
Information Processing Letters 179 (2023) 106283

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A note on the class of languages generated by F-systems
over regular languages

Jorge C. Lucero a,∗, Sławek Staworko b

a Dept. Computer Science, University of Brasília, Brasília, DF 70910-900, Brazil
b Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 October 2020
Received in revised form 24 April 2022
Accepted 6 May 2022
Available online 11 May 2022
Communicated by Leah Epstein

Keywords:
F-system
Folding
Regular language
Linear language
Formal languages

An F-system is a computational model that performs a folding operation on words of a
given language, following directions coded on words of another given language. This paper
considers the case in which both given languages are regular, and it shows that the class of
languages generated by such F-systems is a proper subset of the class of linear context-free
languages.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Geometric folding processes are ubiquitous in nature
and technology, from the shaping of protein molecules [1]
and the folding of leaves and insect wings [2], to self-
assembling robots [3] and foldable space telescopes [4]. In
current days, it is usual to designate such processes under
the general term of “origami”, in reference to the Japanese
traditional art of creating figures by folding a sheet of pa-
per [5].

From the perspective of the theory of formal languages,
origami has been modeled by a word folding operation,
which reorders symbols of a given word according to di-
rections coded in another one [6]. Using the folding oper-
ation, a folding system (F-system) of the form � = (L1, L2)

may be defined, where L1 (the core language) is the lan-
guage that contains the words to be folded, and L2 (the
folding procedure language) is the language that contains

* Corresponding author.
E-mail addresses: lucero@unb.br (J.C. Lucero),

slawomir.staworko@univ-lille.fr (S. Staworko).
https://doi.org/10.1016/j.ipl.2022.106283
0020-0190/© 2022 Elsevier B.V. All rights reserved.
words with the folding directions. Although this model is
restricted to one dimensional folding and does not capture
actual origami (i.e., on a bidimensional sheet), it may still
be applied to characterize folding processes in molecular
or DNA computing and related areas [7–9].

The computing power of F-systems has been investi-
gated by comparison with standard language classes from
the Chomsky hierarchy (i.e., regular, context-free, context-
sensitive, recursive and recursively enumerable languages).
More recently [10], necessary conditions for a language to
belong to classes generated when the core and the folding
procedure languages are regular or context-free have been
proposed in the form of pumping lemmas, similar to the
well known pumping lemmas for regular and context-free
languages.

The present paper considers the case in which both the
core and the folding procedure languages are regular. It has
been demonstrated that the class of languages generated
by such F-systems surpasses and strictly contains the reg-
ular languages [6]. Here, it will be shown that the F-system
class is a proper subset of the class of the linear context-
free languages.

https://doi.org/10.1016/j.ipl.2022.106283
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2022.106283&domain=pdf
mailto:lucero@unb.br
mailto:slawomir.staworko@univ-lille.fr
https://doi.org/10.1016/j.ipl.2022.106283

J.C. Lucero and S. Staworko Information Processing Letters 179 (2023) 106283
2. Definitions

Let us first review the definitions of folding operations
and systems [10].

Definition 1. Let � be an alphabet, � = {u, d}, and f : �∗ ×
� × � → �∗ a function such that

f (x,a,b) =
{

ax if b = u,

xa if b = d.

Then, the folding function h : �∗ × �∗ → �∗ is a partial
function defined by

h(w, v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ε if |w| = |v| = 0,

f (h(w ′, v ′),a,b) if |w| = |v| > 0,

with w = w ′a, v = v ′b,

undefined if |w| �= |v|. �
The computation of h(w, v) may be regarded as a fold-

ing operation that rearranges the symbols of w . Words
over � describe how each folding must be performed,
where symbol u represents a “folding up” action and sym-
bol d represents a “folding down” action (see [10] for an
illustration of the folding mechanism).

Definition 2. A folding system (F-system) is a pair � =
(L1, L2), where L1 ⊆ �∗ is the core language, and L2 ⊆ �∗
is the folding procedure language. The language of � is

L(�) = {h(w, v)| w ∈ L1, v ∈ L2, |w| = |v|}. �
Definition 3. The class of all languages generated by F-
systems with core languages of a class C and folding pro-
cedure languages of a class H is

F(C,H) = {L(�)|� = (L1, L2), L1 ∈ C, L2 ∈ H}. �
We recall basic concepts of context-free and regular

languages [11,12]. A context-free grammar is a tuple G =
(V , �, R, S), where V is the set of nonterminal symbols, �
is the set of terminals, R ⊆ V × (V ∪ �)∗ is the set of pro-
duction rules, and S ∈ V is the start symbol. G is linear if
every production rule is of the form A → uB v or A → u,
where u, v ∈ �∗ and A, B ∈ V . G is right-linear if every
production rule is of the form A → uB or A → u, where
u ∈ � ∪ {ε} and A ∈ V . The class of linear languages LIN
consists of languages generated by linear grammars. The
class of regular languages REG consists of languages gen-
erated by right-linear grammars.

