRWISE. In fact, this system has

the lowest f -scores on the B3 evaluation metric, suggesting that the errors of the two filters

accumulate in this case. Note, on the other hand, that the combined oracle ORACLE-DS-NE

achieves the best overall f -score results. It does so by capitalizing on the improvements

given by the separate oracles. This oracle model shows large recall and precision improve-

ments. The overall f -scores for these systems are as follows: 83.2% with MUC, 78.6% with

B3, and 78.7% with CEAF.

Secondly, note that the use of the two auxiliary models have complementary effects

on the MUC and B3 metrics, in both the cascade and the oracle systems. Thus, the use of the
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discourse status classifier leads to recall improvements (suggesting that some true anaphors

get “rescued” by this model), while the the use of the named entity model leads to precision

improvements (suggesting that this model manages to filter out incorrect candidates that

would have been chosen by the coreference model). In the case of the oracle systems, these

gains translate in overall f -score improvements. But, as noted, this is generally not the case

with the cascade systems. Only DS-CASCADE shows significant gains with MUC and CEAF

(and not with B3). NE-CASCADE underperforms in all three metrics. This later system

indeed shows important drops in recall, suggesting that this model filter is overzealous in

filtering true antecedents.

5.5 Integer programming formulations

This section provides several ILP formulations for coreference resolution. The first formu-

lation COREF-ILP is based on the coreference classifier alone, and will serve as a baseline

for evaluating the other, joint formulations. This first model allows a single anaphor to take

multiple antecedents (in contrast with usual single-link clustering algorithms). Technically,

this formulation does not require ILP, and it is equivalent to using the “Aggressive-Merge”

clustering of McCarthy and Lehnert (1995). The other formulations provide joint inference

over groups of base models. JOINT-DS-ILP combines the coreference classifier with the

discourse status classifier, JOINT-NE-ILP combines it with the named entity classifier, and

JOINT-DS-NE-ILP combines all three. For each joint formulation, consistency constraints

ensure that the ultimate assignments for each task are mutually consistent. Finally, we de-

scribe the use of additional global constraints on coreference decisions; these are applicable

to all of the formulations.

For solving the ILP problem, we use CPLEX, a commercial LP solver which im-

plements the Simplex and the Branch-and-Bound methods. In practice, each document is

processed to define a distinct ILP problem that is then submitted to the solver.
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5.5.1 COREF-ILP: coreference-only formulation

COREF-ILP uses an objective function based on only the coreference classifier and the

probabilities it produces. From the output probabilities pC = PC(COREF|i, j), we define

the assignment cost of committing to a coreference link as cC〈i,j〉 = −log(pC). The com-

plement assignment cost of choosing not to establish a link is: cC〈i,j〉 = −log(1−pC). M

denotes the set of mentions, and P the set of possible coreference links over these mentions

(i.e., P = {〈i, j〉|〈i, j〉 ∈ M ×M and i < j}). Finally, we use indicator variables x〈i,j〉

that are set to 1 if i and j corefer, and 0 otherwise. The objective function takes the form:

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + cC〈i,j〉 · (1− x〈i,j〉) (5.2)

subject to:

x〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ P

This formulation is similar to that of (Barzilay and Lapata, 2006); these authors use ILP

for the problem of aggregating propositions for NL generation. But note that we minimize

rather than maximize due to the fact we transform the model probabilities with −log (like

(Roth and Yih, 2004)).

This objective function on its own simply guarantees that ILP will find a global

assignment that maximally agrees with the decisions of the coreference classifier. This

actually amounts to taking all links for which the classifier returns a probability above .5;

as noted, this is strictly equivalent to the “Aggressive-Merge” clustering of McCarthy and

Lehnert (1995).5

5It is worth noting that the “Best-First” clustering can be simulated within ILP in the form of a constraint
requiring that each mention j is linked to at most one mention i. Since we are maximizing, this indeed amounts
to take the antecedent with the highest score.
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5.5.2 JOINT-DS-ILP: joint discourse status-coreference formulation

The JOINT-DS-ILP system brings the two decisions of discourse status and coreference

together by including both in a single objective function and including constraints that en-

sure the consistency of a solution for both tasks. Let cAj and cAj be defined analogously to

the coreference classifier costs for pA = Pds(OLD|j), the probability the discourse status

classifier assigns to a mention j being anaphoric (i.e., discourse-old). Also, we have indi-

cator variables yj that are set to 1 if mention j is anaphoric and 0 otherwise. The objective

function takes the following form:

