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Abstract: A consistent query answer in a possibly inconsistent

database is an answer which is true in every (minimal) repair of

the database. We present here a practical framework for com-

puting consistent query answers for large, possibly inconsistent

relational databases. We consider relational algebra queries with-

out projection, and denial constraints. Because our framework

handles union queries, we can effectively (and efficiently) extract

indefinite disjunctive information from an inconsistent database.

We describe a number of novel optimization techniques applicable

in this context and summarize experimental results that validate

our approach.

1. INTRODUCTION
Traditionally, the main role of integrity constraints in

databases was to enforce consistency. The occurrence of
integrity violations was prevented by DBMS software. How-
ever, while integrity constraints continue to express impor-
tant semantic properties of data, enforcing the constraints
has become problematic in current database applications.
For example, in data integration systems integrity viola-
tions may be due to the presence of multiple autonomous
data sources. The sources may separately satisfy the con-
straints, but when they are integrated the constraints may
not hold. Moreover, because the sources are autonomous,
the violations cannot be simply fixed by removing the data
involved in the violations.

Example 1. Let Student be a relation schema with the
attributes Name and Address and the key functional depen-
dency Name → Address. Consider the following instance
of Student:

∗Research supported by NSF Grant IIS-0119186.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011 ...$5.00.

Name Address
Jeremy Burford Los Angeles
Jeremy Burford New York
Linda Kenner Chicago

The first two tuples may come from different data sources,
so it may be impossible or impractical to resolve the inconsis-
tency between them. However, there is clearly a difference
between the first two tuples and the third one. We don’t
know whether Jeremy Burford lives in Los Angeles or New
York, but we do know that Linda Kenner lives in Chicago.
An approach to query answering that ignores inconsistencies
will be unable to make this distinction – the distinction be-
tween reliable and unreliable data. On the other hand, any
approach that simply masks out inconsistent data (the first
two tuples in this example) will lose indefinite information
present in inconsistent databases. In this example, we know
that there is a student named Jeremy Burford (existential
information) and that Jeremy Burford lives in Los Angeles
or New York (disjunctive information).

The above example illustrates the need to modify the stan-
dard notion of query answer in the context of inconsistent
databases. We need to be able to talk about query answers
that are unaffected by integrity violations. In [2], the notion
of consistent query answer was proposed to achieve that ob-
jective. [2] introduced the notion of repair: a database that
satisfies the integrity constraints and is minimally different
from the original database. A consistent answer to a query,
in this framework, is an answer present in the result of the
query in every repair.

Example 2. In Example 1, there are two repairs corre-
sponding to two different ways of restoring the consistency:
either the first or the second tuple is deleted. If a query asks
for all the information about students, only the tuple (Linda
Kenner,Chicago) is returned as a consistent answer because
it is the only tuple that is present in both repairs. On the
other hand, if a query asks for the names of students liv-
ing in Los Angeles or New York, then Jeremy Burford is a
consistent answer.

The framework of [2] has served as a foundation for most
of the subsequent work in the area of querying inconsistent
databases [3, 5, 11, 12, 13, 15, 17, 19, 23] (see [7] for a sur-
vey and an in-depth discussion). The work presented here
addresses the issue of computing consistent query answers
for projection-free queries and denial integrity constraints.
It is shown in [13] that this task can be done in polynomial
time, using the notion of conflict hypergraph that succinctly



represents all the integrity violations in a given database.
This line research is pursued further in the present paper.

The main contributions of this paper are as follows:

• A complete, scalable framework for computing con-
sistent answers to projection-free relational algebra
queries in the presence of denial constraints. Our ap-
proach uses a relational DBMS as a backend and scales
up to large databases.

• Novel optimization techniques to eliminate redundant
DBMS queries.

• Encouraging experimental results that compare our
approach with an approach based on query rewrit-
ing and estimate the overhead of computing consistent
query answers. No comprehensive results of this kind
exist in the literature.

Because our query language includes union, our approach
can extract indefinite disjunctive information present in an
inconsistent database (see Example 1). Moreover, consistent
query answers are computed in polynomial time. Other ex-
isting approaches are either unable to handle disjunction in
queries [2, 12, 17] or cannot guarantee polynomial time com-
putability of consistent query answers [3, 5, 11, 15, 19, 23].
The latter is due to the fact that those approaches rely on
the computation of answers sets of logic programs with dis-
junction and negation – a Σp

2-complete problem. Only the
approach of [2, 12] (which uses query rewriting) and the ap-
proach presented here scale up to large databases. Related
research is further discussed in Section 6.

The plan of the paper is as follows. In Section 2, we intro-
duce basic concepts. In Section 3, we present our approach
to computing consistent answers to projection-free queries
and describe its implementation in a system called Hippo.
In Section 4, we describe several techniques for eliminat-
ing redundant DBMS queries, that we have implemented in
Hippo. In Section 5, we discuss a number of experiments we
have conducted with Hippo and query rewriting. In Section
6, we briefly discuss related work. Section 7 contains conclu-
sions and a discussion of possible future research directions.

2. BASIC NOTIONS AND FACTS

2.1 Query languages
In this paper we work in the relational model of data. We

recall that a database schema S is a set of relation names
with attribute names and types. An instance of a database
is a function that assigns a finite set of tuples to each relation
name. For the purposes of this paper we consider only two
fixed database domains N (natural numbers) and D (unin-
terpreted constants). We also use the natural interpretation
over N of binary relational symbols =, 6=, <, >, and we as-
sume that two constants are equal only if they have the same
name. We also view I as a structure for the first-order lan-
guage over the vocabulary consisting of symbols of S, and
standard built-in predicates over N (=, 6=, <, >).

