Preference-Driven Querying of Inconsistent Relational Databases

Slawomir Staworko¹ Jan Chomicki¹ Jerzy Marcinkowski²

¹Department of Computer Science and Engineering University at Buffalo, SUNY

> ²Institute of Informatics Wroclaw University

IIDB, March 26, 2006

Motivation

Schema

Mgr(Name, Dept, Salary, Reports) Key₁: Name Key₂: Dept

Q_1 : John earns more than Mary?

?- $Mgr(John, ..., s_1, ...), Mgr(Mary, ..., s_2, ...), s_1 > s_2.$ $r \models Q_1$, but is Q_1 really *true*?

Consistent Query Answers

Repairs:

 $\begin{aligned} r_1 &= \{(Mary, R\&D, 40K, 3), (John, PR, 30K, 4)\} \\ r_2 &= \{(Mary, IT, 20K, 1), (John, R\&D, 10K, 2)\} \\ r_3 &= \{(Mary, IT, 20K, 1), (John, PR, 30K, 4)\} \\ Q_1 \text{ is not consistently true in } r! \end{aligned}$

What if ???

The user knows: " s_1 , s_2 better than s_3 "

Motivation (cont.)

Schema

Mgr(Name, Dept, Salary, Reports) Key₁ : Name Key₂ : Dept

Data cleaning

- s_1, s_2 more reliable than s_3 .
- the clean database:

 $r' = \left\{ \begin{array}{c} (\textit{Mary}, \textit{R\&D}, 40\textit{K}, 3), \\ (\textit{John}, \textit{R\&D}, 10\textit{K}, 2) \end{array} \right\}$

r' is inconsistent.

Preferred Repairs and CQA

 $\begin{array}{l} \textit{Preferred repairs (maximizing reliablility):} \\ r_1 = \{(Mary, R\&D, 40K, 3), (John, PR, 30K, 4)\} \\ r_2 = \{(Mary, IT, 20K, 1), (John, R\&D, 10K, 2)\} \\ \hline r_3 = \{(Mary, IT, 20K, 1), (John, PR, 30K, 4)\} \end{array}$

 $\begin{aligned} & Q_2: \text{ Mary earns more for less?} \\ & ?- \text{ Mgr(Mary, _, s_1, r_1), Mgr(John, _, s_2, r_2), s_1 > s_2, r_1 < r_2.} \end{aligned}$

r

Repairs and Consistent Query Answers

Conflict graph:

- vertices = all tuples
- edges connect conflicting tuples

$\begin{array}{c|c} R:A \rightarrow B \\ \hline A & B & C \\ \hline 1 & 1 & 1 \\ 1 & 2 & 1 \\ 3 & 3 & 3 \end{array}$

Repair:

- a maximal consistent subset of the database
- Rep all repairs of the database
- Rep = MIS

Consistent Query Answers:

answers present in every repair.

 $r_1 = \{(1,2,1), (3,3,3)\}$ $r_2 = \{(1,1,1), (3,3,3)\}$

Priorities, Preferences, and Cleaning

Priority ≻

(1, 2, 1)

(1, 1, 1)

- an acyclic orientation of the conflict graph
- ► ≻ is total when all edges are oriented

 $\omega_{\succ}(r) = \{t \in r | \neg \exists t' \in r.t' \succ t\}$

(3, 3, 3)

 $(1,2,1) \succ (1,1,1)$

Preferred CQA

- ► A-Rep(≻), B-Rep(≻),... different families of preffered repairs w.r.t. ≻
- ➤ X-preferred consistent answers w.r.t. ≻ are the answers present in every X-preferred repair w.r.t ≻

Database cleaning with a total \succ

- while $\omega_{\succ}(r) \neq \emptyset$ do
 - 1. choose any $x \in \omega_{\succ}(r)$
 - 2. add x to r'
 - 3. remove x from r with neighbors

Basic Characterization of Preferred Repairs

$(\mathcal{P}1)$ Non-emptiness

 \mathcal{X} -Rep $(\succ) \neq \emptyset$

$(\mathcal{P}2)$ Monotonicity

 $\begin{array}{c} \succ_1 \subseteq \succ_2 \\ \Downarrow \\ \mathcal{X}\text{-} \textit{Rep}(\succ_2) \subseteq \mathcal{X}\text{-} \textit{Rep}(\succ_1) \end{array}$

$(\mathcal{P}3)$ Non-discrimination

 \mathcal{X} - $Rep(\emptyset) = Rep$

$(\mathcal{P}4)$ Categoricity

$$\succ$$
 is total $\Rightarrow |\mathcal{X}\text{-}\mathsf{Rep}(\succ)| = 1$

Trvial family \mathcal{T}_1 -Rep (\succ) :

- 1° if \succ is total then return the clean database
- 2° otherwise return Rep

$$T_1$$
-Rep satisfies $\mathcal{P}1 - \mathcal{P}4$.