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + cC〈i,j〉 · (1−x〈i,j〉) +
∑
j∈M

cAj · yj + cAj · (1−yj)

subject to:

x〈i,j〉 ∈ {0, 1} ∀〈i, j〉 ∈ P

yj ∈ {0, 1} ∀j ∈M

This function does not constrain the assignment of the x〈i,j〉 and yj variables to be

consistent with one another. To enforce consistency, we add further constraints. In what

follows,Mj is the set of all mentions preceding mention j in the document.

Resolve all anaphors: if a mention is anaphoric (yj=1), it must have at least one

antecedent.

yj ≤
∑
i∈Mj

x〈i,j〉 ∀j ∈M

Resolve only anaphors: if a pair of mentions 〈i, j〉 is coreferent (x〈i,j〉=1), then j
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is anaphoric (yj=1).

x〈i,j〉 ≤ yj ∀〈i, j〉 ∈ P

These constraints thus directly relate the two tasks. By formulating the problem

this way, the decisions of the discourse status classifier are not taken on faith as they were

with DS-CASCADE. Instead, we optimize over consideration of both possibilities in the

objective function (relative to the probability output by the classifier) while ensuring that

the final assignments respect the significance of what it is to be anaphoric or non-anaphoric.

Note that the effect of these two constraints remains in a sense local since they leave the

possibility of “implicit” anaphors. By that, we mean cases in which the final discourse

status assignment for a mention j says it isn’t anaphoric (i.e., yjj = 0), but j is in fact

anaphoric as a result of transitive closure (e.g., if x〈i,k〉 = x〈j,k〉 = 1). Such a situation

is now possible, since more than one antecedent is allowed per anaphor. This type of case

motivates the use of additional constraints relating pairs of assignments; these are discussed

in Section 5.5.5.

5.5.3 JOINT-NE-ILP: joint entity-coreference formulation

In this second joint formulation, we combine coreference decisions with named entity clas-

sification. New indicator variables for the assignments of this model are introduced, namely

z〈i,j〉, where 〈i, t〉 ∈ M×T . Since entity classification is not a binary decision, each assign-

ment variable encodes a mention i and a named entity type t. Each of these variables have

an associated cost cE〈i,t〉, which is the probability that mention i has type t: cE〈i,t〉 = PE(t|i).

The objective function for this formulation is:

min
∑
〈i,j〉∈P

cC〈i,j〉 · x〈i,j〉 + cC〈i,j〉 · (1−x〈i,j〉) +
∑

〈i,t〉∈M×T

cE〈i,t〉 · z〈i,t〉
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subject to:

z〈i,t〉 ∈ {0, 1} ∀〈i, t〉 ∈ M× T∑
i∈M

z〈i,t〉 = 1 ∀i ∈M

The last constraint ensures that each mention is only assigned a unique named entity type.

Consistency between the two models is ensured with the constraint:

Coreferential mentions have the same entity type: if i and j are coreferential (x〈i,j〉=1),

then they must be have the same type (z〈i,t〉 − z〈j,t〉 = 0):

1− x〈i,j〉 ≥ z〈i,t〉 − z〈j,t〉 ∀〈i, j〉 ∈ P, ∀t ∈ T

1− x〈i,j〉 ≥ z〈j,t〉 − z〈i,t〉 ∀〈i, j〉 ∈ P, ∀t ∈ T

These constraints above make sure that the coreference decisions are informed by

the named entity classifier and vice versa. Furthermore, because these constraints ensure

like assignments to coreferent pairs of mentions, they have a chaining effect that makes the

overall system global. Coreference assignments that have low cost (i.e., high confidence)

can influence named entity assignments (e.g., from a COMPANY to a PERSON). This in turn

can alter other coreference assignments involving further mentions radiating out from one

core, highly likely assignment.