In this article, we use projection-free (π-free) relational
algebra expressions, defined using the following grammar:

E ::≡ R | σχ(E) | E × E | E ∪ E | E \ E.

|R| is the arity of the relation symbol R and (unless speci-
fied otherwise) for the sake of simplicity we assume that at-
tribute names are consecutive natural numbers. We extend

this to expressions, i.e. |E| is the arity of the expression,
and E.i is the reference to the i-th column resulting from
the expression E (used in conditions for subexpressions).
Morover, t[i] is the value on the i-th position of t, t[i, j] is
an abbreviation for a tuple (t[i], . . . , t[j]), and with |t| we
denote the length of the tuple t. We say that a tuple t is
compatible with an expression E if the length of the tuple is
equal to the arity of the expression, i.e. |t| = |E|.
For a given expression E, QAE(I) is the result of evaluating
E in the database instance I. In this paper we use only the
set semantics of relational algebra expressions.

We also use relational calculus queries consisting of
quantifier-free first-order formulas which may be open (hav-
ing free variables) or ground. In fact, our approach can
handle relational algebra queries that require projection, as
long as they can be translated to quantifier-free relational
calculus queries. That’s why we can deal with the relational
algebra query corresponding to the query

Student(X, ′LosAngeles′) ∨ Student(X, ′NewYork′)

in Example 1.We also occasionally use SQL.

2.2 Repairs and consistent query answers
An integrity constraint is a consistent closed first-order

formula. In this paper we consider only the class of denial
integrity constraints of the form:

∀x̄1, . . . , x̄k.¬ [Ri1(x̄1) ∧ . . . ∧ Rik
(x̄k) ∧ φ(x̄1, . . . , x̄k)] ,

(1)
where φ is a boolean expression consisting of atomic formu-
las referring to built-in predicates. The number k is called
the arity of a constraint.
Note that, for example, functional dependencies and exclu-
sion constraints are of the above form. Below we give an-
other example.

Example 3. Consider the relation Emp with attributes
Name, Salary, and Manager, with Name being the primary
key. The constraint that no employee can have a salary
greater that that of her manager is a denial constraint:

∀n, s, m, s′, m′. ¬[Emp(n, s, m) ∧ Emp(m, s′, m′) ∧ s > s′].

Definition 1 (Consistent database). A database
instance I is consistent with a set of integrity constraints C
if I |= C (i.e., C is true in I); inconsistent otherwise.

Definition 2. For a given database instance I of schema
S, its set of facts Σ(I) is the set of all positive facts that hold
in this database:

Σ(I) = {R(t)|R ∈ S ∧ t ∈ I(R)}.

Definition 3 (Database distance). Given two in-
stances I1 and I2 of the same database, the distance between
those instances ∆(I1, I2) is the symmetric difference between
sets of facts of those instances:

∆(I1, I2) = (Σ(I1) \ Σ(I2)) ∪ (Σ(I2) \ Σ(I1)).

Definition 4 (Proximity relation). Given three
instances I, I1, I2, the instance I1 is closer to I than the
instance I2 if the distance between I1 and I is contained in
the distance between I2 and I, i.e.

I1 ≤I I2 ⇐⇒ ∆(I, I1) ⊆ ∆(I, I2).



Definition 5 (Database repair). For a given in-
stance I and set of integrity constraints C, I ′ is a repair
of I w.r.t. C if I ′ is the closest instance to I, which is con-
sistent with C , i.e. I ′ |= C and I ′ is ≤I-minimal among
the instances that satisfy C.

By RepC(I) we denote the set of all repairs of I with respect
to C.

The following fact captures an important property of re-
pairs of denial constraints: each repair is a maximal consis-
tent subset of the database.

Fact 1. If C consists only of denial constraints, then:

I ′ ∈ RepC(I) ⇒ Σ(I ′) ⊆ Σ(I).

Definition 6 (Core instance). For a given instance
I, its core w.r.t a set of integrity constraints C is an instance
CoreI

C such that:

CoreI
C(R) =

⋂

I′∈RepC(I)

I ′(R).

For any relation R and set of integrity constraints C, if there
exists a relational algebra expression ∆R

C such that that for
any instance I:

QA∆R
C (I) = CoreI

C(R),

we call ∆R
C a core expression of the relation R w.r.t the set

of integrity constraints C.

Fact 2. If C is a set of denial integrity constraints, then
for any R ∈ S there exists a core expression ∆R

C of R w.r.t
C.

Example 4. Suppose we have a table P (A, B) with a
functional dependency A → B. The core expression for P
in SQL is:

SELECT * FROM P P1 WHERE NOT EXISTS (

SELECT * FROM P P2

WHERE P1.A = P2.A AND P1.B <> P2.B);

Having defined repairs, we can define consistent answers to
queries. In general, the intuition is that the consistent query
answer is an answer to the query in every repair. In this pa-
per we consider consistent answers for two classes of queries.

Definition 7 (CQA for ground queries). Given a
database instance I and a set of denial integrity constraints
C, we say that true (resp. false) is the consistent answer to
a ground query ψ w.r.t. C in I , and we write I |=C ψ, if
in every repair I ′ ∈ RepC(I), I ′ |= ψ (resp. I ′ 6|= ψ).

Definition 8 (CQA for relational algebra).
Given a database instance I and a set of denial integrity
constraints C, the set of consistent answers to a query E
w.r.t. C in I is defined as follows:

CQAE
C(I) =

⋂

I′∈RepC(I)

QAE(I ′).

