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RDF at its conception and RDF now

What is RDF?
> set of triples (subject, predicate, object)

Originally, free-range RDF
» The driving technology of Web 3.0 [Tim Berners-Lee]
»  “Just publish your data so others can access it!”

» Intentionally schema-free and ontology oriented

Nowadays, industrial-strength RDF

» Produced and consumed by applications (data exchange format)
> Often obtained from exporting data from relational databases (e.g., R2RML)

P> Follows a strict structure
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Outline

Uses for schemas
» Provide a semantic insight into data
» Capture the structure of the graph (summary)

» Enable validation i.e., checking data conformance

If RDF that does not come with schema?

» Infer the schema

If the RDF does not satisfy its schema?
» Repair the RDF

Initial research [ICDT'15]

» Define the semantics of ShEx
» Complexity of validation
» Expressive power

Joint work with joint work with |. Boneva, J. Labra Gayo,
S. Hym, E. G. Prud’hommeaux, and H. Solbrig

Current research
» Containment problem [PODS'19]
» Grammatical inference (ongoing)

Joint work with P. Wieczorek, A. Lemay, and B. Groz

Future research
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Previously existing schema formalisms for RDF

RDF Schema (RDFS) [W3C]:
> lightweight ontology language (types and type inclusion relations)
» range and domain constraints for properties (predicate types)

» virtually no power to constrain the structure of the graph

rdf:Property rdfs:Class
<Y & N LYy
X0 Lol 5O
8\5‘9 '-‘,?‘/6,0 ‘\‘96 -

. » %,

- ",

. . %,
- rdfs. . K
related - "fs-'dofh ; .. reportedBy D
B ._?/n .do‘“a\-“\”' L Hdfs., )
- - s - 9nge

g A A

Sirg,, = BugReport
a"@e Ay
rdf:type ";‘ v.rdf:type rdf:typf_
- reportedBy -
bug » user;
lrelated
X reportedBy B
bug> » userp

Stawek S. (ULille & INRIA LINKS) ShEx for RDF

. 'fdf:type

GT-ALGA, Paris 2019

5/57



Previously existing schema formalisms for RDF (cont'd.)

OWL + CWA + UNA [Sirin, RR'10]
» Potentially confusing nonstandard semantics

» Potentially high complexity of validation

SPARQL (SPIN) [Bolleman et al., SWAT4LS'12]
» Very powerful and expressive

» High complexity

Resource Shapes [IBM, Ryman et al., LDOW'13]
» Extends RDFS with simple cardinality constraints on the outbound neighborhood of a node

What does exactly RDF validation mean

Verification the typing is given (with rdf:type) and its correctness is to be verified
(this meaning is employed by the above schema proposals)

Model checking no typing is given and the goal is to construct a valid typing
(this is a more general problem that we are interested in)
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Shape Expressions Schemas
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Shape Expression Schema (ShEx)

Syntax

ShEx is a set of rules of the form Type — RegExp(Predicate x Type)
“Boom!”

desc, “Kaboom!” desc,
bug,
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ShEx for RDF

Bug — descr :: str,

reportedBy :: User,

reproducedBy :: Employee?,
related :: Bug*

User — name :: str,

email :: str?

Employee — name :: str,

email :: str
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Shape Expression Schema (ShEx)

Syntax
ShEx is a set

of rules of the form Type — RegExp(Predicate x Type)
“Boom!”

» I
'Kaboom! desc,

3 - e, ’&6 bugs Bug — descr :: str,
Q
N &e\’/ reportedBy :: User,
®
'92) bugy reproducedBy :: Employee?,
2 .
% §3§ related :: Bug*
i &
A
Q
DA

User — name :: str,
@ ° email :: str?
‘Bang!” 0;9/ %
emp; o)

@ %, “Steve”

“stv@m.pl”
“m@h.org”
Semantics
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Employee — name :: str,
email :: str

Graph satisfies a schema if every node has at least one type
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Background information

Shape Expressions Schemas (ShEx)