Optimal Use of Priorities

L-*Rep*: Locally Optimal Repairs

r' is locally optimal iff

no tuple $x \in r'$ can be replaced with a tuple y such that:

 $y \succ x$. (and the result is consistent)

 \mathcal{L} -Rep satisfies $\mathcal{P}1 - \mathcal{P}3$

S-Rep: Semi-globally Optimal Repairs

 $\forall x \in X. y \succ x.$

 \mathcal{S} -Rep satisfies $\mathcal{P}1 - \mathcal{P}3$

 $\mathcal{S}\text{-}\mathit{Rep}$ is not categorical (not $\mathcal{P}4)$

CI				
- SI:	awomi	ır S	tawc	nrko
- U.				

G-*Rep*: Globally Optimal Repairs

r' is globally optimal iff

no set $X \subseteq r'$ can be replaced with a set Y such that: $\forall x \in X. \exists y \in Y. y \succ x.$

$\mathcal{G}\text{-}\textit{Rep}$ satisfies $\mathcal{P}1-\mathcal{P}4$

Alternative characterization

 $\mathcal{G}\text{-}Rep = \ll\text{-maximal repairs}$ $r_1 \ll r_2 \Leftrightarrow \forall x \in r_1 \setminus r_2. \exists y \in r_2 \setminus r_1. y \succ x.$

	Panair Chack	Consistent Answers to		
	Repair Check	$\{\forall, \exists\}$ -free queries	conjunctive queries	
Rep	PTIME	PTIME	co-NP-complete	
<i>L</i> -Rep	PTIME	co-NP-complete	co-NP-complete	
S-Rep	PTIME	co-NP-complete	co-NP-complete	
G-Rep	co-NP-complete	Π_p^2 -complete	Π_p^2 -complete	

\mathcal{L} -Rep, \mathcal{S} -Rep, and \mathcal{G} -Rep

For one FD computing consistent answers to $\{\exists, \forall\}$ -queries is PTIME.

Computing preferred CQA with any family of (semi-globally) optimal repairs satisfying $\mathcal{P}1$ and $\mathcal{P}2$ is co-NP-hard. (one atom and 2 FDs)

C-Rep: Common optimal repairs

Desired properties:

- optimality to enforce priority use
- monotonicity (P2) to prevent groundless elimination of repairs
- ▶ non-emptiness (𝒫1)

C-Rep - repairs common for all families of (globally) optimal repairs satisfying $\mathcal{P}1$ and $\mathcal{P}2$

Database cleaning

- ▶ *r*′ := ∅
- while $\omega_{\succ}(r) \neq \emptyset$ do
 - 1. choose any $x \in \omega_{\succ}(r)$
 - 2. add x to r'
 - 3. remove x from r with neighbors
- ▶ return r'

- C-Rep satisfies $\mathcal{P}1 \mathcal{P}4$
- $\blacktriangleright \ C\text{-}Rep \subseteq \mathcal{G}\text{-}Rep$
- C-Rep = G-Rep for priorities that cannot be extended to a cyclic orientation.
- Repair check: PTIME; CQA: co-NP-c

Alternative characterization

 $r' \in C\text{-}Rep(\succ)$ iff r' can be a result of cleaning the database with \succ .

	Repair	Consistent Answers to		Possible
	Check	$\{\forall, \exists\}$ -free queries	conj. queries	Applications
Rep	PTIME	PTIME	co-NP-c	no priorities given
L-Rep	PTIME	co-NP-c		key (no duplicates)
S-Rep	PTIME	co-NP-c		one FD (duplicates)
G-Rep	co-NP-c	Π_p^2 -c		many FDs with
C-Rep	PTIME	co-NP-c		mutual conflicts

Related Work

S. Flesca, S. Greco, and E. Zumpano. Active Integrity Constraints.

$$S_\succ(r') = \{(x,y) \in r imes r \mid x \in r'\}$$

P- $Rep(\succ) = \{r' \in Rep \mid S_\succ(r') ext{ is maximal}$

- ► CQA: Π^p₃-complete
- ▶ satisfies *P*1 and *P*3
- handles cyclic \succ , but then

T

▶ violates P2 and P4

G. Greco and D. Lembo Data Integration with Preferences among Sources.

- repairing a relation by removing tuples has to be *justified* by removing similar tuples from other relations.
- ▶ satisfies P2, but not P1 (non-emptiness)
- ▶ *weakened* framework satisfies *P*1 but *P*2 is lost.