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Abstract. We study the problem of learning sequential top-down tree-to-
word transducers (stws). First, we present a Myhill-Nerode characteriza-
tion of the corresponding class of sequential tree-to-word transformations
(ST W). Next, we investigate what learning of stws means, identify fun-
damental obstacles, and propose a learning model with abstain. Finally,
we present a polynomial learning algorithm.

1 Introduction

The main motivation of this paper is to study learnability of a class of tree-to-
word transformations. Tree-to-word transformations are ubiquitous in computer
science. They are the core of many computation paradigms from the evaluation
of abstract syntactic trees to modern programming languages xslt. For these
reason, they are better suited to model general xml transformations as opposed
to tree-to-tree transducers [7, 13, 14].

Following the work of [12], we study the class of deterministic sequential
top-down tree-to-word transducers (stws). stws are finite state machines that
traverse the input tree in top-down fashion and at every node produce words
obtained by the concatenation of constant words and the results from processing
the child nodes. stws capture a large subclass of deterministic nested-word to
word transducers (dn2w), which have recently been the object of an enlivened
interest [8, 18, 19]. stws take as an input a tree in a regular tree language and
output words from a context-free grammar.

Despite of some limitations mainly due to the fact they are deterministic
and top-down5, stws remain however very powerful. They are capable of: con-
catenation in the output, producing arbitrary context-free languages, deleting
inner nodes, and verifying that the input tree belongs to the domain even when
deleting parts of it. These features are often missing in tree-to-tree transducers,
and for instance, make stws incomparable with the class of top-down tree-to-
tree transducers [7, 13]. The class of stws has several interesting properties, in
particular a normal form has been proposed in [12].

5 non-determinism quickly leads to fundamental limitations. For instance, equivalence
of non-deterministic string transducers is known to be undecidable [11]
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An open question raised in [12] was the existence of a Myhill-Nerode Theorem
for stws. We solve this question and this result is the first main contribution of
this paper. Myhill-Nerode Theorem provides canonical representation of languages
– here, transformations – based on residuals. The Myhill-Nerode Theorem also
opens a way towards grammatical inference for tree-to-word transformation.
Indeed, as pointed by many authors, machine learning of formal languages is
essentially a matter of estimation of equivalence classes of the target language.
The second contribution is then a learning algorithm for the class of stw.

This learnability result is to be placed in a tradition of learning results for
other class of grammars, starting from Gold results [10] for regular languages of
words. This result has served as a basis for a host of learning algorithms including
inference of regular languages of word and trees [15, 16] (see also [6] for a survey
of the area), learning of DTDs and XML Schema [2, 1], XML transformations [13],
and XML queries [3, 20].

The Myhill-Nerode Theorem proof starts from the identification of the class
of earliest stws (estws) given in [12]. The main difficulty is to be able to charac-
terize residual languages of a stw transformation and then define a canonical
representative for estws. This proof relies on an original algorithm capable to
decompose a residual transformation into a form close to a rule of estw. In order
to obtain a learning algorithm (a la RPNI [16, 15]) an important step is to decide
the consistency of a transducer with a finite transformation. Unfortunately, we
prove that this consistency check is NP-complete. Nevertheless, we present a
learning result in a slightly modified framework where the learning algorithm
can abstain from answering. We prove that we can define a characteristic sample
whose cardinality is within a polynomial bound of the size of the canonical
transducer of the transformation to infer. Using this last result, we present here
the first polynomial time learning algorithm for the class of stw.

2 Sequential top-down tree-to-word transducers

Words and Trees For a finite set ∆ of symbols, we denote by ∆∗ the free
monoid on ∆ , i.e. the set of finite words over ∆ with the concatenation operator
· and the empty word ε. For a word u, |u| is its length. For u = up · uf · us, up is
a prefix of u, uf a factor of u, and us a suffix of u. The longest common prefix
of a set of words L, denoted lcp(L), is the longest word u that is a prefix of every
word in L. Also, lcs(L) is the longest common suffix of L. For w = u · v, the left
quotient of w by u is u−1 · w = v and the right quotient of w by v is w · v−1 = u.

