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An F-system is a computational model that performs a folding operation on words of a 
given language, following directions coded on words of another given language. This paper 
considers the case in which both given languages are regular, and it shows that the class of 
languages generated by such F-systems is a proper subset of the class of linear context-free 
languages.
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1. Introduction

Geometric folding processes are ubiquitous in nature 
and technology, from the shaping of protein molecules [1]
and the folding of leaves and insect wings [2], to self-
assembling robots [3] and foldable space telescopes [4]. In 
current days, it is usual to designate such processes under 
the general term of “origami”, in reference to the Japanese 
traditional art of creating figures by folding a sheet of pa-
per [5].

From the perspective of the theory of formal languages, 
origami has been modeled by a word folding operation, 
which reorders symbols of a given word according to di-
rections coded in another one [6]. Using the folding oper-
ation, a folding system (F-system) of the form � = (L1, L2)

may be defined, where L1 (the core language) is the lan-
guage that contains the words to be folded, and L2 (the 
folding procedure language) is the language that contains 
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words with the folding directions. Although this model is 
restricted to one dimensional folding and does not capture 
actual origami (i.e., on a bidimensional sheet), it may still 
be applied to characterize folding processes in molecular 
or DNA computing and related areas [7–9].

The computing power of F-systems has been investi-
gated by comparison with standard language classes from 
the Chomsky hierarchy (i.e., regular, context-free, context-
sensitive, recursive and recursively enumerable languages). 
More recently [10], necessary conditions for a language to 
belong to classes generated when the core and the folding 
procedure languages are regular or context-free have been 
proposed in the form of pumping lemmas, similar to the 
well known pumping lemmas for regular and context-free 
languages.

The present paper considers the case in which both the 
core and the folding procedure languages are regular. It has 
been demonstrated that the class of languages generated 
by such F-systems surpasses and strictly contains the reg-
ular languages [6]. Here, it will be shown that the F-system 
class is a proper subset of the class of the linear context-
free languages.
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2. Definitions

Let us first review the definitions of folding operations 
and systems [10].

Definition 1. Let � be an alphabet, � = {u, d}, and f : �∗ ×
� × � → �∗ a function such that

f (x,a,b) =
{

ax if b = u,

xa if b = d.

Then, the folding function h : �∗ × �∗ → �∗ is a partial 
function defined by

h(w, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε if |w| = |v| = 0,

f (h(w ′, v ′),a,b) if |w| = |v| > 0,

with w = w ′a, v = v ′b,

undefined if |w| �= |v|. �
The computation of h(w, v) may be regarded as a fold-

ing operation that rearranges the symbols of w . Words 
over � describe how each folding must be performed, 
where symbol u represents a “folding up” action and sym-
bol d represents a “folding down” action (see [10] for an 
illustration of the folding mechanism).

Definition 2. A folding system (F-system) is a pair � =
(L1, L2), where L1 ⊆ �∗ is the core language, and L2 ⊆ �∗
is the folding procedure language. The language of � is

L(�) = {h(w, v)| w ∈ L1, v ∈ L2, |w| = |v|}. �
Definition 3. The class of all languages generated by F-
systems with core languages of a class C and folding pro-
cedure languages of a class H is

F(C,H) = {L(�)|� = (L1, L2), L1 ∈ C, L2 ∈ H}. �
We recall basic concepts of context-free and regular 

languages [11,12]. A context-free grammar is a tuple G =
(V , �, R, S), where V is the set of nonterminal symbols, �
is the set of terminals, R ⊆ V × (V ∪ �)∗ is the set of pro-
duction rules, and S ∈ V is the start symbol. G is linear if 
every production rule is of the form A → uB v or A → u, 
where u, v ∈ �∗ and A, B ∈ V . G is right-linear if every 
production rule is of the form A → uB or A → u, where 
u ∈ � ∪ {ε} and A ∈ V . The class of linear languages LIN
consists of languages generated by linear grammars. The 
class of regular languages REG consists of languages gen-
erated by right-linear grammars.

3. Folding over regular languages

We consider languages of the class F(REG, REG). First, 
we show that F(REG, REG) ⊆ LIN, where LIN is the class 
of linear languages.

Theorem 1. The class of languages generated by F-systems with 
regular core and procedure languages is a subset of the class of 
linear languages.
2

Proof. Consider the F-system � = (L1, L2) with L1, L2 ∈
REG. Let G1 = (V 1, �, R1, S1) and G2 = (V 2, �, R2, S2) be 
right-linear grammars for reverse languages LR1 and LR2 , 
respectively. Then, a linear grammar G = (V , �, R, S) for 
L(�) may be obtained by letting:

1. V = V 1 × V 2,
2. R = Ru ∪ Rd ∪ Rε , where

Ru = {(A, B) → a(C, D) | A → aC ∈ R1,

B → uD ∈ R2},
Rd = {(A, B) → (C, D)a | A → aC ∈ R1,

B → dD ∈ R2},
Rε = {(A, B) → ε | A → ε ∈ R1,

B → ε ∈ R2},
3. S = (S1, S2).

