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What is RDF and does it need schemas?
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RDF at its conception and RDF now

What is RDF?

I set of triples 〈subject, predicate, object〉

Originally, free-range RDF

I The driving technology of Web 3.0 [Tim Berners-Lee]

I “Just publish your data so others can access it!”

I Intentionally schema-free and ontology oriented

Nowadays, industrial-strength RDF

I Produced and consumed by applications (data exchange format)

I Often obtained from exporting data from relational databases (e.g., R2RML)

I Follows a strict structure
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Outline

Uses for schemas

I Provide a semantic insight into data

I Capture the structure of the graph (summary)

I Enable validation i.e., checking data conformance

If RDF that does not come with schema?

I Infer the schema

If the RDF does not satisfy its schema?

I Repair the RDF

Initial research [ICDT’15]

I Define the semantics of ShEx

I Complexity of validation

I Expressive power

Joint work with joint work with I. Boneva, J. Labra Gayo,
S. Hym, E. G. Prud’hommeaux, and H. Solbrig

Current research

I Containment problem [PODS’19]

I Grammatical inference (ongoing)

Joint work with P. Wieczorek, A. Lemay, and B. Groz

Future research
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Previously existing schema formalisms for RDF

RDF Schema (RDFS) [W3C]:

I lightweight ontology language (types and type inclusion relations)

I range and domain constraints for properties (predicate types)

I virtually no power to constrain the structure of the graph
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Previously existing schema formalisms for RDF (cont’d.)

OWL + CWA + UNA [Sirin, RR’10]

I Potentially confusing nonstandard semantics

I Potentially high complexity of validation

SPARQL (SPIN) [Bolleman et al., SWAT4LS’12]

I Very powerful and expressive

I High complexity

Resource Shapes [IBM, Ryman et al., LDOW’13]

I Extends RDFS with simple cardinality constraints on the outbound neighborhood of a node

What does exactly RDF validation mean

Verification the typing is given (with rdf:type) and its correctness is to be verified
(this meaning is employed by the above schema proposals)

Model checking no typing is given and the goal is to construct a valid typing
(this is a more general problem that we are interested in)
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Shape Expressions Schemas
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Shape Expression Schema (ShEx)

Syntax

ShEx is a set of rules of the form Type → RegExp(Predicate × Type)
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Bug → descr :: str,

reportedBy :: User,

reproducedBy :: Employee?,
related :: Bug*

User → name :: str,

email :: str?

Employee → name :: str,

email :: str

Semantics
Graph satisfies a schema if every node has at least one type
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Background information

Shape Expressions Schemas (ShEx)

I Inspired by XML Schema and reminiscent of (tree) automata

I Based on regular expressions under commutative closure
membership NP-c [Kopczynski&To’10]; containment coNEXP-c [Haase&Hofman’16]

I Envisioned as a potential XSLT-like transformation engine for RDF

ShEx vs SHACL

I ShEx is a schema language with a growing base of users and a host of applications (e.g., Wikidata)

I SHACL is Shape Constraint Language (e.g., path constraints)

I significant overlap (upcoming paper) but also differences (recursion, negation etc.)

I comparable validation complexity (NP-complete)

I both have been developed under the tutelage of W3C

I SHACL ended up a W3C Recommendation (yay!), ShEx a W3C Community Group Project
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Flavorful ShEx

<Emp> {

name xsd:string | (first-name xsd:string, last-name xsd:string),

email xsd:string,

department @<Dept>

}

<Dept> {

name xsd:string,

reportedBy @<User>,

reportedOn xsd:dateTime,

(manager @<Emp>, appointedOn xsd:dateTime)?,

employees @<Emp>*

}
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Bags of symbols (unordered words)

Bag (multiset) is a function mapping a symbol to the number of its occurrences.

w0 = {|a, a, a, c, c|} represents the function w0(a) = 3, w0(b) = 0, and w0(c) = 2.