A ranked alphabet is a finite set of ranked symbols Σ =
⋃
k≥0Σ

(k), where
Σ(k) is the set of k-ary symbols. We sometimes write f (k) to indicate explicitly
that f ∈ Σ(k). A tree is a ranked ordered term over Σ. By TΣ we denote the
set of all trees over Σ. A tree language is a subset of TΣ . A context C is a tree
over Σ ∪ {x(0)} with only one leaf labeled x representing a hole. By C[t] we
denote the tree obtained by replacing x by the tree t. A path is a word over⋃
k>0Σ

(k) × {1, . . . , k}, which identifies a node in a tree by the labels of its
ancestors: ε is the root node and if a node at path p is labeled with f , then
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p · (f, i) is the i-th child of the node. By paths(t) we denote the set of paths of
a tree t. Similarly, for a set of trees T , paths(T ) =

⋃
t∈T paths(t). Words, trees,

paths and contexts have canonical well-founded orders that are consistent with
the size of object and can be tested efficiently. Using these orders, functions
minPath , minTree and minCtx allow to obtain the minimal element of a set of
resp. paths, trees or contexts.

Transducers A deterministic sequential top-down tree-to-word transducer (stw)
is a tuple M = (Σ,∆,Q, init , δ), where Σ is a ranked alphabet of input trees, ∆
is a finite alphabet of output words, Q is a finite set of states, init ∈ ∆∗ ·Q ·∆∗
is the initial rule, and δ is a partial transition function from Q×Σ to (∆ ∪Q)∗

such that if δ(q, f (k)) is defined, then it has k occurrences of elements from Q.
In the sequel, we call the state of the initial rule the initial state. We denote
stws the class of deterministic sequential top-down tree-to-word transducers and
ST W the class of transformations represented by an stw.

We often view δ as a set of transition rules , i.e. a subset of Q×Σ× (∆∪Q)∗,
which allows us to quantify over δ. Also, the transition function is extended
to paths over Σ as follows: δ(q, ε) = q and δ(q, (f, i) · p) = δ(qi, p), where
δ(q, f) = u0 · q1 · u1 · . . . · qk · uk. The size of the stw M is the number of its
states and the length of its rules, including the length of words used in the rules.
The semantic of the stw M is the transformation [[M ]] defined with the help of
auxiliary transformations (for q ∈ Q) in a mutual recursion:

[[M ]]q(f(t1, . . . , tk)) =


u0 · [[M ]]q1(t1) · u1 · . . . · ·[[M ]]qk(tk) · uk,

if δ(q, f) = u0 · q1 · u1 . . . · qk · uk,

undefined, if δ(q, f) is undefined.

Now, [[M ]](t) = u0 · [[M ]]q0(t) · u1, where init = u0 · q0 · u1. Two transducers are
equivalent iff they define the same transformation. Also, for a transformation τ ,
dom(τ) is the domain of τ and ran(τ) is its range.

We also use deterministic top-down tree automata (dta) that define path-
closed tree languages. Recall that a tree language L ⊆ TΣ is path-closed if
L = {t ∈ TΣ | paths(t) ⊆ paths(L)}. We refer the reader to [5] for a precise
definition and point out that a dta is essentially an stw with empty output
alphabet thus defining a constant transformation mapping every element of its
domain to the empty word.

Earliest Transducers The construction of the canonical transducer, the core
of the Myhill-Nerode characterisation of ST W, is inspired by the normal form
for stws. The usual choice to define normal forms of transducers is to produce
the output as early as possible. This idea initially comes from normalisation of
word-to-word transducers, as in [4], and is also employed in [13, 9] for tree-to-tree
transducers. In [12], we have proposed the following normal form for stws. An
stw M = (Σ,∆,Q, init , δ) is earliest (estw) iff:

(E1) lcp(ran([[M ]]q)) = ε and lcs(ran([[M ]]q)) = ε for every state q,
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(E2) for init = u0 · q0 ·u1, lcp(ran([[M ]]q0) ·u1) = ε and for δ(q, f) = u0 · q1 · . . . ·
qk · uk, then ∀1 ≤ i ≤ k, lcp(ran([[M ]]qi) · ui · . . . · ran([[M ]]qk) · uk) = ε. �

Essentially, (E1) ensures that the output is produced as up as possible during
the parsing while (E2) ensures output is produced as left as possible. We also
observe that in an estw, transformations [[M ]]q associated with states have the
property that the lcp an lcs of their output is empty. It is know that for every
stw there exists a unique minimal equivalent estw [12].