2.3 Conflict hypergraphs
The conflict hypergraph [13] constitutes a compact, space-

efficient representation of all repairs of a given database in-
stance. Note that this representation is specifically geared
toward denial constraints.

Definition 9 (Conflict). For a given integrity con-
straint c of form (1), a set of facts {Ri1(t1), . . . , Rik

(tk)},
where tj ∈ I(Rij ), is a conflict in a database instance I
if φ(t1, . . . , tk). By Ec,I we denote the set of all conflicts
generated by the integrity constraint c in I.

Definition 10 (Conflict hypergraph). For a
given set of integrity constraints C and a database instance
I, a conflict hypergraph GC,I is a hypergraph with the set
of vertices being the set of facts from the instance I, and
the set of hyperedges consisting of all conflicts generated by
constraints from C in I, i.e.

GC,I = (VI , EC,I), where VI = Σ(I), and EC,I =
⋃

c∈C

Ec,I .

Definition 11 (Maximal independent set). For a
hypergraph G = (V, E), the set of vertices is a maximal inde-
pendent set if it is a maximal set that contains no hyperedge
from E.

Fact 3. Let I be a database instance, and C a set of
denial constraints, then for any repair I ′ ∈ RepC(I), Σ(I ′)
is a maximal independent set M in GC,I , and vice versa.

As shown in the following example in case of denial con-
straints the set of conflicts can be defined using a simple
query.

Example 5. Suppose we have a table P (A, B) with a
functional dependency A → B. The SQL expression for se-
lecting all conflicts from P generated by the functional con-
straint is:

SELECT * FROM P P1, P P2

WHERE P1.A = P2.A AND P1.B <> P2.B;

Definition 12 (Data complexity). The data com-
plexity of consistent answers to ground first-order queries
is the complexity of determining the membership in the set
DC,ϕ = {I|I |=C ϕ}, where ϕ is a fixed ground first-order
query, and C is a fixed finite set of integrity constraints.

We note that for a fixed set of integrity constraints, the
conflict hypergraph is of polynomial size (in the number of
tuples in the database instance).

3. IMPLEMENTATION

3.1 Consistent query answers
We review here the algorithm [13] for checking the consis-

tency of ground queries in the presence of denial constraints,
and then show how to use it to answer π-free queries re-
lational algebra queries, which which correspond to open
quantifier-free relational calculus queries.

3.1.1 Problem definition
We assume here that we work with a set of integrity con-

straints consisting only of denial constraints. The input to
the algorithm consists of a ground quantifier-free formula
ψ, a set of integrity constraints C, and a database instance
I. We want the algorithm to answer the question whether
I |=C ψ.

Theorem 1. [13] The data complexity of consistent an-
swers to quantifier-free ground queries w.r.t a set of denial
constraints is in P .



The proof of this theorem can be found in [13] together with
the corresponding algorithm that we call HProver. This
algorithm takes the query in CNF, and a conflict hyper-
graph GC,I that corresponds to the database instance I in
the presence of integrity constraints C. The first step of

Input: ψ = ψ1 ∧ . . . ∧ ψk – ground input formula in CNF,
GC,I = (VI , EC,I) – conflict hypergraph of I w.r.t. C.

1 for i ∈ {1, . . . , k} do
2 let ¬ψi ≡ ¬Ri1(t1) ∧ . . . ∧ ¬Rip(tp) ∧

∧ Rip+1(tp+1) ∧ . . . Rim(tm).
3 for j ∈ {p + 1, . . . , m} do
4 if tj 6∈ I(Rij ) then
5 next i;
6 B ← {Rip+1(tp+1), . . . , Rim(tm)}
7 for j ∈ {1, . . . , p} do
8 if tj ∈ I(Rij ) then
9 choose ej ∈ {e ∈ EC,I |Rij (tj) ∈ e} nondeterm.
10 B ← B ∪ (ej \ {Rij (tj)}).
11 if B is independent in GC,I then
12 return false;
13 return true;

Figure 1: Algorithm HProver

the algorithm reduces the task of determining whether true
is the consistent answer to the query ψ to answering the
same question for every conjunct ψi. Then each formula ψi

is negated and the rest of the algorithm attempts to find a
repair I ′ in which ¬ψi is true, i.e., in which

1. tj ∈ I ′(Rij ) for (j = p + 1, . . . , m)

2. tj 6∈ I ′(Rij ) for (j = 1, . . . , p)

Such a repair corresponds to a maximal independent set M
in the conflict hypergraph such that:

1′. every of Rip+1(tp+1), . . . , Rim(tm) is an element of M ,

2′. none of Ri1(t1), . . . , Rip(tp) is an element of M .

If the algorithm succeeds in building an independent set
satisfying the properties 1′ and 2′, such a set can be extended
to a maximal one which also satisfies those properties. That
means that there is a repair in which ¬ψi, and thus also
¬φ, is true. If the algorithm does not succeed for any i,
i = 1, . . . , k, then true is the consistent answer to φ.

The condition 1′ is satisfied by simply including the appro-
priate facts in M . The condition 2′ is satisfied by excluding
the appropriate facts from M . A fact can be excluded if it is
not in Σ(I) or if it belongs to a hyperedge whose remaining
elements are already in M .

3.2 Finding an envelope
Any relational algebra expression E can be translated to a

corresponding first-order formula ψE(x̄) in a standard way.
Since we consider only π-free algebra expressions, the for-
mula ψE(x̄) is quantifier-free. To be able to use HProver, we
have to ground this formula, i.e., find an appropriate set of
bindings for the variables in the formula. This will be done
by evaluating an envelope query over the database. An enve-
lope query should satisfy two properties: (1) it should return
a superset of the set of consistent query answers for every
database instance, and (2) it should be easily constructible

from the original query. The result of evaluating an envelope
query over a given database will be called an envelope.