» Inspired by XML Schema and reminiscent of (tree) automata

» Based on regular expressions under commutative closure
membership NP-c [Kopczynski&To'10]; containment coNEXP-c [Haase&Hofman’16]

» Envisioned as a potential XSLT-like transformation engine for RDF

ShEx vs SHACL
» ShEx is a schema language with a growing base of users and a host of applications (e.g., Wikidata)
SHACL is Shape Constraint Language (e.g., path constraints)
significant overlap (upcoming paper) but also differences (recursion, negation etc.)
comparable validation complexity (NP-complete)
both have been developed under the tutelage of W3C
SHACL ended up a W3C Recommendation (yay!), ShEx a W3C Community Group Project

vVvYVvyVvyy
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Flavorful ShEx

<Emp> {
name xsd:string | (first-name xsd:string, last-name xsd:string),
email xsd:string,
department @<Dept>

}
<Dept> {
name xsd:string,
reportedBy @<User>,
reportedOn xsd:dateTime,
(manager Q@<Emp>, appointedOn xsd:dateTime)?,
employees Q<Emp>*
}
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Bags of symbols (unordered words)

Bag (multiset) is a function mapping a symbol to the number of its occurrences.
wo = {a, a, a, ¢, c[} represents the function wy(a) = 3, wo(b) = 0, and wy(c) = 2.
The collection of outgoing labels is a bag:

out-labg(n) = {a| (n,a,m) € Ec[}

\ out-labg,(no) = {a, a, b}
6 b

np ——

Bag union: {a, c, c[t W{a, b} = {a, a, b, ¢, c[} (concatenation of unordered words).
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Regular Bag Expressions (RBEs)

Language of regular expressions for defining bags (unordered concatenation , )

E:=c¢lalE"|(E"

"E)| (E""E)
with natural macros: E? := (¢ | E) and E* := (E, E*)

Examples
> (a*, bt, ¢, c) — arbitrary number of a's, positive number of b's, and two c's
» (a, b)* — the same number of a's and b's

> (a, b, ¢)* — the same number of a's, b's, and c¢'s.

RBEs are equivalent to
1. Presburger arythmetic (PA),
2. Parikh images of context-free languages,

3. semilinear sets.

Computational properties
» Membership w € E is NP-complete,
» Emptiness E; N E; = () is coNP-complete.
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RBE and ShExo = ShEx(RBEy)

RBE(
» RBEs using only symbols with multiplicities {0, 1, %,+,?} and , operator only
> can be canonized a, &’ = al'¥, pt, bt = b etc.
» the canonical form is a[”’”,], b[’"”"/],
» Presburger formulas: conjunctions of atoms #a < n and #a > n
» captures IBM's Resource Shapes

Computational properties: simple arithmetic

A lightweight class enjoying tractability of a number of problems:
» membership
» containment
> intersection (also with RBE;)

Also learnable from positive examples [DBPL'13]
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Getting the semantics of ShEx right

So: to—(ant)t, bt

t1—>(a::t1 I b::tz)* Go: a
t2—>b22t2|C:2t1 / o
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Getting the semantics of ShEx right

So: to—(ant)t, bt
« t1 t
t1—>(a::t1 I b::tQ) Go:

2
b= bit|cut to / -
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Getting the semantics of ShEx right

So: to—(ant)t, bt
« t1 t
t1—>(a::t1 ‘ b::tz) Go:

2
b= bit|cut to / -

A single-type typing is a function A: V —T.
A is valid if every node n satisfies its type definition i.e.,
out-lab-typeg(n) = {a:: A\(m) | (n, a,m) € E[ € 6(\(n)).
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Getting the semantics of ShEx right

So: to—(ant)t, bt
t1—>(a::t1 ‘ b::tz)* Go: n1$ n3

2
b—obub|cut to /l\
no b
out—/ab—typeég(no) ={a:t,axt, b tof 6\~ to %)

A single-type typing is a function A: V —T.