Example 1. Consider the transformation τ1 that takes as an input a tree t over
the signature Σ = {f (2), a(0), b(0)} and output a word on ∆ = {#} that counts
the number of symbols in t (i.e. τ1(f(f(a, b), a)) = #####). This can be done
by transducer M1 = (Σ,∆,Q1 = {q}, init1 = q, δ1) with δ1(q, a) = δ1(q, b) = #
and δ1(q, f) = q ·# · q. However M1 is not earliest: the output always starts with
an # which can be produced earlier ((E1) is not satisfied), and the symbol # in
the rule δ1(q, f) could be produced before the states ((E2) is not satisfied).

Consider M ′1 = (Σ,∆,Q′1 = {q}, init ′1 = # · q, δ′1) with δ′1(q, a) = δ′1(q, b) = ε
and δ′1(q, f) = ## · q · q. This transducer also represent τ1 but is earliest.

3 A Myhill-Nerode Theorem for ST W

In this section we present the construction of a canonical estw Can(τ) that
captures an arbitrary ST W transformation τ . Because stws process the input
tree in a top-down fashion, we shall decompose τ into several transformations
that capture the transformation performed by τ on the children of the input tree.
The decomposition is then used to recursively define the notion of residual p−1τ
of τ w.r.t. a path p, essentially the transformation performed by τ at the node
reached with p of its input tree. Residuals are used to define in the standard way
the Myhill-Nerode equivalence relation and the canonical transducer Can(τ).

Decomposition We fix a transformation τ and let Left(τ) = lcp(ran(τ)) and
Right(τ) = lcs(Left(τ)−1ran(τ)). τ is reduced if Left(τ) = Right(τ) = ε. The
core of τ is defined as Core(τ) = {(t,Left(τ)−1 · w · Right−1(τ)) | (t, w) ∈ τ}.
While not every transformation is reduced, its core is and it preserves the essence
of the original transformation .

A decomposition of a reduced τ for f ∈ Σ is a sequence u0τ1u1 . . . uk−1τkuk,
where u0, . . . , uk are words and τ1, . . . , τk transformations, that satisfy the fol-
lowing natural conditions:

(D1) dom(τi) = {ti | f(t1, . . . , tk) ∈ dom(τ)},
(D2) ∀t = f(t1, . . . , tk) ∈ dom(τ), τ(t) = u0τ1(t1)...τk(tk)uk,

and to ensure the uniqueness of decomposition we impose two additional condi-
tions that are obtained by reformulation of (E1) and (E2):

(C1) τi is reduced, and
(C2) lcp(ran(τi) · ui · . . . · ran(τk) · uk) = ε.
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We point out that not every transformation can be decomposed.

Example 2. Take τswap = {(f(a, a), aa), (f(a, b), ba), (f(b, a), ab), (f(b, b), bb)}
that outputs leaves in reverse order. This transformation can not be performed
by an stw and there is no decomposition for it.

Residuals The residual of a transformation τ at a path p is defined recur-
sively: ε−1τ = Core(τ) and (p · (f, i))−1τ = τi if u0 · τ1 . . . τn · un is the unique
decomposition of p−1τ for f .

Example 3. Consider the transformation τ1 of example 1. Core(τ1) = τ ′1 where
τ ′1 gives the number of symbol in t minus one. Then ε−1τ1 = τ ′1. Also, The decom-
position of τ ′1 for f is ## · ((f, 1)−1τ1) · ((f, 2)−1τ1). Observe that (f, 1)−1τ1 =
(f, 2)−1τ1 = τ ′1 , so this decomposition is in fact ## · τ ′1 · τ ′1. Also, lcp(τ ′1) =
lcs(τ ′1) = ε. This decomposition is consistent with the rules of M2.