Now, for any nonterminal A of a grammar G , let G A

denote the version of G with A as the start symbol. With a 
straightforward inductive argument we prove the following 
claim.

Claim 1.1. For any A1 ∈ V 1 and A2 ∈ V 2, L(L(G A1
1 )R,

L(G A2
2 )R) = L(G(A1,A2)).

Naturally, the above claim proves that L(�) = L(G). �
Example 1. Let � = (L1, L2) with L1 = (abc)∗ and L∗

2 =
(udd)∗ , and take the following right-linear grammars G1

and G2 defining LR1 = (cba)∗ and LR2 = (ddu)∗ , respec-
tively.

G1 : S0 → ε | cS1 S1 → bS2 S2 → aS0

G2 : T0 → ε | dT1 T1 → dT2 T2 → uT0

The construction in the proof above yields the following 
linear grammar (nonproductive rules omitted).

G : (S0, T0) → ε | (S1, T1)c (S1, T1) → (S2, T2)b

(S2, T2) → a(S0, T0)

Clearly, L(G) = {an(bc)n | n ≥ 0} = L(�). �
Now, we show that F(REG, REG) �= LIN. The proof re-

lies on an interchange property of languages generated by 
folding: if w1, w2 ∈ L(�), |w1| = |w2|, w1 = h(v1, u1), and 
w2 = h(v2, u2), then h(v1, u2) also belongs to L(�). We 
construct a linear language that does not have this prop-
erty.

Theorem 2. The class of languages generated by F-systems with 
regular core and procedure languages is not equal to the class of 
linear languages.

Proof. We present a linear language L that cannot be gen-
erated by any folding system with regular core and regu-
lar procedure languages. The language L over the alphabet 
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� = {a, b, c, d, e, f , #} is defined with the following linear 
grammar:

G : S → S1 | S2, S1 → aS1bc | a#bc,

S2 → deS2 f | de# f .

Suppose now that there is an F-system � = (L1, L2), such 
that L = L(�), and let N1 and N2 be the numbers of non-
terminals of the right-linear grammars that define L1 and 
L2, respectively. We point out that L has only words of 
length 3i + 1 for i ≥ 1, and without loss of generality, we 
assume that both L1 and L2 have words of length 3i + 1
only. Otherwise, we can take their intersections with the 
respective regular languages of words of length 3i + 1.

Since every word in L has exactly one occurrence of #, 
so does every word in L1. Moreover, with a pumping argu-
ment we show that # is in the beginning of every word in 
L1. More precisely, we let N = N1N2 and make the follow-
ing claim.

Claim 2.1. For every word w ∈ L1, the symbol # is present 
in the first N symbols of w .

Next, let n = 2N and take the words w ∈ L1 and v ∈ L2
such that h(w, v) = an#(bc)n . Note that |w| = |v| = 6N +
1. Let w = w1#w2 and observe that since |w1| < N , w2
contains more than 3N symbols in {b, c}. Because those 
symbols follow #, they must be folded down, and therefore 
v must also contain at least 3N + 1 occurrences of d.

Now, take the words w ′ ∈ L1 and v ′ ∈ L2 such that 
h(w ′, v ′) = (de)n# f n , and consider folding w ′ according to 
v (w ′ and v have the same length). Because w ′ contains 
only symbols in {d, e, f , #} the result h(w ′, v) must also 
be equal to (de)n# f n (L demands it). However, we observe 
that w ′ = w ′

1#w ′
2 and |w ′

1#| ≤ N , and therefore, at least 
2N +1 symbols of w ′

2 are folded down by v . Consequently, 
the result h(w ′, v ′) has more than n symbols following #, 
which contradicts h(w ′, v) = (de)n# f n . �
4. Conclusion

From Theorems 1 and 2, we conclude that F(REG,

REG) ⊂ LIN. It is also known that REG ⊂ F(REG, REG)

[6], which places F(REG, REG) as an intermediate class 
between the regular and linear languages. Interestingly, 
Theorem 2 also shows that F(REG, REG) is not closed un-
der union: the linear language L used in the proof is the 
union of L((abc)∗, (udd)∗) and L((edf )∗, (uud)∗). Tackling 
the questions of closure under intersection and comple-
ment would require dedicated tools and we leave it for 
future work.

A previous work [10] introduced a weak pumping 
lemma stating conditions for a language to belong to 
F(REG, REG). However, the present result implies that 
the class must also satisfy the pumping lemma for linear 
languages [13,14], which has stronger conditions than the 
previous lemma. The relation of the class with the linear 
languages also implies that it has efficient recognition al-
gorithms of O(n2) time and O(n) space complexities [15], 
which may be relevant for applications in natural comput-
ing.
3

It is also interesting to note that F-systems may be ex-
pressed in terms of families of permutations as defined 
in [16]. Since the even-linear languages [17], generated 
by linear grammars with rules S → uS ′v such that |u| =
|v|, may be obtained from permutations on regular lan-
guages [16, Example 9], then this class is contained within 
F(REG, REG).
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Appendix A. Proof of Claim in Theorem 1

Proof. First, we show that any word s ∈ L(L(G A1
1 )R,

L(G A2
2 )R) is also in L(G(A1,A2)). If s ∈ L(L(G A1

1 )R, L(G A2
2 )R), 

then there are words w ∈ L(G A1
1 )R and v ∈ L(G A2

2 )R such 
that |s| = |w| = |v| and s = h(w, v), where h is the folding 
function defined in Definition 1. Using induction on the 
length of s:

1. If |s| = 0, then s = w = v = ε, and G1 and G2 have 
rules A1 → ε and A2 → ε, respectively. Therefore, G
has the rule (A1, A2) → ε, and ε ∈ L(G(A1,A2)).