5.5.4 JOINT-DS-NE-ILP: joint discourse status-entity-coreference formula-

tion

For the third joint model, we combine all three base models with an objective function

that is the composite of those of JOINT-DS-ILP and JOINT-NE-ILP and incorporate all the

constraints that go with them. By creating a triple joint model, we get constraints between

discourse status and named entity classification for free, as a result of the interaction of

the consistency constraints between discourse status and coreference and of those between
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named entity and coreference. For example, if a mention of type t is anaphoric, then there

must be at least one mention of type t preceding it.

5.5.5 Transitivity constraints

The different ILP formulations given above can be further extended by a number of global

constraints, i.e. constraints that use a larger context. Inspired by (Barzilay and Lapata,

2006), the constraints we propose exploit the fact that coreference is an equivalence relation.

Thus, one can constrain triples of mentions i, j, k, where i < j < k using the following

three constraints on coreference assignments. These constraints in effect account for the

dependencies between the different coreference decisions. In what follows, Mi,j,k is the set

of triples 〈i, j, k〉 such that 〈i, j, k〉 ∈ M×M×M and i < j < k.

Transitivity: if x〈i,j〉 and x〈j,k〉 are coreferential pairs (i.e., x〈i,j〉 = x〈j,k〉 = 1), then so is

x〈i,k〉:

x〈i,k〉 ≥ x〈i,j〉 + x〈j,k〉 − 1 ∀〈i, j, k〉 ∈Mi,j,k

Euclideanity: if x〈i,k〉 and x〈j,k〉 are coreferential pairs (i.e., x〈i,k〉 = x〈j,k〉 = 1), then so is

x〈i,j〉:

x〈i,j〉 ≥ x〈i,k〉 + x〈j,k〉 − 1 ∀〈i, j, k〉 ∈Mi,j,k

Anti-Euclideanity: if x〈i,j〉 and x〈i,k〉 are coreferential pairs (i.e., x〈i,j〉 = x〈i,k〉 = 1), then

so is x〈j,k〉.

x〈j,k〉 ≥ x〈i,j〉 + x〈i,k〉 − 1 ∀〈i, j, k〉 ∈Mi,j,k
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Enforcing the latter constraint alone guarantees that the final assignment will not

produce any implicit anaphor (and no chain will have a mention predicted to be anaphoric

as their head). The interaction of this constraint with resolve only anaphors guarantees

that the three assignments x〈j,k〉 = 1, x〈i,k〉 = 1, and yj = 0 cannot all together be part of

the final global assignment.

Note that one could have one unique transitivity constraint if we had symmetry in

our model; concretely, capturing symmetry means: (i) adding a new indicator variable x〈j,i〉

for each variable x〈i,j〉, and (ii) making sure x〈j,i〉 agrees with x〈i,j〉.

Enforcing each of these constraints above means adding 1
6 ×n× (n− 1)× (n− 2)

constraints, for a document containing n mentions. This means close to 500, 000 of these

constraints for a document containing just 100 mentions. The inclusion of such a large set

of constraints turned out to be difficult, causing memory issues with large documents (some

of the ACE documents have more than 250 mentions). Consequently, we investigated during

development various simpler scenarios, such as enforcing these constraints for documents

that had a relatively small number of mentions (e.g., 100) or just using one of these types

of constraint (in particular Anti-Euclideanity given the way it interacts with the discourse

status assignments). In the following, JOINT-DS-NE-AE-ILP will refer to the JOINT-DS-

NE-ILP formulation augmented with the Anti-Euclideanity constraints.

5.5.6 Other global constraints

Transitivity captures dependencies between coreference decisions by imposing coherence

on triples of mentions. Below, we suggest two other types of constraint that can be imposed

on the whole partitioning. Note however that these constraints have not yet been included

in any of our ILP formulations. The first constraint controls the overall number of anaphors

in the document; this is achieved by providing a lower bound α on the number of discourse

status assignments:
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System MUC B3 CEAF

R P F R P F R P F
COREF-PAIRWISE 60.8 72.6 66.2 62.4 77.7 69.2 62.3 62.3 62.3
COREF-ILP 70.3 72.7 71.5 73.2 63.7 68.1 58.7 58.7 58.7
JOINT-DS-ILP 73.2 73.4 73.3 75.3 62.0 68.0 58.9 58.9 58.9
JOINT-NE-ILP 66.2 75.0 70.4 69.6 71.2 70.4 61.2 61.2 61.2
JOINT-DS-NE-ILP 69.6 75.4 72.4 72.2 69.7 70.9 62.3 62.3 62.3
JOINT-DS-NE-AE-ILP 63.7 77.8 70.1 65.6 81.4 72.7 66.2 66.2 66.2

Table 5.3: Recall (R), precision (P), and f -score (F) using the MUC, B3, and CEAF evalua-
tion metric on the the entire ACE dataset for the ILP coreference systems.