The collection of outgoing labels is a bag:

out-labG (n) = {|a | (n, a,m) ∈ EG |}

G0:

n0

n1

n2

n3

n4

a

b

b

a

b

c

a

out-labG0 (n0) = {|a, a, b|}

Bag union: {|a, c, c|} ] {|a, b|} = {|a, a, b, c, c|} (concatenation of unordered words).
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Regular Bag Expressions (RBEs)

Language of regular expressions for defining bags (unordered concatenation , )

E ::= ε | a | E∗ | (E“|”E) | (E“, ”E)

with natural macros: E? := (ε | E) and E+ := (E , E∗)

Examples

I (a∗, b+, c, c) – arbitrary number of a’s, positive number of b’s, and two c’s

I (a, b)∗ – the same number of a’s and b’s

I (a, b, c)∗ – the same number of a’s, b’s, and c’s.

RBEs are equivalent to

1. Presburger arythmetic (PA),

2. Parikh images of context-free languages,

3. semilinear sets.

Computational properties

I Membership w ∈ E is NP-complete,

I Emptiness E1 ∩ E2 = ∅ is coNP-complete.
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RBE0 and ShEx0 = ShEx(RBE0)

RBE0

I RBEs using only symbols with multiplicities {0, 1, ∗,+, ?} and , operator only

I can be canonized a, a? ≡ a[1,2], b+, b+ ≡ b[2,∞], etc.

I the canonical form is a[n,n′], b[m,m′], . . .

I Presburger formulas: conjunctions of atoms #a < n and #a > n

I captures IBM’s Resource Shapes

Computational properties: simple arithmetic

A lightweight class enjoying tractability of a number of problems:

I membership

I containment

I intersection (also with RBE1)

Also learnable from positive examples [DBPL’13]
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Getting the semantics of ShEx right

G0:

n0

n1

n2

n3

n4

t0

t1

t2

t1

t2

a

b

b

a

b

c

a
S0: t0 → (a :: t1)+, b :: t2

t1 → (a :: t1 | b :: t2)∗

t2 → b :: t2 | c :: t1

out-lab-typeλ0
G0

(n0) = {|a :: t1, a :: t1, b :: t2|}

A single-type typing is a function λ : V → Γ.

λ is valid if every node n satisfies its type definition i.e.,

out-lab-typeλG (n) = {|a :: λ(m) | (n, a,m) ∈ E |} ∈ δ(λ(n)).

A valid single-type typing of G0 w.r.t. S0

λ0(n0) = t0, λ0(n1) = t1, λ0(n2) = t2, λ0(n3) = t1, λ0(n4) = t2.
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Intractability of single-type validation

Validation problem

Checking if there exists a valid typing of given input graph w.r.t. a given input schema.

Sources of complexity

1. guessing a typing

2. checking that it is valid (RBE membership is already NP-complete)

Theorem
Single-type validation is NP-complete (even if only RBE0 are used).

Reduction from graph 3-colorability:

tr → :: t∗b , :: t∗g tg → :: t∗r , :: t∗b tb → :: t∗g , :: t∗r
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Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2, c :: t3

t2 → (b :: t2)?, c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1, b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1

t2

t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2), c :: t3

λ is valid if every node satisfies every of its associated types.
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λ is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t. . .

I we inspect the outbound neighborhood out-lab-nodeG (n) = {(a,m) | (n, a,m) ∈ E}

I a node m may assume any of its assigned types λ(m), one per edge incoming from n

I (n, a,m) ∈ E yields the choice |t∈λ(m) a :: t

I OutType(n, λ) = ,
(n,a,m)∈E (|t∈λ(m) a :: t)
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I OutType(n, λ) = ,
(n,a,m)∈E (|t∈λ(m) a :: t)
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λ is valid if every node satisfies every of its associated types.

n satisfies t w.r.t. λ if OutType(n, λ) ∩ δ(t) 6= ∅,
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(n,a,m)∈E (|t∈λ(m) a :: t)
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Refinement algorithm

The set of all valid multi-type typings of G w.r.t. S is a semi-lattice.