A is valid if every node n satisfies its type definition i.e.,

out-lab-typeg(n) = {a:: A\(m) | (n, a,m) € E[ € 6(\(n)).
A valid single-type typing of Gy w.r.t. Sp

Xo(no) = to, Xo(m) = t1, Xo(m2) = t, Ao(m) = t1, Xo(m) = to.
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Intractability of single-type validation

Validation problem
Checking if there exists a valid typing of given input graph w.r.t. a given input schema.

Sources of complexity

1. guessing a typing
2. checking that it is valid (RBE membership is already NP-complete)
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Intractability of single-type validation

Validation problem
Checking if there exists a valid typing of given input graph w.r.t. a given input schema.

Sources of complexity
1. guessing a typing
2. checking that it is valid (RBE membership is already NP-complete)

Theorem
Single-type validation is NP-complete (even if only RBEq are used).

Reduction from graph 3-colorability:

tr— oty _ii teg =ty oty ty = ity it
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

b
Si: th—anth O
t1—>b22t2,C:Zt3 Gi: no a, m C, n
t, — (b t2)7, c:its
t3 — €
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

b
Si: th—anth O
t1 > bt cits Gi: no _a, m ~c, n
tr — (b o tz)?, c.. t3 to t1

t3 — €
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

b
Si: th—anth O
t1 > bt cits Gi: no _a, m ~c, n
tr — (b o tz)?, c.. t3 to t1 t3

t3 — €

Ai(no) = {to}, Ai(m) = {t1, &2}, Ai(m) = {t:}.
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

b
Si: th—anth O
t1 > bt cits Gi: no _a, m ~c, n
tr — (b:: tz)?, c.. t3 to t1 t3

t3 — €

Ai(no) = {to}, Ai(m) = {t1, &2}, Ai(m) = {t:}.

A is valid if every node satisfies every of its associated types.
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

b
Si: th—anth O
t1 > bt cits Gi: no _a, m ~c, n
tr — (b:: tz)?, c.. t3 to t1 t3

t3 — €

Ai(no) = {to}, Ai(m) = {t1, &2}, Ai(m) = {t:}.

A is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t...
> we inspect the outbound neighborhood out-lab-nodec(n) = {(a, m) | (n,a,m) € E}
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

S to—ant,b:t a
.. * /\
t1 — (c:t) Gy: Mo m
th — (d i tQ)? to \—/h )
b

A is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t...
> we inspect the outbound neighborhood out-lab-nodec(n) = {(a, m) | (n,a,m) € E}

» a node m may assume any of its assigned types A(m), one per edge incoming from n
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

b
Si: th—anth O
t1 > bt cits Gi: no _a, m ~c, n
tr — (b:: tz)?, c.. t3 to t1 t3

t3 — €

Ai(no) = {to}, Ai(m) = {t1, &2}, Ai(m) = {t:}.

A is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t...
> we inspect the outbound neighborhood out-lab-nodec(n) = {(a, m) | (n,a,m) € E}
» a node m may assume any of its assigned types A(m), one per edge incoming from n

» (n,a, m) € E yields the choice |¢cr(m) a:: t
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

b
Si: th—anth O
t1 > bt cits Gi: no _a, m ~c, n
tr — (b:: tz)?, c.. t3 to t1 t3
t3 — €

OutType(ni,A\1) = (b:t1| b tr), c:it3

Ai(no) = {to}, Ai(m) = {t1, &2}, Ai(m) = {t:}.

A is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t...
> we inspect the outbound neighborhood out-lab-nodec(n) = {(a, m) | (n,a,m) € E}
» a node m may assume any of its assigned types A(m), one per edge incoming from n
» (n,a, m) € E yields the choice |¢cr(m) a:: t
» OutType(n,\) = @(n,a,m)eE(lte)‘(m) a:t)
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Multi-type semantics of shape expressions

A multi-type typing is a function X : V — 2" that assign to every node a set of types.