Example 4. Consider the transformation τ2 that takes as an input a tree t =
f(t1, t2) over Σ = {f (2), a(0), b(0)} and output a word over ∆ = {#} such that
the number of # is equal to the number of f and a symbols of t1 plus the number
of f and b symbols of t2, e.g. τ2(f(f(a, b), b))) = #3 (2 # for f(a, b) and one
for b). As τ2 is reduced, ε−1τ2 = Core(τ2) = τ2. The decomposition of τ for f
is τ3 · τ4 with τ3(a) = #, τ3(b) = ε. The decomposition of τ3 at f is # · τ3 · τ3.
Similarly, τ4(a) = ε, τ4(b) = #, and its decomposition at f is # · τ4 · τ4.

Naturally, not every transformation has well-defined residuals. However any
ST W transformation has them and there is a strict correspondence between the
residuals and the states of an estw defining the transformation.

Lemma 5. Let M be an estw with initial state q0. For any p ∈ paths(dom([[M ]]))
we have p−1[[M ]] = [[M ]]δ(q0,p).

This result suggest, and we proved it later on, that the existence of residuals of a
transformation for any path of its domain is an important necessary condition
for being ST W. Consequently, we say that τ is sequential top-down if and only
if p−1τ exists for every p ∈ paths(dom(τ)).

Canonical transducer Having defined residuals the construction of the canon-
ical transducer Can(τ) for a transformation τ is standard. The Myhill-Nerode
equivalence relation ≡τ on paths of τ is defined in the standard manner: p1 ≡τ p2
iff p−11 τ = p−12 τ for p1, p2 ∈ paths(dom(τ)). The Myhill-Nerode equivalence class
of a path p w.r.t. τ is [p]τ = {p′ ∈ paths(dom(τ)) | p ≡τ p′}. We say that τ has
finite Myhill-Nerode index if ≡τ has a finite number of equivalence classes.

The canonical transducer Can(τ) = (Σ,∆,Q, init , δ) of a sequential top-down
transformation τ of finite Myhill-Nerode index follows: 1) the set of states is
Q = {[p]τ | p ∈ paths(dom(τ))}; 2) the initial rule is init = Left(τ) · [ε]τ ·Right(τ);
3) for every state [p] ∈ Q and every f ∈ Σ such that p−1τ has a decomposition
u0 · τ1 · u1 . . . τk · uk for f , the canonical transducer Can(τ) has the transition
rule δ([p], f) = u0 · [p · (f, 1)]τ · u1 · . . . · uk−1 · [p · (f, k)]τ · uk.
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Theorem 6. For any transformation τ the following conditions are equivalent:
1) τ is definable by an stw; 2) τ is sequential top-down and has a finite Myhill-
Nerode index; 3) Can(τ) is the unique minimal estw defining τ .

Direction (1) to (2) requires normalizing the stw into an estw and using
Lemma 5. Point (3) is obtained from (2) by establishing that the minimal estw
is in fact Can(τ) (modulo state renaming). Direction (3) to (1) is trivial.

Example 7. The canonical transducer of τ2 (as in example 4) is Can(τ2) = M2

defined as follow: M2 = (Σ,∆,Q = {q1, q2, q3}, init = q1, δ) with δ(q1, f) =
# · q2 · q3, δ(q2, f) = # · q2 · q2, δ(q2, a) = #, δ(q2, b) = ε, δ(q3, f) = # · q3 · q3,
δ(q3, a) = ε and δ(q3, b) = #. This is consistent with decompositions observed in
example 4 if one identifies q1 with ε, q2 with (f, 1) and q3 with (f, 2).

4 Learning STWs

In this section we present a learning algorithm for ST W transformations.

4.1 Learning framework

First, we investigate the question of the meaning of what learning a transformation
means and pursue an answer that is inspired by the Gold learning model in
polynomial time and data [10]. Essentially, we are interested in a polynomial
time algorithm that takes a finite sample S ⊆ TΣ ×∆∗ and constructs an stw
M transducer consistent with S i.e., S ⊆ [[M ]]. Unfortunately, unless P = NP,
the following result precludes the existence of such an algorithm.

Theorem 8. Checking if there exists an stw consistent with a given sample is
NP-complete.

To overcome this difficulty, we shall allow the algorithm to abstain i.e., return a
special Null for cases when an stw consistent with the input sample cannot be
easily constructed. Naturally, this opens the door to a host of trivial algorithms
that return Null for all but a finite number of hard-coded inputs. To remove such
trivial algorithms from consideration we shall essentially require that the learning
algorithm of interest can infer any ST W τ from sufficiently informative samples,
called characteristic sample of τ : the learning algorithm should be able to output
an estw defining τ . Furthermore, we require the characteristic sample to use
a number of examples bounded by a polynomial of the number of equivalence
classes of ≡τ .