1. Start with the universal typing λ(n) := Γ

2. Iteratively refine it λ := Refine(λ)

[Refine(λ)](n) = {t ∈ λ(n) | OutType(n, λ) ∩ δ(t) 6= ∅}.

3. Until a fix-point is reached

4. The graph satisfies the schema iff the fix-point λ is valid . . .
. . . and then λ is also the maximal valid multi-type typing.
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Satisfiability of RBEs

OutType yields expressions of the form (RBE1)

(a1 | · · · | ak), · · · , (z1 | . . . | zm)

The essential decision problem for a class C of RBEs used in the ShEx schema is

INTER1(C) = {(E0,E) ∈ RBE1 × C | E0 ∩ E 6= ∅}.

Lemma
Tractability of INTER1 is a necessary and sufficient condition for tractability of multi-type validation.

Corollary

Multi-type validation is NP-complete.

Theorem
Multi-type validation for ShEx0 = ShEx(RBE0) is in PTIME

S lawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019 18 / 57



Determinism

Determinism of shape expressions

Given the type (of a node) and the label of an outgoing edge, the expression specifies the type that the target
node must satisfy.

a :: t1, b :: t∗2 , a :: t1, c :: t2 (a :: t1, b :: t2) | (a :: t3, c :: t4) a :: t1, b :: t∗2 , a :: t3

deterministic not deterministic not deterministic

Lemma
For schemas using only deterministic shape expressions, tractability of membership is a sufficient and necessary
condition for tractability of multi-type validation

Proof sketch

I Knowing the label a of an outgoing edge determines the type ta for the target node

I OutType(n, λ) = ,
(n,a,m)∈E (|t∈λ(m) a :: t) becomes ,

(n,a,m)∈E (a :: ta)

I ,
(n,a,m)∈E (a :: ta) defines a singleton {w} with w = {|a :: ta | (n, a,m)|}

I OutType(n, λ) ∩ δ(t) 6= ∅ ≡ w ∈ δ(t).
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Single-occurrence REBs (SORBEs)

SORBE allows a symbol to be used at most once in an expression but also allows a[n,m]

Theorem
Membership for SORBE is in PTIME :)

a :: t1, b :: t∗2 , a :: t1 (a :: t1, b :: t2) | (a :: t3, c :: t4) (a :: t1, b :: t2)∗, c :: t3

deterministic not deterministic deterministic
but yet and

not single-occurrence single-occurence single-occurrence

Theorem
Multi-type validation for deterministic shape expressions using SORBE is in PTIME. :)
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Expressive power of ShEx

G<: a

b

c

c

G�: a

b

c

c

FOG ShExm ShExs ∃MSOG

L : G� ∈ L, G< ∈ L 3 3 3 3

L : G� 6∈ L, G< ∈ L 3 5 3 3

L : G� ∈ L, G< 6∈ L 3 5 5 3
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Quick recap

Complexity

RBE0 RBE SORBE
SORBE

det.
multi-type PTIME NP-complete PTIME
single-type NP-complete

Expressive power

I automata-like formalism

I incomparable with FO and MSO (unless we forbid ∗ over expressions)

I captured with MSO+PA

I incomparable with NR and HR graph grammars

I closed under intersection but not under union or negation

I single-type semantics is more expressive than multi-type semantics
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Containment of ShEx
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Containment problem

Containment S1 ⊆ S2

Does every graph that satisfies S1 also satisfies S2?

Motivation

I Fundamental problem (static analysis: query optimization, schema minimization etc.)

I Inference of ShEx (work in progress)

G1

Positive example

G2

Negative example

S1 S2 S3
Generalization

⊆
Over-generalization

⊆

The challenge

I RBEs = Presburger Arithmetic (PA)

I MSOG 6⊇ ShEx ⊆ MSOG + PA

I MSOG with very little arithmetic becomes undecidable [Elgot&Rabin’66]
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Decidability of Containment

S1 : t0 → a :: t*
1

t1 → b :: t?
1

6⊆
S2 : s0 → a :: s1 | (a :: s1, a :: s2)*

s1 → b :: s?
2 s2 → ε

G : ({t0}, {})

({t1}, {s1})({t1}, {s1})

({t1}, {s1, s2})

a
a

a

b b

G : ({t0}, {s0})

({t1}, {s1})

({t1}, {s1, s2})

a
a

b

G : ({t0}, {})

({t1}, {s1})

({t1}, {s1, s2})

a
a
a

b

G : ({t0}, {})

({t1}, {s1})

({t1}, {s1, s2})

a1
a 2

b
1

Can we bound
these values?