3. Folding over regular languages

We consider languages of the class F(REG, REG). First,
we show that F(REG, REG) ⊆ LIN, where LIN is the class
of linear languages.

Theorem 1. The class of languages generated by F-systems with
regular core and procedure languages is a subset of the class of
linear languages.
2

Proof. Consider the F-system � = (L1, L2) with L1, L2 ∈
REG. Let G1 = (V 1, �, R1, S1) and G2 = (V 2, �, R2, S2) be
right-linear grammars for reverse languages LR1 and LR2 ,
respectively. Then, a linear grammar G = (V , �, R, S) for
L(�) may be obtained by letting:

1. V = V 1 × V 2,
2. R = Ru ∪ Rd ∪ Rε , where

Ru = {(A, B) → a(C, D) | A → aC ∈ R1,

B → uD ∈ R2},
Rd = {(A, B) → (C, D)a | A → aC ∈ R1,

B → dD ∈ R2},
Rε = {(A, B) → ε | A → ε ∈ R1,

B → ε ∈ R2},
3. S = (S1, S2).

Now, for any nonterminal A of a grammar G , let G A

denote the version of G with A as the start symbol. With a
straightforward inductive argument we prove the following
claim.

Claim 1.1. For any A1 ∈ V 1 and A2 ∈ V 2, L(L(G A1
1)R,

L(G A2
2)R) = L(G(A1,A2)).

Naturally, the above claim proves that L(�) = L(G). �
Example 1. Let � = (L1, L2) with L1 = (abc)∗ and L∗

2 =
(udd)∗ , and take the following right-linear grammars G1

and G2 defining LR1 = (cba)∗ and LR2 = (ddu)∗ , respec-
tively.

G1 : S0 → ε | cS1 S1 → bS2 S2 → aS0

G2 : T0 → ε | dT1 T1 → dT2 T2 → uT0

The construction in the proof above yields the following
linear grammar (nonproductive rules omitted).

G : (S0, T0) → ε | (S1, T1)c (S1, T1) → (S2, T2)b

(S2, T2) → a(S0, T0)

Clearly, L(G) = {an(bc)n | n ≥ 0} = L(�). �
Now, we show that F(REG, REG) �= LIN. The proof re-

lies on an interchange property of languages generated by
folding: if w1, w2 ∈ L(�), |w1| = |w2|, w1 = h(v1, u1), and
w2 = h(v2, u2), then h(v1, u2) also belongs to L(�). We
construct a linear language that does not have this prop-
erty.

Theorem 2. The class of languages generated by F-systems with
regular core and procedure languages is not equal to the class of
linear languages.

Proof. We present a linear language L that cannot be gen-
erated by any folding system with regular core and regu-
lar procedure languages. The language L over the alphabet

J.C. Lucero and S. Staworko Information Processing Letters 179 (2023) 106283
� = {a, b, c, d, e, f , #} is defined with the following linear
grammar:

G : S → S1 | S2, S1 → aS1bc | a#bc,

S2 → deS2 f | de# f .

Suppose now that there is an F-system � = (L1, L2), such
that L = L(�), and let N1 and N2 be the numbers of non-
terminals of the right-linear grammars that define L1 and
L2, respectively. We point out that L has only words of
length 3i + 1 for i ≥ 1, and without loss of generality, we
assume that both L1 and L2 have words of length 3i + 1
only. Otherwise, we can take their intersections with the
respective regular languages of words of length 3i + 1.

Since every word in L has exactly one occurrence of #,
so does every word in L1. Moreover, with a pumping argu-
ment we show that # is in the beginning of every word in
L1. More precisely, we let N = N1N2 and make the follow-
ing claim.

Claim 2.1. For every word w ∈ L1, the symbol # is present
in the first N symbols of w .

Next, let n = 2N and take the words w ∈ L1 and v ∈ L2
such that h(w, v) = an#(bc)n . Note that |w| = |v| = 6N +
1. Let w = w1#w2 and observe that since |w1| < N , w2
contains more than 3N symbols in {b, c}. Because those
symbols follow #, they must be folded down, and therefore
v must also contain at least 3N + 1 occurrences of d.