Suppose KE is an envelope query for a query E. We have
that

CQAE
C(I) = {t̄ ∈ QAKE (I) | I |=C ψE(t̄)}.

If an expression E does not use the difference operator (and
thus is a monotonic expression), E itself is an envelope
query, as stated by the following lemma:

Lemma 1. For any monotonic relational expression E,
the following holds:

CQAE
C(I) ⊆ QAE(I).

However when E is not monotonic, then the set of consistent
query answers may contain tuples not contained in QAE(I).
That kind of a situation is shown in the example below.

Example 6. Suppose we have two relations R(A, B) and
S(A, B, C, D), and we have functional dependency over R :
A → B. In case when I(R) = {(1, 2), (1, 3)}, and I(S) =
{(1, 2, 1, 3)}, the set of answers to the query

E = S \ (R(A1, B1) 1B1 6=B2 R(A2, B2))

is ∅, while the set of consistent query answers is {(1, 2, 1, 3)}.

To obtain the expression for an envelope, we define two
operators F and G by mutual recursion. The operator F
defines the envelope by overestimating the set of consistent
answers. The auxiliary operator G underestimates the set
of consistent answers.

Definition 13. We define the operators F and G recur-
sively:

F (R) = R,

F (E1 ∪ E2) = F (E1) ∪ F (E2),

F (E1 \ E2) = F (E1) \ G(E2),

F (E1 × E2) = F (E1) × F (E2),

F (σχ(E)) = σχ(F (E)),

G(R) = ∆R
C ,

G(E1 ∪ E2) = G(E1) ∪ G(E2),

G(E1 \ E2) = G(E1) \ F (E2),

G(E1 × E2) = G(E1) × G(E2),

G(σχ(E)) = σχ(G(E)).

Because C consist only of denial constraints, Fact 2 guaran-
tees that the expression ∆R

C exists, and therefore the oper-
ators are well defined. The pair of operators (F, G) has the
following properties:

Lemma 2. For any π-free relational algebra expression E:

QAG(E)(I) ⊆ QAE(I) ⊆ QAF (E)(I), and

CQA
G(E)
C (I) ⊆ CQAE

C(I) ⊆ CQA
F (E)
C (I).

Lemma 3. For any π-free relational algebra expression E:

∀I ′ ∈ RepC(I). QAG(E)(I) ⊆ QAE(I ′) ⊆ QAF (E)(I)

With those two lemmas we can prove the following theorem.

Theorem 2. If C contains only denial constraints, then
for any π-free relational algebra expression E the following
holds for every database instance I:

QAG(E)(I) ⊆ CQAE
C(I) ⊆ QAF (E)(I).



3.3 The system Hippo
We have implemented a system called Hippo for finding

consistent answers to π-free relational algebra queries. The
data is stored in an RDBMS (in our case, PostgreSQL).
The flow of data in Hippo is shown in Figure 2. The only

E : σ,∪, \,×

Estimating

F (E) : σ,∪,×, \

Evaluation

Conflict Detection

DB

Translation

ϕE : ∧,∨,¬

Envelope

Conflict Hypergraph

Grounding

HProver

Answer Set

IC

Figure 2: Data flow in Hippo

output of this system is the Answer Set consisting of the
consistent answers to the input query E with respect to
a set of integrity constraints IC in the database instance
DB. Before processing any input query, the system performs
Conflict Detection, and creates the Conflict Hypergraph. We
assume that the number of conflicts is small enough to allow
us to store the hypergraph in main memory. We keep in
main memory only the set of hyperedges corresponding to
conflicts in database. The set of all the vertices represents
the entire contents of the database and thus may be too big
to fit in main memory. In this way, we guarantee that our
approach is scalable.

The processing of a query E consists of Estimating it to an
envelope query F (E) that after Evaluation by an RDBMS
gives us the Envelope. Also, the system performs Transla-
tion of the input query E to a corresponding first-order logic
formula ϕE . Now, for every tuple from the Envelope we
perform Grounding of ϕE . Having now a first-order ground
query we can check if true is the consistent answer to this
query using HProver. Depending on the result of this check
we return the tuple or not. It’s important to notice here that
because the hypergraph is stored in main memory, HProver
doesn’t need any immediate knowledge of the integrity con-
straints (no arrow from IC to HProver). This is because
in HProver the independence of constructed sets B is being
checked only for sets of vertices that are contained in the
database, and if such vertices are in any conflict, it is regis-
tered in the hypergraph. HProver makes, however, database
accesses to check tuple membership in database relations.

4. OPTIMIZATIONS
The previous section showed how to build a system for

computing consistent query answers. But even though we

have decided to store the conflict hypergraph in main mem-
ory, we still have to perform tuple membership checks (steps
4 and 8 in the HProver algorithm). To check if a tuple is
present in a given table, we execute a simple membership
query. For every tuple from the envelope we have to per-
form several tuple checks (depending on the complexity of
the query). Executing any query is usually a costly opera-
tion in the database context. Therefore tuple membership
checks are a significant factor in the algorithm execution
time.

In this section we address the problem of eliminating tuple
membership checks. We propose two improvements:

1. The first infers information about the tuples present
in the database from the current envelope tuple. That
makes it possible to answer some tuple checks without
interrogating the database.