Containment of ShEx is in co2NEXPNP

I The counter-example is a graph with at most exponential number of nodes, one node per (A,B)-kind

I There is a PA formula ϕ that describes the multiplicities

I PA enjoys an upper bound O(|ϕ|3|x̄|
k

) on minimal solutions [Weispfenning’90]

I Double exponential upper bound on the (binary) size of the values of multiplicities

I Validation of graphs with multiplicities remains in NP

I Containment of commutative REs recently shown to be coNEXP-hard [Haase&Hofman’16]
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ShEx0

I no disjunction (a :: t1 | b :: t2) and no grouping (a :: t1, b :: t2)*

I Shape Graphs – an equivalent graphical representation

bug1 bug2

bug3 bug4

user1

user2

emp1

“Boom!” “Kaboom!”

“Kabang!” “Bang!”

“John”
“Mary” “m@h.org”

“Steve”
“stv@m.pl”

na
me

na
me

e
m
a
i
l

na
me

email

relatedre
la
te
d

r
e
p
o
r
t
e
d
B
y

r
e
p
r
o
d
u
c
e
d
B
y

descr

re
la
te
d r

e
p
o
r
t
e
d
B
y

descr

reportedBy

d
e
s
c
r

re
po
rt
ed
By

d
e
s
c
r

Bug→ descr :: str, reportedBy :: User, reproducedBy :: Employee?
, related :: Bug*

User→ name :: str, email :: str?

Employee→ name :: str, email :: str

Bug

User Employee

str

related

*

r
e
p
o
r
t
e
d
B
y

1

reproducedBy

?

d
e
s
c
r

1

name

1email?

na
me

1
em
ai
l

1
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Embeddings

I Graph morphism with occurrence constraints, closely related to graph simulations

I Capture semantics of ShEx0 by means of structural comparison

I Generalize naturally to pairs of shape graphs

bug1
bug3

user1 emp1

“Boom!”“Kabang!” “John” “Mary” “m@h.org”

n
a
m
e

na
me

email

related

re
po
rt
ed
By

r
e
p
r
o
d
u
c
e
d
B
y

d
e
s
c
r

reportedBy

d
e
s
c
r

Bug

User Employee

string

related

*

r
e
p
o
r
t
e
d
B
y

1

reproducedBy

?

d
e
s
c
r

1

name

1email?

na
me

1
em
ai
l

1

Bug

Person

string

related

*

r
e
p
o
r
t
e
d
B
y

1

r
e
p
r
o
d
u
c
e
d
B
y

?

d
e
s
c
r

1

n
a
m
e

1

e
m
a
i
l

?
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Properties of embeddings

Embedding and containment

I Embedding implies containment

I In general, the converse does not hold

H :

a *

b *

K :

a* a *

b

a*

b

b*

H cannot be embedded into K (b :: t* is equivalent to ε | b :: t | b :: t+)

Theorem
Constructing embeddings is

I in PTIME if only 1, ?, *, + are used

I NP-complete if arbitrary occurrence constraints are allowed a :: t [n;m]
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When does containment implies embedding?

Determinism

I DetShEx0 every type uses each predicate symbol at most once

I DetShEx−0 no + are allowed and ? must be dominated by *

Characterizing graph

For any H ∈ DetShEx−0 there is a polynomially-sized graph G characterizing H under containment i.e.,

∀K ∈ DetShEx-
0. G satisfies K ⇒ H ⊆ K .

Theorem
Containment for DetShEx−0 is in PTIME

H:
*

*

?