∑
j∈M

yj ≤ α (5.3)

If used with the transitivity constraints, this constraint can be seen as constraining

the total number of entities in the document. This is because the number of entities is the

same as the number of non-anaphors: each non-anaphor corresponds to one distinct entity.

The second constraint controls the number of coreference links for a given anaphor, by

putting a lower bound λ:

∑
〈i,j〉∈P

x〈i,j〉 ≤ λ (5.4)

The two parameters α and λ can be estimated on development data for each of the

dataset. Note that the estimation of λ depends on whether or not the transitivity constraints

are also enforced and the window that is used. This is because transitivity will affect the

overall number of links.

5.6 ILP results

Table 5.3 summarizes the scores for the different ILP systems for MUC, B3, and CEAF,

respectively. The first thing to notice is that two ILP formulations that combine the three
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local models, namely JOINT-DS-NE-ILP and JOINT-DS-NE-AE-ILP, deliver significant im-

provements over both COREF-PAIRWISE and COREF-ILP on the three evaluation metrics.

In fact, these two formulations provide the best f -scores on both the B3 and CEAF: the gains

on these metrics go as high as 3.5% over COREF-PAIRWISE and 4.6% over COREF-ILP,

while the gains on CEAF are of 3.9% over COREF-PAIRWISE and 7.3% over COREF-ILP.

On MUC, JOINT-DS-NE-ILP is the second best performing system, only after JOINT-DS-

ILP.

These results are in sharp contrast with those obtained by the cascade model DS-

NE-CASCADE: recall that this system, while also using the two auxiliary models, was

worse than COREF-PAIRWISE. They clearly show the superiority of the joint formulation

over the cascade approach for integrating and combining the extra information provided

by the discourse status and named entity models. In addition to improving coreference

resolution performance, the joint formulations also yield improvement on the named entity

classification: specifically, accuracy for that task went from 79.5% to over 80% for each of

the ILP formulations using this model. 6

Although the ILP formulations perform better overall, they show different patterns

of results depending on the different evaluation metrics. In particular, there is a clear split

between MUC and the other two metrics, which is based on two important differences. First,

the simple ILP formulation, COREF-ILP, performs comparatively much better in MUC than

in B3 and CEAF. This system already significantly outperforms COREF-PAIRWISE on MUC

(with gains of 5.3%), but it does worse than COREF-PAIRWISE on the two other metrics.

Second, the ILP formulations that incorporate the named entity model and the anti-euclidean

constraints fail to provide improvements over the simpler formulations COREF-ILP and

JOINT-DS-ILP in MUC, while they are the best systems in B3 and CEAF. These differences

can actually be traced back to the way the different metrics work. In particular, recall that

MUC favors systems that produce a large number of coreference links (by the same token, it
6Accuracy for discourse status goes down, from 80.9% to 80.0% on the entire ACE corpus.
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is more lenient with systems that have poor precision). This bias first explains why COREF-

ILP does so much better than COREF-PAIRWISE: the only difference between these two

systems is indeed that COREF-ILP produces more links by allowing more than one an-

tecedent per anaphor. The important recall improvements given by COREF-ILP directly

translate in f -score gains on the MUC metric, but not on B3 and CEAF which both strongly

penalize this system in terms of precision. Similarly, only these two metrics show the ben-

efits of including the named entity model and the anti-euclidean constraints. These provide

important precision improvements which, combined with the recall gains provided by the

inclusion of the discourse status model, are able to yield overall f -score improvements.

Further experiments reveal that bringing the other transitivity constraints into the

ILP formulation results in additional precision gains, although not in overall f -score gains.

The effect of these constraints is indeed of withdrawing incoherent links, rather than pro-

ducing new links. At the global level, this results in the creation of smaller, more coherent

clusters of mentions. Switching on these constraints may therefore be useful for certain

applications where precision is more important than recall. Finally, we expect that the addi-

tion of the other global constraints, which control the shape of the whole partitioning, will

be able to better balance recall and precision.