51:

b
to—~a:t1 O
t1 > bt cits Gi: no _a, m ~c, n
tr — (b:: tz)?, c.. t3 to t1 t3
ts e OutType(ni,A\1) = (b:t1| b tr), c:it3
A1(mo) = {to}, Ar(m) = {t1, 2}, Ar(n2) = {ts}.

A is valid if every node satisfies every of its associated types.

n satisfies t w.r.t. X if OutType(n, ) N &(t) # 0,
where OutType(n, \) = @(n,a,m)EE(lte)‘(m) a:t)
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Refinement algorithm

The set of all valid multi-type typings of G w.r.t. S is a semi-lattice.

[

. Start with the universal typing A(n) :=T

2. lteratively refine it A := Refine()\)
[Refine(\)](n) = {t € X(n) | OutType(n, \) N §(t) # 0}.
3. Until a fix-point is reached

N

. The graph satisfies the schema iff the fix-point A is valid ...
. and then X is also the maximal valid multi-type typing.
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Satisfiability of RBEs

OutType yields expressions of the form (RBE;)
(31 | | ak)7 Ty (21 ‘ ‘ z’")
The essential decision problem for a class C of RBEs used in the ShEx schema is

INTER:(C) = {(Eo, E) € RBE; x C | Eo N E # 0}

Lemma
Tractability of INTER; is a necessary and sufficient condition for tractability of multi-type validation.

Corollary
Multi-type validation is NP-complete.

Theorem
Multi-type validation for ShExo = ShEx(RBEy) is in PTIME

Stawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019
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Determinism

Determinism of shape expressions

Given the type (of a node) and the label of an outgoing edge, the expression specifies the type that the target
node must satisfy.

ant,,buty,ant,cut, (ant,bub)|(ants,cita) ant,buty,ants

deterministic not deterministic not deterministic
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Determinism

Determinism of shape expressions

Given the type (of a node) and the label of an outgoing edge, the expression specifies the type that the target
node must satisfy.

ant,,buty,ant,cut, (ant,bub)|(ants,cita) ant,buty,ants

deterministic not deterministic not deterministic

Lemma
For schemas using only deterministic shape expressions, tractability of membership is a sufficient and necessary
condition for tractability of multi-type validation

Proof sketch
» Knowing the label a of an outgoing edge determines the type t, for the target node
> OutType(n,\) = @(n,a,m)EEUtE)‘(m) a: t) becomes @(n,a,m)eE(a i ts)
> @(n‘aym)EE(a i ta) defines a singleton {w} with w = {la:: t, | (n,a, m)|}
> OutType(n,\)N&(t) # 0 =w € i(t).
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Single-occurrence REBs (SORBEs)

SORBE allows a symbol to be used at most once in an expression but also allows 2"

Theorem
Membership for SORBE is in PTIME :)

ant,buty,anth (ant,bub)|(ants,cnts) (ant, bit),cits

deterministic not deterministic deterministic
but yet and
not single-occurrence single-occurence single-occurrence

Theorem
Multi-type validation for deterministic shape expressions using SORBE is in PTIME. :)
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Expressive power of ShEx

C
FOc | ShExm | ShExs | IMSOg
[:Gel, G-.eL| / v v v
LG &L G.eL| v/ X v v
L:Gel, G-&L| v X X 7
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Quick recap

Complexity

RBEo, | RBE | SORBE S(;StBE

multi-type | PTIME NP-complete PTIME

single-type NP-complete

Expressive power

>

vVvyyvyVvyy

automata-like formalism

incomparable with FO and MSO (unless we forbid * over expressions)
captured with MSO+PA

incomparable with NR and HR graph grammars

closed under intersection but not under union or negation

single-type semantics is more expressive than multi-type semantics

Stawek S. (ULille & INRIA LINKS) ShEx for RDF

GT-ALGA, Paris 2019
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Containment of ShEx
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Containment problem

Containment 5; C 5,
Does every graph that satisfies S; also satisfies S,?

Motivation
» Fundamental problem (static analysis: query optimization, schema minimization etc.)