2. The second supplements the first by extending the en-
velope expression so that we can find the results of all
relevant tuple checks without executing any member-
ship query.

4.1 Knowledge gathering
In this section we address the problem of answering tuple

checks.

Definition 14 (Relevant facts). For a given π-free
expression E and a tuple t compatible with E, the set
TC(E, t) of relevant facts is defined recursively:

TC(R, t) = {R(t)},

TC(E1 ∪ E2, t) = TC(E1, t) ∪ TC(E2, t),

TC(E1 \ E2, t) = TC(E1, t) ∪ TC(E2, t),

TC(E1 × E2, (t1, t2)) = TC(E1, t1) ∪ TC(E2, t2),

TC(σχ(E), t) = TC(E, t).

The set of facts TC(E, t) consists of all facts that HProver
may need when working with the query φE(t) (we conjec-
ture that the same set of facts will be needed by any prac-
tical checker of consistent query answers for quantifier-free
queries). In the following example we show that the tuple t
itself may carry information that can be used to derive some
relevant facts.

Example 7. Recall that relation attributes are named by
natural numbers. Assume that we have two tables R(1, 2),
P (1, 2) and a query E = F (E) = σ1=a(R×(R∪P )). Suppose
that a tuple t = (a, b, c, d) is the only result of the evaluation
of F (E) in a database instance I. The set of relevant facts
is TC(E, t) = {R(a, b), R(c, d), P (c, d)}. A natural conse-
quence of the semantics of relational algebra expressions is
that t ∈ QAσ1=a(R×(R∪P ))(I) implies (a, b) ∈ I(R). We can
use this information to avoid performing some membership
queries. At the same time the tuple t itself doesn’t carry
enough information to decide whether (c, d) belongs to ei-
ther I(R), I(P ), or both of them.

We call the process of inferring the information from result
of the evaluation of a query knowledge gathering. Formally,
we define the set of derived facts in the following way:

Definition 15 (Knowledge gathering). For a
given π-free expression E and a tuple t compatible with E



we define the set KG recursively:

KG(R, t) = {R(t)},

KG(E1 ∪ E2, t) = KG(E1, t) ∩ KG(E2, t),

KG(E1 \ E2, t) = KG(E1, t),

KG(σχ(E), t) = KG(E, t),

KG(E1 × E2, (t1, t2)) = KG(E1, t1) ∪ KG(E2, t2).

We note here that the cardinality of the set of facts inferred
with KG is linear in the size of the query and doesn’t depend
on the value of the tuple t. Now we state the main property
of KG.

Theorem 3 (Soundness of KG). Given a database
instance I and a π-free expression E

∀t ∈ QAF (E)(I).∀R(t′) ∈ TC(E, t).

R(t′) ∈ KG(E, t) ⇒ I |= R(t′).

Knowledge gathering is also complete in the case of {σ,×}-
expressions, i.e. it derives all relevant facts that hold in the
database I.

Theorem 4 (Completeness of KG for {σ,×}).
Given a database I and any {σ,×}-query E.

∀t ∈ QAF (E)(I).∀R(t′) ∈ TC(E, t).

I |= R(t′) ⇒ R(t′) ∈ KG(E, t).

4.2 Extended knowledge gathering
In general, when the expression translates to a disjunctive

query we need to extend the query so that the resulting tuple
carries some additional information allowing us to derive all
relevant facts. The extended approach described in detail
below is illustrated first by the following example.

Example 8. For the previously considered expression
E = σ1=a(R × (R ∪ P )) the extended approach constructs

the expression σ1=a(R × (R ∪ P ))
3,4
←−− R

3,4
←−− P , where

← is the left outer join operator1. Suppose now, I(R) =
{(a, b), (e, f)} and I(P ) = {(c, d), (e, f)}. Then the evalua-
tion of the extended envelope expression yields the following:

σ1=a(R × (R ∪ P ))
3,4
←−− R

3,4
←−− P

a b a b a b ⊥ ⊥
a b c d ⊥ ⊥ c d
a b e f e f e f

Now, consider the tuple (a, b, c, d,⊥,⊥, c, d). We can de-
compose it into two parts (a, b, c, d) and (⊥,⊥, c, d). The
first part is simply the tuple from the envelope F (E), and
it can be used to infer the fact R(a, b). The second part al-
lows us to make two other important inferences. Namely,
(c, d) 6∈ I(R) and (c, d) ∈ I(P ).

Our goal is to minimally extend the expression so that we
can derive all relevant facts. In order to find what informa-
tion is not guaranteed to be gathered from evaluation of the
envelope expression, we generalize the definitions of KG and
TC to non-ground tuples consisting of distinct variables.

1For clarity we simplify the notion of the outer join condi-

tion. When writing S
3,4
←−− T we mean S

S.3=T.1∧S.4=T.2
←−−−−−−−−−−− T ,

and we assume the left join operator is left associative

Definition 16 (Complementary set). For a given
π-free expression E, the complementary set Γ(E) is defined
as follows:

Γ(E) = TC(E, x̄) \ KG(E, x̄),

where x̄ = (x1, . . . , x|E|).

Example 9. Taking again under consideration the ex-
pression E = σ1=a(R × (R ∪ P )) and x̄ = (x1, . . . , x4) we
have:

TC(E, x̄) = {R(x1, x2), P (x3, x4), R(x3, x4)},

KG(E, x̄) = {R(x1, x2)}.