5.7 Summary and discussion

In this chapter, we have provided a new approach to the task of coreference resolution by

recasting it as a linear optimization problem. In particular, we have used the framework of

ILP to cleanly integrate the predictions of three different local models (namely, a standard

pairwise coreference classifier, a discourse status classifier, and a named entity classifier)

and to perform global inference over these models. Our ILP formulations cleanly capture

the dependencies between these different models through the use of simple declarative con-

straints which mutually constrain the final outcomes of the models. Crucially, this means

that optimization is achieved without careful weighting of the models. In addition, we
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have also shown how to incorporate various other global constraints (such as transitivity

constraints) to better capture the dependencies between coreference decisions.

In terms of performance, we have demonstrated that the various ILP formulations

provide overall f -score improvements over both the standard pairwise model and the cas-

cade models. Improvements were found across the three different evaluation metrics: MUC

B3, and CEAF. The fact that B3 and CEAF scores were also improved is significant: the

ILP formulations tend to construct larger coreference chains —these are rewarded by MUC

without precision penalties, but B3 and CEAF are not as lenient. Improvements in these two

metrics thus give stronger evidence that the joint ILP formulations really do deliver better

coreference assignments.

There are several natural extensions to the approach proposed here. Given the flex-

ibility of the ILP framework in integrating different models, a first way to extend this ap-

proach is to include other coreference models like the specialized models described in Chap-

ter 4. While the integration of additional classifiers is straightforward, the integration of the

rankers is more complicated. The difficulty has to do with the fact that rankers provide a

different type of probability distribution than classifiers: that is, they provide a probabil-

ity distribution over the set of antecedent candidates for a given anaphor. This raises the

question of how to best convert these probabilities in terms of assignment costs.7

Another, potentially fruitful way to extend this approach is to incorporate other

types of model. In particular, we are very interested in combining coreference models and

discourse parsing models. Discourse theories, e.g., Asher and Lascarides (2003), have for

a long time emphasized the interdependence of the two problems: coreference plays an

important role in establishing discourse coherence, and coherence also plays an important

in constraining reference resolutions. ILP would provide a very suitable framework for

modeling these two tasks as a joint problem.

7One straightforward method would be to use the probability given to each candidate by the ranker as the
cost for making a link to that particular candidate, and to use the uniform probability (i.e., 1 over the total
number of candidates) as the cost for not making the link. But a potential problem with this approach is that
the size of the candidate sets varies from one anaphor to the other: this is likely to make these costs unreliable.
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Chapter 6

Conclusions

The main goal of this dissertation has been to investigate and develop more effective learn-

ing models for robust anaphora and coreference resolution. As our starting point, we identi-

fied in Chapter 2 four potential limitations inherent to the existing approaches to these tasks.

The first limitation regards the type of model that has been being used. The vast major-

ity of previous learning-based systems recasts reference resolution as binary classification,

whereby each pair of nominal mentions is classified as either coreferential or not. The fun-

damental problem with this view is that it embeds an unwarranted independence assump-

tion, namely that establishing reference between an anaphor and an antecedent candidate is

independent from the other candidates. A second limitation of most existing approaches,

specifically when dealing with coreference resolution, is that they construct a single model

for resolving different referring expressions. This is problematic since different linguistic

expressions (e.g., pronouns and proper names, to take two extremes) show different linking

strategies —an observation made for a long time by both semanticists and psycholinguists.

Another weakness of classification-based approaches to coreference regards the way the

different coreference resolutions are coordinated. Typically, previous approaches have used

extremely greedy clustering algorithms for merging the pairwise decisions, in effect treating

each linking decision as a purely local decision. This is again an unwarranted assumption,
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since the decision of merging a mention into a chain should be conditioned on how well it

matches the entity as a whole. Finally, existing approaches have for the most part failed

to exploit the rich knowledge sources necessary to properly model coreference. Crucially,

attempts at predicting and incorporating linguistically relevant information (as features

or pre- or post-processing modules) have been for the most part unsuccessful.

The main contribution of this thesis has been in developing a set of techniques

—ranking models and integer linear programming— that are able to overcome the above

limitations while remaining easy to design and computationally tractable. Common to these

techniques is that they make fewer independence assumptions, and consider a more global

context for making their decisions.