> Inference of ShEx (work in progress)

G S1 c S c

G2

Generalization Over-generalization ><
Positive example Negative example

The challenge
» RBEs = Presburger Arithmetic (PA)
> MSOg 2 ShEx C MSO¢ + PA
» MSOg with very little arithmetic becomes undecidable [Elgot&Rabin’66]
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Decidability of Containment

S1: th—>aunt S0 so—~ansi|(ans, ans)

tt — bt s1— biisy 5 — €

({to}: {}

. )
(), {s1) /bl\ (), {s1)

({ul, {51’52})
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Decidability of Containment

S1: th—>aunt S0 so—~ansi|(ans, ans)

tt — bt s1— biisy 5 — €

c. ({to}, {})

\
3 AN (CYSEY)

o/.

({t}{s1, })
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Decidability of Containment

S1: th—>aunt S0 so—~ansi|(ans, ans)

tt — bt s1— biisy 5 — €

c. ({to}, {})

N
2N () {s))

o/.

({t} {s1,})
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Decidability of Containment

Si: th—a:nt] S
tt — bt

so—auxsi|(ans, ans)

?
s1—bis S —e€

c. ({to}. 1))

1. O
a J g {ah{sih)
] —"°

({t} s, })
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Decidability of Containment

S1: th—ant S: ss—ansi|(ans, ans)
tt — bt s1— biisy 5 — €

c. ({to}, {})

Can we bound /—N
these values? ({t1}, {s1})
o+ °
({t1}7 {51752})
Containment of ShEx is in co2NEXPNP

» The counter-example is a graph with at most exponential number of nodes, one node per (A, B)-kind
» There is a PA formula ¢ that describes the multiplicities

» PA enjoys an upper bound O(|<p|3|’_<|k) on minimal solutions [Weispfenning'90]
» Double exponential upper bound on the (binary) size of the values of multiplicities

» Validation of graphs with multiplicities remains in NP
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Decidability of Containment

S1: th—ant S: ss—ansi|(ans, ans)

ti — but] s1— bisy 5 — €

c. ({to}, {})

S
J PAN(CYRED)

o/.

({t1}7 {51752})
Containment of ShEx is in co2NEXPNP and coNEXP-hard

» The counter-example is a graph with at most exponential number of nodes, one node per (A, B)-kind

There is a PA formula ¢ that describes the multiplicities

PA enjoys an upper bound O(|<p|3|’_<|k) on minimal solutions [Weispfenning'90]

>
| 4
» Double exponential upper bound on the (binary) size of the values of multiplicities
» Validation of graphs with multiplicities remains in NP

| 4

Containment of commutative REs recently shown to be coNEXP-hard [Haase&Hofman'16]
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ShExg

» no disjunction (a:: t1 | b:: t2) and no grouping (a:: t1, b:: t)

» Shape Graphs — an equivalent graphical representation
related

“Boom!”

desCr

bug;

‘\6 bugs
Ze lay &2 u
Sq e} o
3 k 3
9 ]
) bugs e
2 o)
e [<3
3 o \& Z
[N > )
© & \a
A a" userp
Q’
@

@ )
“Bang!” ’?:y
emp; y
¢ &
“John"

“Steve”

4‘14

‘stv@m.pl”
“Mary” “m@h.org”
2 *
Bug — descr :: str, reportedBy :: User, reproducedBy :: Employee , related :: Bug
User — name :: str, email :: str’

Employee — name :: str, email :: str
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Embeddings

» Graph morphism with occurrence constraints, closely related to graph simulations
» Capture semantics of ShExg by means of structural comparison

related
@
e v =
€ bugs —

g
©  fgpeoupoadex

o ] %
C & R,
aev\)' v 5'/ Q/ \)\)
2\@
string ‘Kabang!