*

*

?

G :

Theorem
Containment for DetShEx0 is coNP-hard
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Two equivalent ShEx0 schemas and their shape graphs

H :

Bug→ descr :: str, reportedBy :: User, reproducedBy :: Employee?,

related :: Bug*

User→ name :: str, email :: str?

Employee→ name :: str, email :: str

K :

User1 → name :: str

User2 → name :: str, email :: str

Bug1 → descr :: str, reportedBy :: User1, reproducedBy :: Employee?,

related :: Bug*
1, related :: Bug*

2

Bug2 → descr :: str, reportedBy :: User2, reproducedBy :: Employee?,

related :: Bug*
1, related :: Bug*

2

Employee→ name :: str, email :: str

H:

B

U E

L

r*

u

e?

d

n

m
? m

n

K :

B1B2

U1U2

E

L

r*

r*

u

e?

d

r*

r*

u

e?

d

mn

n

n

m
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Coverings

Generalization of embeddings

A type t is covered by a set of types S = {s1, . . . , sk} iff any node satisfying t also satisfies one of the types in S

H:

B

U E

L

r*

u

e?

d

n

m
? m

n

K :

B1B2

U1U2

E

L

r*

r*

u

e?

d

r*

r*

u

e?

d

mn

n

n

m

Lemma (Constructing covering)

Covering is the maximum relation R ⊆ Types(H)× P(Types(K)) such that

∀(t,S) ∈ R. def(t)
Unfold−−−→R {def(s) | s ∈ S}.
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Unfolding

H:

B

U E

L

r*

u

e?

d

n

m
? m

n

K :

B1B2

U1U2

E

L

r*

r*

u

e?

d

r*

r*

u

e?

d

mn

n

n

m
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Unfolding

H:

B

U E

L

r*

u

e?

d

n

m
? m

n

K :

B1B2

U1U2

E

L

r*

r*

u

e?

d

r*

r*

u

e?

d

mn

n

n

m

Unfolding U into {U1,U2}

U → n :: L, m :: L? ≡ n :: L, (ε | m :: L) ≡ (n :: L) | (n :: L, m :: L)← U1 | U2
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Complexity of ShEx0

Theorem
Containment for ShEx0 is in EXP

I Covering is a relation of exponential size

I Covering can be obtained with an iterative refinement process
(starting with maximal relation and remove at least one element at each iteration until stabilization)

I At each step unfoldings are constructed and each unfolding is a tree whose size is bounded exponentially

Theorem
Containment for ShEx0 is EXP-complete

I Reduction from containment for binary tree automata
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Quick recap

I Containment for ShEx is decidable

I There is a (arguably practical) class DetShEx-
0 with tractable containment

I ShEx is very different from tree automata and requires novel techniques

ShEx DetShEx ShEx0 DetShEx0 DetShEx-
0

coNEXP-h and co2EXPNP co2EXP EXP-c coNP-h PTIME
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Inference of ShEx
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Constructing ShEx from an RDF Graph

What for?

I RDF originally schema-free but schemas are useful

I Free-range RDF is dirty

I Industrial-strength RDF is relatively clean and exhibits regular structure

Relational database
R2RDF−−−−→ RDF

What do we want?
For a given RDF Graph G construct a ShEx schema S that captures the structure of G :

Soundness G satisfies S

Succinctness S is small enough for a human user to consume

Specificity S is not overly general (as the universal schema is)

Implicit node similarity

Two nodes should have the same type if they are similar in some way. Two possible criteria:

I content – the outbound neighborhood is similar

I context – the inbound neighborhood is similar
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Inference and Fitting

Fitting

For a input G construct ⊆-minimal schema S that G satisfies.

Inference
An inference algorithm A is an algorithm that is

I sound i.e., it returns a schema that the input graph satisfies;

I complete i.e., it can return any goal schema provided that the input graph is sufficiently informative (or rich
enough).