Now, take the words w ′ ∈ L1 and v ′ ∈ L2 such that
h(w ′, v ′) = (de)n# f n , and consider folding w ′ according to
v (w ′ and v have the same length). Because w ′ contains
only symbols in {d, e, f , #} the result h(w ′, v) must also
be equal to (de)n# f n (L demands it). However, we observe
that w ′ = w ′

1#w ′
2 and |w ′

1#| ≤ N , and therefore, at least
2N +1 symbols of w ′

2 are folded down by v . Consequently,
the result h(w ′, v ′) has more than n symbols following #,
which contradicts h(w ′, v) = (de)n# f n . �
4. Conclusion

From Theorems 1 and 2, we conclude that F(REG,

REG) ⊂ LIN. It is also known that REG ⊂ F(REG, REG)

[6], which places F(REG, REG) as an intermediate class
between the regular and linear languages. Interestingly,
Theorem 2 also shows that F(REG, REG) is not closed un-
der union: the linear language L used in the proof is the
union of L((abc)∗, (udd)∗) and L((edf)∗, (uud)∗). Tackling
the questions of closure under intersection and comple-
ment would require dedicated tools and we leave it for
future work.

A previous work [10] introduced a weak pumping
lemma stating conditions for a language to belong to
F(REG, REG). However, the present result implies that
the class must also satisfy the pumping lemma for linear
languages [13,14], which has stronger conditions than the
previous lemma. The relation of the class with the linear
languages also implies that it has efficient recognition al-
gorithms of O(n2) time and O(n) space complexities [15],
which may be relevant for applications in natural comput-
ing.
3

It is also interesting to note that F-systems may be ex-
pressed in terms of families of permutations as defined
in [16]. Since the even-linear languages [17], generated
by linear grammars with rules S → uS ′v such that |u| =
|v|, may be obtained from permutations on regular lan-
guages [16, Example 9], then this class is contained within
F(REG, REG).

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

Acknowledgements

We are grateful to the anonymous reviewer who pointed
out the relation of F (REG, REG) with the class of even-
linear languages. Jorge C. Lucero was supported by a grant
from the Deans of Research and Innovation and of Gradu-
ate Studies of the University of Brasília.

Appendix A. Proof of Claim in Theorem 1

Proof. First, we show that any word s ∈ L(L(G A1
1)R,

L(G A2
2)R) is also in L(G(A1,A2)). If s ∈ L(L(G A1

1)R, L(G A2
2)R),

then there are words w ∈ L(G A1
1)R and v ∈ L(G A2

2)R such
that |s| = |w| = |v| and s = h(w, v), where h is the folding
function defined in Definition 1. Using induction on the
length of s:

1. If |s| = 0, then s = w = v = ε, and G1 and G2 have
rules A1 → ε and A2 → ε, respectively. Therefore, G
has the rule (A1, A2) → ε, and ε ∈ L(G(A1,A2)).

2. If |s| > 0, then let w = w ′a, v = v ′b, where a ∈ � and
b ∈ �. Since wR = aw ′R and vR = bv ′R , then G1 and
G2 have rules A1 → aB1 and A2 → bB2, respectively,
where w ′R ∈ L(G B1

1) and v ′R ∈ L(G B2
2). Therefore, G

has either the rule (A1, A2) → a(B1, B2), if b = u, or
the rule (A1, A2) → (B1, B2)a, if b = d.
Assume, by induction hypothesis, that h(w ′, v ′) ∈
L(G(B1,B2)). If b = u, then (A1, A2) generates ah(w ′,
v ′) = h(w ′a, v ′u) = h(w, v). If b = d, then (A1, A2)

generates h(w ′, v ′)a = h(w ′a, v ′d) = h(w, v). In either
case, s = h(w, v) ∈ L(G(A1,A2)).

Next, we show that any word s ∈ L(G(A1,A2)) is also in
L(L(G A1

1)R, L(G A2
2)R). Again, using induction on the length

of s:

1. If |s| = 0, then s = ε and G has a rule (A1, A2) → ε.
Therefore, G1 and G2 have rules A1 → ε and A2 → ε,
respectively, and h(ε, ε) = ε ∈ L(L(G A1

1)R, L(G A2
2)R).