“John” “Mary” “m®@h.org” “Boom!”
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Embeddings

» Graph morphism with occurrence constraints, closely related to graph simulations
» Capture semantics of ShExg by means of structural comparison

» Generalize naturally to pairs of shape graphs

related related
* @
Bue < Bug Q bug;

bugs
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Person User emp;
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string - = string ‘m@h.org” “Boom!”
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Properties of embeddings

Embedding and containment

» Embedding implies containment

» In general, the converse does not hold

T
" b

b A

H cannot be embedded into K (b:: t* is equivalent to e | b::t | b t")

Theorem
Constructing embeddings is

» in PTIME if only 1, ?, *, + are used

> NP-complete if arbitrary occurrence constraints are allowed a :: tI"™
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When does containment implies embedding?

Determinism
» DetShExq every type uses each predicate symbol at most once

» DetShEx, no + are allowed and ? must be dominated by *
Characterizing graph
For any H € DetShEx, there is a polynomially-sized graph G characterizing H under containment i.e.,

VK € DetShExg. G satisfies K = H C K.

Theorem H: *f G: A«\
Containment for DetShEx, is in PTIME O\ //\
Theorem I « 7] l Z\(
Containment for DetShExg is coNP-hard * . N Yy vy
N7 l Y%
S
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Two equivalent ShExg schemas and their shape graphs

H:

Bug — descr :: str, reportedBy :: User, reproducedBy :: Employee?7
related :: Bug”

User — name :: str, email :: str’

Employee — name :: str, email :: str

K:

User; — name :: str

User; — name :: str, email :: str

Bug, — descr :: str, reportedBy :: User;, reproducedBy : Employee?,
related :: Bug;, related :: Bug,

Bug, — descr :: str, reportedBy :: Usery, reproducedBy : Employee?,
related :: Bug], related :: Bug,

Employee — name :: str, email :: str
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Coverings

Generalization of embeddings

A type t is covered by a set of types S = {s1,..., sk} iff any node satisfying t also satisfies one of the types in S

Lemma (Constructing covering)
Covering is the maximum relation R C Types(H) x P(Types(K)) such that

V(t,S) € R. def(t) 2% ¢ {def(s) | s € S}.
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Unfolding
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Unfolding

Unfolding U into {Uy, U}

U—=nul,m:l =ncl(elm:l)=maLl) | (nuzl,m:Ll)« U | U
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Unfolding

Unfolding B into {B1, B>}

Bor:B,uzUd:L e E”
=(r:BusU,d:LesEY|(raB uszlsdl, e EY)
=(rB,ruB,uzU,duL e:E)|(ruBl,ra:B, uzlhd:lL, e EY)
— Bi| B
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Complexity of ShExg

Theorem
Containment for ShExq is in EXP

» Covering is a relation of exponential size

» Covering can be obtained with an iterative refinement process
(starting with maximal relation and remove at least one element at each iteration until stabilization)

» At each step unfoldings are constructed and each unfolding is a tree whose size is bounded exponentially

Theorem
Containment for ShExg is EXP-complete

» Reduction from containment for binary tree automata
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Quick recap

» Containment for ShEx is decidable

» There is a (arguably practical) class DetShExg with tractable containment

» ShEx is very different from tree automata and requires novel techniques

Stawek S. (ULille & INRIA LINKS)

ShEx DetShEx | ShExo | DetShExo | DetShExg
coNEXP-h and co2EXP™ | co2EXP | EXP-c | coNP-h PTIME
ShEx for RDF
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Inference of ShEx
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Constructing ShEx from an RDF Graph

What for?

» RDF originally schema-free but schemas are useful
» Free-range RDF is dirty

» Industrial-strength RDF is relatively clean and exhibits regular structure

Relational database ~>°F, RDF
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Constructing ShEx from an RDF Graph

What for?
» RDF originally schema-free but schemas are useful
» Free-range RDF is dirty

» Industrial-strength RDF is relatively clean and exhibits regular structure

Relational database ~>°F, RDF

What do we want?
For a given RDF Graph G construct a ShEx schema S that captures the structure of G:

Soundness G satisfies S
Succinctness S is small enough for a human user to consume

Specificity S is not overly general (as the universal schema is)

Implicit node similarity
Two nodes should have the same type if they are similar in some way. Two possible criteria:
» content — the outbound neighborhood is similar

» context — the inbound neighborhood is similar
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Inference and Fitting

Fitting
For a input G construct C-minimal schema S that G satisfies.