R(x1, x2) ∈ TC(E) means that for any tuple (t1, t2, t3, t4)
from the evaluation of the envelope expression for E,
HProver may perform the tuple check R(t1, t2). We have
also R(x1, x2) ∈ KG(E) and therefore we are able to an-
swer this check using knowledge gathering. On the other
hand R(x3, x4) ∈ TC(E) means that for HProver may per-
form a tuple check R(t3, t4). Since we don’t have that
R(x3, x4) ∈ KG(E) we cannot guarantee that we can answer
tuple checks R(t3, t4) without executing a membership query
on the database, even though we are able to answer tuple
checks R(t1, t2). The complementary set for the discussed
expression is:

Γ(E) = {R(x3, x4), P (x3, x4)}.

Analogous examples can be used to show that the simple
knowledge gathering is not sufficient to avoid membership
checks when processing expressions with the difference op-
erator. Next, we extend the envelope expression so that
it evaluation provides us with all information sufficient to
answer the tuple checks.

Definition 17 (Extended envelope expression).
For a given π-free expression E the extended envelope
expression is defined as follows:

H(E) = F (E)

∧ |R|
j=1 E.(i+j−1)=R.j

←−−−−−−−−−−−−−−−−
R(xi,...,xi+|R|−1)∈Γ(E)

R.

The notation means that we have as many outer joins as
there are elements in Γ(E). They can appear in any order.
We also define the following auxiliary expression:

S(E) = E × ×
R(xi,...,xi+|R|−1)∈Γ(E)

R.

For both H(E) and S(E) the elements of Γ(E) need to be
considered in the same order.

Using outer joins results in a natural one-to-one correspon-
dence between the tuples from the evaluation of the ex-
tended envelope expression and the tuples from the original
envelope.

Fact 4. For a given database instance I and π-free ex-
pression E, the map t 7→ t[1, |E|] is a one-to-one map of

QAH(E)(I) onto QAF (E)(I).

Extending knowledge gathering to null tuples KG(R, (⊥
, . . . ,⊥)) = ∅ allows us to state that using the extended
envelope expression we can determine correctly all relevant
facts without querying the database.



Theorem 5 (Soundness, completeness of ext. KG).
For any database instance I and a π-free expression E the
following holds:

∀t ∈ QAH(E)(I).∀R(t′) ∈ TC(E, t[1, |E|]).

R(t′) ∈ KG(S(E), t) ⇐⇒ I |= R(t′).

We note that in the case of {σ,×}-expressions this approach
doesn’t unnecessarily extend the expression.

4.3 Other possibilities of optimizations

4.3.1 Negative knowledge gathering
Knowledge gathering KG (as defined in Section 4.1) is

complete only for queries that translate to a conjunction of
positive literals. However, it is possible to come up with a
construction that will be complete for queries that translate
to a conjunction of positive as well as negative literals. The
following example presents this idea.

Example 10. Suppose we have tables R(1, 2) and P (1, 2)
and a set of constraints C. For the query E = R\P , we have

F (E) = R \ ∆P
C . Take any tuple t ∈ QAF (E)(I) for some

instance I. We can easily conclude that t ∈ I(R). Also,

we can say that t 6∈ QA∆P
C (I). Having this and hypergraph

GC,I = (VI , EC,I) we can easily find if t ∈ I(P ). Namely, if
there exists an edge e ∈ EC,I that P (t) ∈ e, then t ∈ I(P ).
And if the vertex P (t) is not involved in any conflict in E
then t 6∈ I(P ).

Reasoning of that sort cannot be applied to a query E =
R × R \ P × P . Given a tuple t = (t1, t2) from the envelope

we know that t1, t2 ∈ R, but the fact (t1, t2) 6∈ QA∆P
C×∆P

C (I)

doesn’t imply that t1 6∈ QA∆P
C (I) or t2 6∈ QA∆P

C (I). And
therefore we are not able to find if t1 6∈ I(P ) or t2 6∈ I(P ).

This mechanism hasn’t been included in the tested imple-
mentation yet. Implementing only positive knowledge gath-
ering allows us to better observe the benefits of extending
the envelope expression.

We notice here that the query rewriting approach to com-
puting consistent query answers described in [2] works also
only for queries that are conjunctions of literals. However,
as shown below, our approach leads to faster computation
of consistent answers than query rewriting.

4.3.2 Intersection
Another possible venue of optimization comes from di-

rectly implementing derived operators of relational algebra.
For example, for intersection the appropriate extensions of
the operators F and G are very simple:

F (E1∩E2) = F (E1)∩F (E2), G(E1∩E2) = G(E1)∩G(E2).

Now R∩P is equivalent to R\(R\P ) but F (R∩P ) = R∩P
is not equivalent to F (R\ (R\P )) = R\ (∆R

C \P ). Thus the
envelope constructed by the operator F becomes sensitive
to the way the original query is formulated.

5. EXPERIMENTAL RESULTS

5.1 The setting for the experiments
Among available methods for computing consistent query

answers, only the query rewriting technique [2] seems to be
feasible for large databases. This is why in this work we
compare the following engines:

SQL An engine that executes the given query on the un-
derlying RDBMS, and returns the query result. This
method doesn’t return consistent query answers, but
provides a baseline to observe the overhead of com-
puting consistent query answers using the proposed
methods.

QR Using the SQL engine, we execute the rewritten query
constructed as decribed in [2]. More details on this
approach can be found in Section 6.

KG This method constructs the basic envelope expression
and uses knowledge gathering, as described in Section
4.1.

ExtKG This engine constructs the extended envelope ex-
pression (Section 4.2) and uses extended knowledge
gathering.