2. If |s| > 0, then G has either a rule (A1, A2) →
a(B1, B2) or a rule (A1, A2) → (B1, B2)a, where a ∈
�. Consider the former case, and let s = as′ , where
s′ ∈ L(G(B1,B2)).
By induction hypothesis, assume that s′ ∈ L(L(G B1

1)R,

L(G B2)R). Then, there are words w ′ ∈ L(G B1)R and
2 1

J.C. Lucero and S. Staworko Information Processing Letters 179 (2023) 106283
v ′ ∈ L(G B2
2)R such that s′ = h(w ′, v ′). Also, rule

(A1, A2) → a(B1, B2) implies that G1 and G2 have
rules A1 → aB1 and A2 → uB2, respectively, and
then w ′a ∈ L(G A1

1)R and v ′u ∈ L(G A2
2)R . Thus, h(w ′a,

v ′u) = ah(w ′, v ′) = s ∈ L(L(G A1
1)R, L(G A2

2)R).
The case in which G has a rule (A1, A2) → (B1, B2)a
is treated similarly, with s = s′a. We obtain that G2

has a rule A2 → dB2, and then v ′d ∈ L(G A2
2)R . Thus,

h(w ′a, v ′d) = h(w ′, v ′)a = s ∈ L(L(G A1
1)R, L(G A2

2)R). �
Appendix B. Proof of Claim in Theorem 2

Proof. Suppose that there is a word w ∈ L1 such that
w = w1#w2 such that |w1| > N , take any v ∈ L2 such
that h(w, v) = u1#u2. Now let v = v1 v2 with |v1| = |w1|.
Since |v1| = |w1| > N , there are x1, x2, y1, y2, z1, z2 such
that w1 = x1 y1z1, v1 = x2 y2z2, |x1| = |x2|, |y1| = |y2| > 0,
|z1| = |z2|, and x1 yk

1z1#w2 ∈ L1 and x2 yk
2z2 v2 ∈ L2. It is

straightforward to see that fact if we view the grammars
that define L1 and L2 as finite automata, with number of
states N1 and N2, respectively. Assign to every position
in w1 and v1 the pair of states reached by the two au-
tomata when reading those words. Since |w1| = |v1| > N ,
then some pair of states appears at least twice, and the
positions in w1 and v1 where the same pair has appeared
delimit y1 and y2. The rest follows from the pumping
lemma for regular languages.

Next, let m = 2|w2| + 1 and take the corresponding
words w ′ = x1 ym

1 z1#w2 and v ′ = x2 ym
2 z2 v2. Note that

when folding w ′ under the control of v ′ , before # is
reached the prefix x1 ym

1 z1 is folded into a word u′ of
length greater than 2|w2| + 1. Regardless of how the re-
maining part of w ′ is folded, the end result will be a word
u1#u2 where one of u1 or u2 contains the factor u′ and
therefore is longer than 2|w2| + 1 while the other word is
no longer than |w2|. This however contradicts the obser-
vation that follows immediately from the definition of L:
every word of L has the form u1#u2 such that |u1| ≤ 2|u2|
and |u2| ≤ 2|u1|. �

References

[1] C.M. Dobson, Protein folding and misfolding, Nature 426 (6968)
(2003) 884–890, https://doi .org /10 .1038 /nature02261.

[2] L. Mahadevan, S. Rica, Self-organized origami, Science 307 (5716)
(2005) 1740, https://doi .org /10 .1126 /science .1105169.

[3] S. Felton, M. Tolley, E. Demaine, D. Rus, R. Wood, A method for
building self-folding machines, Science 345 (6197) (2014) 644–646,
https://doi .org /10 .1126 /science .1252610.

[4] R.J. Lang, The science of origami, Phys. World 20 (2) (2007) 30–31,
https://doi .org /10 .1088 /2058 -7058 /20 /2 /31.

[5] E.D. Demaine, J. O’Rourke, Geometric Folding Algorithms, Cambridge
University Press, Cambridge, United Kingdom, 2007.

[6] D. Sburlan, Computing by folding, Int. J. Comput. Commun. Control
6 (4) (2011) 739–748, https://doi .org /10 .15837 /ijccc .2011.4 .2106.

[7] L. Kari, G. Rozenberg, The many facets of natural computing, Com-
mun. ACM 51 (10) (2008) 72–83, https://doi .org /10 .1145 /1400181.
1400200.

[8] P.W.K. Rothemund, Folding DNA to create nanoscale shapes and pat-
terns, Nature 440 (7082) (2006) 297–302, https://doi .org /10 .1038 /
nature04586.