Inference
An inference algorithm A is an algorithm that is

» sound i.e., it returns a schema that the input graph satisfies;

» complete i.e., it can return any goal schema provided that the input graph is sufficiently informative (or rich
enough).

Both approaches are parameterized by a class C of goal ShEx schemas.
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Bad news for Fitting: Overfitting

Fitting for ShExq is trivial and potentially too verbose

An RDF graph interpreted as a shape graph is its own ShExq fitting

[
<@ o)
-
% Qo
5! bugs S
% ®
o
=}
% §‘% % g.’
B [0}
o <@ Q
Iy & = usery
I
&
4(,
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Bad news for Fitting: Overfitting

Fitting for ShExq is trivial and potentially too verbose

An RDF graph interpreted as a shape graph is its own ShExq fitting

“Boom!”
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“m@h.org”
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Bad news for Fitting: Overfitting

Fitting for ShExq is trivial and potentially too verbose
An RDF graph interpreted as a shape graph is its own ShExq fitting

string
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Bad news for Fitting: Overfitting

Fitting for ShExq is trivial and potentially too verbose
An RDF graph interpreted as a shape graph is its own ShExq fitting

string

Bisimulation can identify redundant/repetitive information

But it won't generalize the result (it won't introduce * or recursion).
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Bad news for Inference: Limit Point

Limit point

A class of languages C has the limit point property iff C contains an ascending chain of languages L1 C Lo C ...

whose limit point Lo, = |J; Li also belongs to C.

Folklore result: Limit point precludes inference
No family with limit point property has an inference algorithm.

av av av
[ ] e —» 0 o —> 06— 0
Lo: Lq: Lo: Loo: ® 3D a?
e oa e Da e Da

Lemma
For any M C {1,7,*,+} with at least two elements the class ShExo(M) has the limit point property.
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So...What do we do?

We compromise

» Find a suitable subclass that allows inference and remains relatively practical.

> Motivation: first draft of a ShEx schema for an architect to work on.

Stawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019 40/57



So...What do we do?

We compromise

» Find a suitable subclass that allows inference and remains relatively practical.

> Motivation: first draft of a ShEx schema for an architect to work on.

Our results

ShExg SingShExg DetShExo | Typed graph
Fitting trivial undefined (?) | exponential NP-hard
Inference | unfeasible | SingShExq(1,*) | DetShEx, ShExq (?)
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Embeddings (recall)

» Generalize simulations

» Capture semantics of ShEx by means of structural comparison

related
*

bugs <

Kgpeonpoadex

string “Kabang!” “John” “Mary” “m®@h.org” “Boom!”
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Singular Shape Expression Schemas
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Inference of SingShExp: Generalization
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Inference of SingShExp: Generalization
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Inference of SingShExp: Generalization

Go

string
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Inference of SingShExp: Generalization

G*

string

1. Put * on every edge of the input graph
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Inference of SingShExg: Reduction

string

1. Put * on every edge of the input graph
2. Construct the autoembedding
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Inference of SingShExg: Reduction

G~ related
*

G*

Kgpeonpoadex
*
Lgpejxodeax

I0S9P

]
5**
Ei

TTRW

string string

1. Put * on every edge of the input graph
2. Construct the autoembedding

3. Remove any dominated nodes

Stawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019 43 /57



Inference of SingShExp: Reduction in detail

G*

string

Removing a node n dominated by m

» remove n and all of its outgoing edges

» redirect its incoming edges to m
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Inference of SingShExp: Reduction in detail

string

Removing a node n dominated by m

» remove n and all of its outgoing edges
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Inference of SingShExp: Reduction in detail

reportedBy
Kgpeonpoxdex

descr

Removing a node n dominated by m

» remove n and all of its outgoing edges

» redirect its incoming edges to m
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Inference of SingShExp: Reduction in detail