5.1.1 Generating test data
Every test was performed with the database containing

two tables P and Q, both having three attributes X, Y, Z.
For the constraints, we took a functional dependency X →
Z in each table. The test databases had the following pa-
rameters:

• n : the number of base tuples in each table,

• m : the number of additional conflicting tuples,

and had both tables constructed in the following way:

1. Insert n different base tuples with X and Z being equal
and taking subsequent values 0, . . . , n − 1, and Y being
randomly drawn from the set {0, 1}.

2. Insert m different conflicting tuples with X taking sub-
sequent values {0, ⌈n/m⌉, ⌈2 ∗ n/m⌉, . . . , ⌈(m − 1) ∗
n/m⌉}, Z = X + 1, and Y being randomly drawn
from the set {0, 1}.

In addition, we define auxiliary tables (Pcore and Qcore)
containing only non-conflicting tuples from the base tables
(resp. P and Q). Those table were used as materialized

views of the core expressions (∆P
C and ∆Q

C).

Example 11. We show how a table P with n = 4 and
m = 2 can be generated:

1. First we insert the base tuples
(0, 1, 0), (1, 0, 1), (2, 0, 2), (3, 1, 3) into P

2. Then we insert the following conflicting tuples
(0, 1, 1), (2, 0, 3) into P

3. Pcore will hold the following tuples (1, 0, 1), (3, 1, 3).

In every table constructed in such a way the number of tu-
ples is n + m, and the number of conflicts is m.

5.1.2 The environment
The implementation is done in Java2, using PostgreSQL

(version 7.3.3) as the relational backend. All test have been
performed on a PC with a 1.4GHz AMD Athlon processor
under SuSE Linux 8.2 (kernel ver. 2.4.20) using Sun JVM

1.4.1.



5.2 Test results
Testing a query with a given engine consisted of comput-

ing the consistent2 answers to the query and then iterating
over the results. Iteration over the result is necessary, as
the subsequent elements of the consistent query answer set
are computed by Hippo in a lazy manner (this allows us
to process results bigger than the available main memory).
Every test has been repeated three times and the median
taken. Finally, we note that the cost of computing the con-
flict hypergraph, which is incurred only once per session, is
ignored while estimating the time of the query evaluation.
We take a closer look at the time required for hypergraph
construction in Section 5.2.3.

5.2.1 Simple queries
We first compared performance of different engines on

simple queries: join, union, and difference. Because we
performed the tests for large databases, we added a range
selection to the given query to obtain small query results,
factoring out the time necessary to write the outputs. As
parameters in the experiments, we considered the database
size, the conflict percentage, and the estimated result size.

Figure 3 shows the execution time for join as a function
of the size of the database. In the case of {σ,×}-expressions
(thus also joins), the execution times of KG, ExtKG and
SQL are essentially identical. Since no membership queries
have to be performed, it means that for simple queries the
work done by HProver for all tuples is practically negligible.
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Figure 3: Execution time for join.

Figure 4 contains the results for union. It shows that
basic knowledge gathering KG is not sufficient to efficiently
handle union. The cost of performing membership queries
for all tuples is very large. Note that query rewriting is not
applicable to union queries.

Figure 5 contains the results for set difference (the exe-
cution time for KG was relatively much larger than values
of other solutions and in order to increase readability it has
not been included on this figure). Here the execution time is
a function of the percentage of conflicts. We note that Ex-

tKG performs as well as QR and both are approximately
twice slower than SQL.

5.2.2 Complex queries

2Except when using SQL engine.
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In order to estimate the cost of extending the envelope we
considered a complex union query

σX<d(P 1X Q 1X P 1X Q ∪ Q 1X P 1X Q 1X P ),

with d being a parameter that will allow us to control the
number of tuples processed by each engine. To assure no
membership queries will be performed, we have to add 8
outer joins. The main goal was to compare two versions
of knowledge gathering: KG and ExtKG. We have also
included the results for SQL. (It should be noted here that
this query has common subexpressions and RDBMS might
use this to optimize the query evaluation plan. PostgreSQL,
however, does not perform this optimization.)

As we can see in Figure 6, KG outperforms ExtKG only
in the case when the number of processed tuples is small.
As the result size increases, the execution time of ExtKG

grows significantly slower than that of KG. We notice also
that ExtKG needs 2–3 times more time than SQL but the
execution times of both grow in a similar fashion.

5.2.3 Hypergraph computation
The time of constructing the hypergraph is presented on

Figure 7). It depends on the total number of conflicts and
the size of the database.

It should be noticed here that the time of hypergraph con-
struction consists mainly of the execution time of conflict
detection queries. Therefore the time of hypergraph compu-
tation depends also on the number of integrity constraints
and their arity.
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6. RELATED WORK
The discussion of related work here is very brief and fo-

cuses mainly on the most recent research. For a comprehen-
sive discussion, please see [7].

Bry [10] was the first to note that the standard notion of
query answer needs to be modified in the context of incon-
sistent databases and to propose the notion of a consistent
query answer. Bry’s definition of consistent query answer is
based on provability in minimal logic and expresses the in-
tuition that the part of the database instance involved in an
integrity violation should not be involved in the derivation
of consistent query answers. This is not quite satisfactory, as
one would like to have a semantic, model-theoretic notion of
consistent query answer that parallels that of the standard
notion of query answer in relational databases. Moreover,
the data involved in an integrity violation is not entirely
useless and reliable indefinite information can often be ex-
tracted from it, as seen in Example 1.