[9] G. Rozenberg, Gene assembly in ciliates: computing by folding and
recombination, in: A. Salomon, D. Wood, S. Yu (Eds.), A Half-Century
of Automata Theory, World Scientific, Singapore, 2001, pp. 93–130.

[10] J.C. Lucero, Pumping lemmas for classes of languages generated by
folding systems, Nat. Comput. 20 (2) (2021) 321–327, https://doi .org /
10 .1007 /s11047 -019 -09771 -5.

[11] M. Sipser, Introduction to the Theory of Computation, 3rd edition,
Cengage Learning, Boston, MA, 2013.

[12] A. Mateescu, A. Salomaa, Formal languages: an introduction and a
synopsis, in: R. G., A. Salomaa (Eds.), Handbook of Formal Languages,
Volume 1: Word, Language, Grammar, Springer, Berlin, Germany,
1997, pp. 1–39.

[13] J.-M. Autebert, J. Berstel, L. Boasson, Context-free languages and
pushdown automata, in: A. Rozenberg, A. Salomaa (Eds.), Handbook
of Formal Languages, Vol. 1, Word, Language, Grammar, Springer,
Berlin, Germany, 1997, pp. 111–174.

[14] G. Horváth, B. Nagy, Pumping lemmas for linear and nonlinear
context-free languages, Acta Univ. Sapientiae 2 (2) (2010) 194–209.

[15] M. Kutrib, A. Malcher, D. Wotschke, The Boolean closure of linear
context-free languages, Acta Inform. 45 (3) (2008) 177–191, https://
doi .org /10 .1007 /s00236 -007 -0068 -6.

[16] H. Fernau, J.M. Sempere, Permutations and control sets for learn-
ing non-regular language families, in: A.L. Oliveira (Ed.), Grammatical
Inference: Algorithms and Applications, Springer, Berlin, Germany,
2000, pp. 75–88.

[17] V. Amar, G. Putzolu, On a family of linear grammars, Inf. Control 7 (3)
(1964) 283–291.
4

https://doi.org/10.1038/nature02261
https://doi.org/10.1126/science.1105169
https://doi.org/10.1126/science.1252610
https://doi.org/10.1088/2058-7058/20/2/31
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibAF53416C1EDBC10243C35DEE57DA7C34s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibAF53416C1EDBC10243C35DEE57DA7C34s1
https://doi.org/10.15837/ijccc.2011.4.2106
https://doi.org/10.1145/1400181.1400200
https://doi.org/10.1145/1400181.1400200
https://doi.org/10.1038/nature04586
https://doi.org/10.1038/nature04586
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibFCBADE7464CA69F550E7C9287F8D2B24s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibFCBADE7464CA69F550E7C9287F8D2B24s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibFCBADE7464CA69F550E7C9287F8D2B24s1
https://doi.org/10.1007/s11047-019-09771-5
https://doi.org/10.1007/s11047-019-09771-5
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibAB39830E5B70237CAA9FA6C7459C3369s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibAB39830E5B70237CAA9FA6C7459C3369s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib9CD929CB836A1802E2D22C459B915891s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib9CD929CB836A1802E2D22C459B915891s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib9CD929CB836A1802E2D22C459B915891s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib9CD929CB836A1802E2D22C459B915891s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib2C63C48DF394B617E05A9795D59ECF17s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib2C63C48DF394B617E05A9795D59ECF17s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib2C63C48DF394B617E05A9795D59ECF17s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib2C63C48DF394B617E05A9795D59ECF17s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib3356744CF6765B82DCCE6E3619438176s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib3356744CF6765B82DCCE6E3619438176s1
https://doi.org/10.1007/s00236-007-0068-6
https://doi.org/10.1007/s00236-007-0068-6
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib586EEC6ED80163380F18F382A707AC23s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib586EEC6ED80163380F18F382A707AC23s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib586EEC6ED80163380F18F382A707AC23s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bib586EEC6ED80163380F18F382A707AC23s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibE1C9E35E39DD51DCB1A034D425A074B2s1
http://refhub.elsevier.com/S0020-0190(22)00040-0/bibE1C9E35E39DD51DCB1A034D425A074B2s1

	A note on the class of languages generated by F-systemsover regular languages
	1 Introduction
	2 Definitions
	3 Folding over regular languages
	4 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Proof of Claim in Theorem 1
	Appendix B Proof of Claim in Theorem 2
	References