related

reportedBy
Lgpeonpoxdex

descr

Removing a node n dominated by m

» remove n and all of its outgoing edges

» redirect its incoming edges to m
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Inference of SingShExp: Reduction in detail

related

T

Reduce(G™) .
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string
Removing a node n dominated by m
» remove n and all of its outgoing edges
» redirect its incoming edges to m
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Inference of SingShExg: Specialization
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Inference of SingShExg: Specialization

related
Go
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» Construct the embedding of the input graph G into the reduct of G*
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Inference of SingShExg: Specialization

related

[
®
9
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§ string

» Construct the embedding of the input graph G into the reduct of G*

» Use the embedding to replace *'s with fitter multiplicities
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Inference of SingShExg: Specialization

related

Lgpeonpoadax
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Lgpeqxodax

I10S°P
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TTRWS

string

» Construct the embedding of the input graph G into the reduct of G*
» Use the embedding to replace *'s with fitter multiplicities
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Singular Shape Expression Schemas

Definition (SingShExg)
A shape graph H is singular if
1. H* is reduced i.e., there are no two types t; and t; in H* that t; can be embedded into t,

2. H* has no two edges with the same label and the same source and target nodes.

Singularity as a restriction is

» stronger than forbidding any two types t; and t> such that t; C t.

> weaker than forbidding any two types with comparable signatures (sets of outgoing edge labels).

A b el
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Deterministic Shape Expression Schemas
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Deterministic Shape Expression Schemas

Definition (DetShExo)

A shape graph H is deterministic if for every label a every node has at most one outgoing edges labeled with a.

2 S
a b
ny ny n3
c d
° d

Not deterministic |
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Determinizing Shape Graphs

2 S
a b
Det
n ny n3
c d
c d

Determinization of a shape graph

» gives the fitting of the input graph
(the C-minimal DetShExg schema that validates the input graph)

» might produce exponential output

Stawek S. (ULille & INRIA LINKS) ShEx for RDF
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Quotient Determinization of Shape Graphs

Avoid explosion by refusing to duplicate types

» if ny is fused with ny and ny is fused with ns, then fuse ni, np, and n3 together.

n
3 S
a b 26 5b

Det®
n n» n3 —_— {nl, n, na}

‘ d C<‘i§d
© b

Quotient determinization is an inference algorithm for DetShEx,

» produces linear output

Stawek S. (ULille & INRIA LINKS) ShEx for RDF GT-ALGA, Paris 2019 50/57



Example
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Conclusions and Future Work
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Summary

What is ShEx?

» Automata-like formalism for graphs but unlike any automata we have seen.

> Strong connections to graph bisimulation.

Complexity of Validation

ShExg ShEx DetShEx (SORBE)
multi-type | PTIME | NP-complete PTIME
single-type NP-complete
Complexity of Containment
ShEx DetShEx(SORBE) | ShExo | DetShExg | DetShExg
coNEXP-h and co2EXP™” co2EXP EXP-c [ coNP-h | PTIME
Inference and Fitting
ShExg SingShExg DetShExq Typed graph
Fitting trivial undefined (?) | exponential NP-hard
Inference | unfeasible | SingShExg(1,*) | DetShEx, ShExq (?)
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Future work: Repairing RDF
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Questions
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Appendix
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Formal Definition of Grammatical Inference of Shape Expression Schemas

Definition
A class of shape graphs C is learnable in polynomial time and data from a class of graphs G iff there exists a
polynomial inference algorithm A such that the following two conditions are satisfied:

Soundness For every input graph G € G the inference algorithm returns a graph schema A(G) = H such
that H € C and G € L(H).

Completeness For every graph schema H € C there exists a polynomially-sized characteristic graph Gy € L(H)
such that for any G that extends Gy consistently with H we have A(G’) = H.

When does G extend G'?

3 alternative definitions
1. G is a disjoint union of G’ and some G”
2. G is obtained from G’ by adding new nodes and new edges

3. as 2. but no node of G may loose a type as a result of adding outgoing edges to it.
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