Both approaches are parameterized by a class C of goal ShEx schemas.
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Bad news for Fitting: Overfitting

Fitting for ShEx0 is trivial and potentially too verbose

An RDF graph interpreted as a shape graph is its own ShEx0 fitting

bug1 bug2

bug3 bug4

user1

user2

emp1

“Boom!” “Kaboom!”

“Kabang!” “Bang!”

“John”
“Mary” “m@h.org”

“Steve”
“stv@m.pl”

na
me

na
me

e
m
a
i
l

na
me

email

relatedre
la
te
d

r
e
p
o
r
t
e
d
B
y

r
e
p
r
o
d
u
c
e
d
B
y

descr

re
la
te
d r

e
p
o
r
t
e
d
B
y

descr

reportedBy

d
e
s
c
r

re
po
rt
ed
By

d
e
s
c
r

Bisimulation can identify redundant/repetitive information

But it won’t generalize the result (it won’t introduce * or recursion).
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Bad news for Inference: Limit Point

Limit point

A class of languages C has the limit point property iff C contains an ascending chain of languages L1 ( L2 ( . . .
whose limit point L∞ =

⋃
i Li also belongs to C.

Folklore result: Limit point precludes inference

No family with limit point property has an inference algorithm.

L0:
a

L1:

a?

a
L2:

a? a?

a
. . . L∞: a?

Lemma
For any M ⊆ {1, ?, *, +} with at least two elements the class ShEx0(M) has the limit point property.
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So. . . What do we do?

We compromise

I Find a suitable subclass that allows inference and remains relatively practical.

I Motivation: first draft of a ShEx schema for an architect to work on.

Our results

ShEx0 SingShEx0 DetShEx0 Typed graph
Fitting trivial undefined (?) exponential NP-hard

Inference unfeasible SingShEx0(1, *) DetShEx−0 ShEx0 (?)
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Embeddings (recall)

I Generalize simulations

I Capture semantics of ShEx by means of structural comparison

bug1
bug3

user1 emp1

“Boom!”“Kabang!” “John” “Mary” “m@h.org”

n
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User Employee
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related
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d
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1

name

1email?
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1
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Singular Shape Expression Schemas
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Inference of SingShEx0: Generalization
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bug3 bug4
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1. Put * on every edge of the input graph

2. Construct the autoembedding

3. Remove any dominated nodes
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Inference of SingShEx0: Reduction
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Inference of SingShEx0: Reduction
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Inference of SingShEx0: Reduction in detail

G?
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Removing a node n dominated by m

I remove n and all of its outgoing edges

I redirect its incoming edges to m
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Inference of SingShEx0: Reduction in detail
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Inference of SingShEx0: Specialization
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I Construct the embedding of the input graph G into the reduct of G *

I Use the embedding to replace *’s with fitter multiplicities

S lawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019 45 / 57



Inference of SingShEx0: Specialization

G0 bug1 bug2

bug3 bug4

user1

user2

emp1

“Boom!” “Kaboom!”

“Kabang!” “Bang!”

“John”
“Mary” “m@h.org”

“Steve”
“stv@m.pl”

na
me

na
me

e
m
a
i
l

na
me

email

relatedre
la
te
d

r
e
p
o
r
t
e
d
B
y

r
e
p
r
o
d
u
c
e
d
B
y

descr

re
la
te
d r

e
p
o
r
t
e
d
B
y

descr

reportedBy

d
e
s
c
r

re
po
rt
ed
By

d
e
s
c
r

string

n
a
m
e

*

e
m
a
i
l

*

related

*

r
e
p
o
r
t
e
d
B
y

*

r
e
p
r
o
d
u
c
e
d
B
y

*

d
e
s
c
r

*

I Construct the embedding of the input graph G into the reduct of G *

I Use the embedding to replace *’s with fitter multiplicities

S lawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019 45 / 57



Inference of SingShEx0: Specialization

G0 bug1 bug2

bug3 bug4

user1

user2

emp1

“Boom!” “Kaboom!”

“Kabang!” “Bang!”