2. If |s| > 0, then let w = w ′a, v = v ′b, where a ∈ � and 
b ∈ �. Since wR = aw ′R and vR = bv ′R , then G1 and 
G2 have rules A1 → aB1 and A2 → bB2, respectively, 
where w ′R ∈ L(G B1

1 ) and v ′R ∈ L(G B2
2 ). Therefore, G

has either the rule (A1, A2) → a(B1, B2), if b = u, or 
the rule (A1, A2) → (B1, B2)a, if b = d.
Assume, by induction hypothesis, that h(w ′, v ′) ∈
L(G(B1,B2)). If b = u, then (A1, A2) generates ah(w ′,
v ′) = h(w ′a, v ′u) = h(w, v). If b = d, then (A1, A2)

generates h(w ′, v ′)a = h(w ′a, v ′d) = h(w, v). In either 
case, s = h(w, v) ∈ L(G(A1,A2)).

Next, we show that any word s ∈ L(G(A1,A2)) is also in 
L(L(G A1

1 )R, L(G A2
2 )R). Again, using induction on the length 

of s:

1. If |s| = 0, then s = ε and G has a rule (A1, A2) → ε. 
Therefore, G1 and G2 have rules A1 → ε and A2 → ε, 
respectively, and h(ε, ε) = ε ∈ L(L(G A1

1 )R, L(G A2
2 )R).

2. If |s| > 0, then G has either a rule (A1, A2) →
a(B1, B2) or a rule (A1, A2) → (B1, B2)a, where a ∈
�. Consider the former case, and let s = as′ , where 
s′ ∈ L(G(B1,B2)).
By induction hypothesis, assume that s′ ∈ L(L(G B1

1 )R,

L(G B2 )R). Then, there are words w ′ ∈ L(G B1 )R and 
2 1
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v ′ ∈ L(G B2
2 )R such that s′ = h(w ′, v ′). Also, rule 

(A1, A2) → a(B1, B2) implies that G1 and G2 have 
rules A1 → aB1 and A2 → uB2, respectively, and 
then w ′a ∈ L(G A1

1 )R and v ′u ∈ L(G A2
2 )R . Thus, h(w ′a,

v ′u) = ah(w ′, v ′) = s ∈ L(L(G A1
1 )R, L(G A2

2 )R).
The case in which G has a rule (A1, A2) → (B1, B2)a
is treated similarly, with s = s′a. We obtain that G2

has a rule A2 → dB2, and then v ′d ∈ L(G A2
2 )R . Thus, 

h(w ′a, v ′d) = h(w ′, v ′)a = s ∈ L(L(G A1
1 )R, L(G A2

2 )R). �
Appendix B. Proof of Claim in Theorem 2

Proof. Suppose that there is a word w ∈ L1 such that 
w = w1#w2 such that |w1| > N , take any v ∈ L2 such 
that h(w, v) = u1#u2. Now let v = v1 v2 with |v1| = |w1|. 
Since |v1| = |w1| > N , there are x1, x2, y1, y2, z1, z2 such 
that w1 = x1 y1z1, v1 = x2 y2z2, |x1| = |x2|, |y1| = |y2| > 0, 
|z1| = |z2|, and x1 yk

1z1#w2 ∈ L1 and x2 yk
2z2 v2 ∈ L2. It is 

straightforward to see that fact if we view the grammars 
that define L1 and L2 as finite automata, with number of 
states N1 and N2, respectively. Assign to every position 
in w1 and v1 the pair of states reached by the two au-
tomata when reading those words. Since |w1| = |v1| > N , 
then some pair of states appears at least twice, and the 
positions in w1 and v1 where the same pair has appeared 
delimit y1 and y2. The rest follows from the pumping 
lemma for regular languages.

Next, let m = 2|w2| + 1 and take the corresponding 
words w ′ = x1 ym

1 z1#w2 and v ′ = x2 ym
2 z2 v2. Note that 

when folding w ′ under the control of v ′ , before # is 
reached the prefix x1 ym

1 z1 is folded into a word u′ of 
length greater than 2|w2| + 1. Regardless of how the re-
maining part of w ′ is folded, the end result will be a word 
u1#u2 where one of u1 or u2 contains the factor u′ and 
therefore is longer than 2|w2| + 1 while the other word is 
no longer than |w2|. This however contradicts the obser-
vation that follows immediately from the definition of L: 
every word of L has the form u1#u2 such that |u1| ≤ 2|u2|
and |u2| ≤ 2|u1|. �
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