Query rewriting [2, 12] rewrites the original query Q to
another query Q′ with the property that the set of all the
answers to Q′ in the original database is equal to the set
of consistent answers to Q in that database. When appli-
cable, this approach provides an easy way to compute con-
sistent query answers, as the rewritten query Q′ can typi-
cally be evaluated using the same query engine as the query
Q. Because the query Q is rewritten independently of the
database, the existence of a rewriting shows that requesting
consistent query answers instead of the regular ones does
not increase data complexity. However, query rewriting has
been found to apply only to restricted classes of queries:

the {σ,×, \}-subset [2] or the {σ, π}-subset [13] of the re-
lational algebra. No method is presently known to rewrite
queries with projection considered together with the binary
operators, or union. Also, the class of constraints is limited
to binary universal constraints [2] or single functional de-
pendencies [13]. The line of research from [2] is continued
in [17] where a class of tractable conjunctive queries, based
on generalized perfect matching, is identified. It is proved
that the consistent answers to queries in this class cannot be
obtained by query rewriting. We note here that the nonexis-
tence of query rewriting for conjunctive queries follows also
from the fact that computing consistent query answers for
such queries is a co-NP-complete problem [4, 13]. This is
because the rewritten query is first-order and thus can be
evaluated in AC0, while known NP-complete problems like
SAT are not in AC0.

Several different approaches have been developed to spec-
ify all repairs of a database as a logic program with dis-
junction and classical negation [3, 6, 15, 18, 19, 22]. Such a
program can then be evaluated using an existing system like
dlv [14]. These approaches have the advantage of generality,
as typically arbitrary first-order queries and universal con-
straints (or even some referential integrity constraints [3])
can be handled. However, the generality comes at a price:
The classes of logic programs used are Πp

2-complete. There-
fore, the approaches based on logic programming are un-
likely to work for large databases. The paper [15] proposes
several optimizations that are applicable to logic program-
ming approaches. One is localization of conflict resolution,
another - encoding tuple membership in individual repairs
using bit-vectors, which makes possible efficient computa-
tion of consistent query answers using bitwise operators.
However, it is known that even in the presence of one func-
tional dependency there may be exponentially many repairs
[4]. With only 80 tuples involved in conflicts, the number
of repairs may exceed 1012! It is clearly impractical to effi-
ciently manipulate bit-vectors of that size.

[11] describes several possible definitions of repair, includ-
ing Definition 5, and analyzes the complexity of computing
consistent query answers under those definitions. Key and
inclusion dependencies are considered. The computational
approaches proposed are based on combinations of repair
enumeration and chase computation [1]. New tractability
results are obtained for classes of databases that satisfy key
constraints but may violate inclusion dependencies.

Presently, our approach requires that the integrated
database be materialized at a single site. It remains to be
seen if it can be generalized to a scenario where data is pulled
from different sites during the evaluation of queries rewritten
using, for example, the LAV approach [20]. This problem
has been considered in the context of a logic-program-based
approach to the computation of consistent query answers [8,
9] but, as explained earlier, such an approach does not scale
up to large databases.

A new scenario for data integration, data exchange, has
been recently proposed [16]. In this scenario, a target
database is materialized on the basis of a source database us-
ing source-to-target dependencies. In the presence of target
integrity constraints, a suitable consistent target database
may not exist. This is a natural context for the application
of the concepts of repair and consistent query answer. How-
ever, [16] does not consider the issue of the inconsistency of
target databases. [11] addresses the problem of consistent



query answering in a restricted data exchange setting.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a practical, scalable

framework for computing consistent query answers for large
databases. We have also described a number of novel opti-
mization techniques applicable in this context and summa-
rized experimental results that validate our approach.

The approach, however, has a number of limitations. Only
projection-free relational algebra queries and denial integrity
constraints are currently supported. Adding projection to
the query language is a difficult issue because the complexity
of computing consistent query answers becomes in that case
co-NP-complete [4, 13]. So, unless P=NP, we cannot hope
for computing consistent query answers efficiently for arbi-
trary conjunctive queries and arbitrary database instances.
However, the evaluation of queries with projection can make
use of the conflict hypergraph representation of all repairs,
and of the operators F and G introduced in Section 3. More-
over, we expect to be able to compute consistent answers to
queries with projection in polynomial time if conflict hyper-
graphs are suitably restricted. We hope that such restric-
tions can be translated into corresponding restrictions on
database instances and integrity constraints.

In [4], we have studied scalar aggregation queries in the
presence of functional dependencies, also making use of con-
flict graphs. It remains to be seen whether the techniques
developed in [4] can be combined with those of the present
paper.

Going beyond denial constraints appears challenging, too.
Essentially, integrity violations of denial constraints are due
to the presence of some facts in the database, and thus can
be compactly represented using the conflict hypergraph. If
arbitrary universal constraints, for example tuple-generating
dependencies [1, 21], are allowed, constraint violations may
be due to the simultaneous presence and absence of certain
tuples in the database. It is not clear how to construct in
this case a compact representation of all repairs that can
be used for the computation of consistent query answers.
Also, repairs are no longer guaranteed to be subsets of the
original database but can contain additional tuples. If refer-
ential integrity is to be captured, constraints have to contain
existentially quantified variables, which leads to the unde-
cidability of consistent query answers [11]. Only in very re-
stricted cases this problem has been shown to be tractable
[11, 13].

Another avenue of further research involves using prefer-
ences to reduce the number of repairs and consequently make
the computation of consistent query answers more efficient.
For example, in data integration, we may have a preference
for certain sources or for more recent information.

The issue of benchmarking systems that compute con-
sistent query answers requires more work. It would be
desirable to design mechanisms that generate inconsistent
databases in a systematic way and to perform more ex-
tensive experimental comparisons between implemented sys-
tems.
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