“John”
“Mary” “m@h.org”

“Steve”
“stv@m.pl”

na
me

na
me

e
m
a
i
l

na
me

email

relatedre
la
te
d

r
e
p
o
r
t
e
d
B
y

r
e
p
r
o
d
u
c
e
d
B
y

descr

re
la
te
d r

e
p
o
r
t
e
d
B
y

descr

reportedBy

d
e
s
c
r

re
po
rt
ed
By

d
e
s
c
r

string

n
a
m
e

1

e
m
a
i
l

?

related

*

r
e
p
o
r
t
e
d
B
y

1

r
e
p
r
o
d
u
c
e
d
B
y

?

d
e
s
c
r

1

I Construct the embedding of the input graph G into the reduct of G *

I Use the embedding to replace *’s with fitter multiplicities

S lawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019 45 / 57



Inference of SingShEx0: Specialization
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Singular Shape Expression Schemas

Definition (SingShEx0)

A shape graph H is singular if

1. H? is reduced i.e., there are no two types t1 and t2 in H? that t1 can be embedded into t2,

2. H? has no two edges with the same label and the same source and target nodes.

Singularity as a restriction is

I stronger than forbidding any two types t1 and t2 such that t1 ⊆ t2.

I weaker than forbidding any two types with comparable signatures (sets of outgoing edge labels).

t1

a b

t2

a

Not singular

s1

a

b

s2

a

c

Singular
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Deterministic Shape Expression Schemas
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Deterministic Shape Expression Schemas

Definition (DetShEx0)

A shape graph H is deterministic if for every label a every node has at most one outgoing edges labeled with a.

n

n1 n2 n3

a

a b

b

c

c d

d

Not deterministic
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Determinizing Shape Graphs

n

n1 n2 n3

a
a b

b

c

c d

d

Det

n

{n1, n2} {n2, n3}

a
*

b
*

c

d
?

d

c
?

Determinization of a shape graph

I gives the fitting of the input graph
(the ⊆-minimal DetShEx0 schema that validates the input graph)

I might produce exponential output
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Quotient Determinization of Shape Graphs

Avoid explosion by refusing to duplicate types

I if n1 is fused with n2 and n2 is fused with n3, then fuse n1, n2, and n3 together.

I produces linear output

n

n1 n2 n3

a

a b

b

c

c d
d

Det◦

n

{n1, n2, n3}

a * b
*

c ? d?

Quotient determinization is an inference algorithm for DetShEx−0
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Example
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Conclusions and Future Work
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Summary

What is ShEx?

I Automata-like formalism for graphs but unlike any automata we have seen.

I Strong connections to graph bisimulation.

Complexity of Validation
ShEx0 ShEx DetShEx (SORBE)

multi-type PTIME NP-complete PTIME
single-type NP-complete

Complexity of Containment

ShEx DetShEx(SORBE) ShEx0 DetShEx0 DetShEx-
0

coNEXP-h and co2EXPNP co2EXP EXP-c coNP-h PTIME

Inference and Fitting

ShEx0 SingShEx0 DetShEx0 Typed graph
Fitting trivial undefined (?) exponential NP-hard

Inference unfeasible SingShEx0(1, *) DetShEx−0 ShEx0 (?)
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Future work: Repairing RDF

Bug
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What is thy bidding, My master?
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Questions
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Appendix
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Formal Definition of Grammatical Inference of Shape Expression Schemas

Definition
A class of shape graphs C is learnable in polynomial time and data from a class of graphs G iff there exists a
polynomial inference algorithm A such that the following two conditions are satisfied:

Soundness For every input graph G ∈ G the inference algorithm returns a graph schema A(G) = H such
that H ∈ C and G ∈ L(H).

Completeness For every graph schema H ∈ C there exists a polynomially-sized characteristic graph GH ∈ L(H)
such that for any G that extends GH consistently with H we have A(G ′) ≡ H.

When does G extend G ′?
3 alternative definitions

1. G is a disjoint union of G ′ and some G ′′

2. G is obtained from G ′ by adding new nodes and new edges

3. as 2. but no node of G may loose a type as a result of adding outgoing edges to it.
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