More specifically, we have first investigated the use of a ranker as an alternative

to the traditional classification approach for the restricted task of pronoun resolution. As

discussed, the ranker provides a better model of the problem of antecedent selection by di-

rectly bringing the comparison between the candidates inside the training criterion (rather

than deriving it from the classifier’s probabilities, which give only an imperfect estimation

of antecedent-hood). The ranking approach for pronoun resolution yields large improve-

ments (up to 8%) over the traditional pairwise classification model. The ranker also com-

pares very favorably to the to-date best pronoun resolution system, namely the so-called

twin-candidate approach of Yang et al. (2005), with an improvement of 1-2%. An impor-

tant advantage of the ranker over this later model is that the ranker has much faster training

and online testing times: specifically, the complexity of the twin-candidate model is cubic

in the number of mentions in a document, while that of the ranker is only square.

Second, we have also shown that ranking works well for full coreference resolu-

tion, as long as: (i) one is able to reliably filter out discourse-new mentions (i.e., the non-

anaphors), and (ii) the resolution task is split into different models for different linguistic

expressions. Thus, the use of rankers was extended from pronoun resolution to full corefer-

ence resolution through the creation of specialized rankers that deal with clearly defined
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subsets of the coreference problem: third-person pronouns, speech pronouns, proper names,

definite descriptions, and all others. This “distributed” strategy led to 3-4% improvements

in coreference f -score across three different evaluation metrics (MUC, B3, and CEAF), com-

pared to using a standard classification approach. Furthermore, when compared to using

similarly specialized classifiers, the use of specialized rankers still led to significant im-

provements of 1-2%.

A considerable improvement over the classification-based approaches, the proposed

ranking approach still suffers from two important shortcomings. By relying on a sim-

ple pipeline architecture, this approach first fails to model the dependencies between dis-

course status determination and coreference linking. Second, like the classification-based

approaches, this approach makes each coreference decision independently of one another.

For these reasons, we explore in Chapter 5 a drastically different view of the coreference

problem, and recast it as an optimization problem. In particular, we use the framework of

Integer Linear Programming (ILP) to combine different, locally trained models into a joint,

global inference problem. The three models are: a standard pairwise coreference classi-

fier, a discourse status classifier, and also a named entity classifier. The final predictions of

the three models are mutually constrained through the use of simple, declarative constraints

which capture the dependencies between the models. The ILP framework also allows us

to integrate various other global constraints (such as transitivity constraints), whose role

is to better capture the dependencies between coreference decisions. Tested on the ACE

datasets, our ILP formulations deliver significant f -score improvements over both a stan-

dard pairwise model, and various models that employ the discourse status and a named

entity classifiers in a cascade. Improvements of 3-6% were found across the three evalua-

tion metrics. Schematically, the joint formulations resulted in recall improvements, while

the addition of the transitivity constraints improved precision. The fact that B3 and CEAF

scores were also improved is of particular importance: the ILP formulations tend to con-

struct larger coreference chains —these are rewarded by MUC without precision penalties,
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but B3 and CEAF are not as lenient. Improvements in these two metrics thus give strong

experimental evidence that the joint ILP formulations really do deliver better coreference

assignments.

There are a number of directions in which to extend the work presented in this direc-

tion. The most obvious is to try to bring in the different ranker models into the ILP formula-

tion: given that they provide better local models than classifiers, one expects them to yield

even better results when integrated in a global formulation. The second is in the integration

of more numerous, and richer information sources. As witnessed in the learning curves of

Chapter 3, surface-based features can only do so well, and cause learning to plateau after a

relatively small number of documents. Among the most promising sources of information

to add are deeper syntactic knowledge, lexical semantics, and discourse structure. Inter-

estingly, the present work (in particular the ILP formulations) provides a very general and

simple infrastructure in which additional knowledge sources (e.g., in the form of additional

models) can be easily integrated. Finally, we would like to extend this research to other lan-

guages as well as to other related phenomena. Most of current work on coreference deals

with nominal anaphora, and there is only very little research on computational treatments

for abstract entity anaphora or temporal anaphora. Since there are few (if any) resources

available in these two cases, we would like to explore unsupervised and/or semi-supervised

techniques such as active learning, as well as domain adaptation techniques.
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