Another obstacle comes from the fact that dtas are not learnable from positive
examples alone and learning dta from a set of positive examples can be easily
reduced to learning stw. To remove this obstacle, we assume that a dta D
capturing the domain of the goal transformation is given on the input. Note that
this domain automaton could also be obtained by learning method, such as the
RPNI algorithm for trees [15].
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If a class of transformation satisfies all the above properties, we say that it is
learnable with abstain from polynomial time and data. In the following, we aim
to obtain the following result.

Theorem 9. ST W transformations represented by estw are learnable with
abstain from polynomial time and data.

4.2 Learning Algorithm

We now present the learning algorithm for ST W. This algorithm essentially
attempts to emulate the construction of the canonical transducer, using a finite
sample of the transformation.

The Core Algorithm The main procedure of the learning algorithm follows
closely the construction of the canonical transducer. It takes as an input a sample
S of a target transformation τ , as well as a dta D that represents dom(τ).

Algorithm 1 learnerD(S)

1: P := paths(dom(S)) ; Q := ∅
2: state := new hashtable〈Path,Path〉()
3: while P 6= ∅ do
4: p := minPath(P )
5: P ′ := {p′ ∈ Q | p 'S,D p′}
6: if P ′ 6= ∅ then (*p can be merged*)
7: P := P \ {p′ ∈ P | p is prefix of p′}
8: state[p] := minPath(P ′)
9: else

10: P := P \ {p} ; Q := Q ∪ {p}
11: state[p] := p
12: init := Left(S) · state[ε] · Right(S)
13: for p ∈ Q do
14: for f ∈ Σ s.t. ∃i with p.(f, i) ∈ paths(dom(S)) do
15: for i ∈ 1, ...k, Let pi = state[p.(f, i)]
16: (u0, , u1, . . . , uk) := decomp(residual(S, p), f)
17: δ(p, f) := u0 · p1 · u1 · . . . · pk · uk

18: M := (Σ,∆,Q, init , δ)
19: if S ⊆ [[M ]] and dom([[M ]]) ⊆ [[D]] then return M else return Null

The algorithm consists of 2 parts. First, in lines 3 to 11, it attempts to identify
the set of states of the canonical transducer. For this, it builds a function state
that associates with every path the minimal path in its equivalence class that
represents the corresponding residual. This is based on the predicate 'S,D which
is an emulation of the Myhill-Nerode equivalence relation ≡τ on an finite sample of
τ . Note that if 'S,D behaves exactly as ≡τ , and assuming paths(dom(S)) contains
all smallest paths representative of each residual, this procedure produces exactly
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the set Q of states of Can(τ). The exact implementation of the predicate 'S,D
is explained later.

Second part, line 12, builds the other elements of the transducer. This uses the
procedure decomp to compute decomposition of samples in a manner emulating
decomposition of transformations and is explained in detail later.

We point out the algorithm may fail to produce an estw consistent with S.
Therefore, in line 19 the consistence of the constructed estw is verified and the
algorithm abstains from answer if the test fails. The following lemma is therefore
trivial.

Lemma 10. For a sample S and a dta D, learnerD(S) produces an estw M
in time polynomial in the size of S or abstains from answer.

This results assumes the existence of polynomial procedures for 'S,D, decomp
and residual, which we present next.

Decomposition The above learning algorithm relies on the ability to decompose
a sample. This is done by the following procedure. It takes as an input a sample
S which is supposed to be representative of a transformation τ , and a symbol
f (k) such that there are f rooted trees in S. From this, it outputs a sequence
u0 · S1 · u1 . . . Sk · uk which ideally is the proper decomposition of S w.r.t. to τ .

Algorithm 2 decomp(S, f (k))

1: Let Sf = {(t, w) ∈ S | t is of the form f(t1, . . . tk)}
2: Let s = f(s1, . . . , sk) be the tree minTree(dom(Sf )) and ws := S(s)
3: for i := 1, . . . , k do Di := {ti | f(s1, . . . , si−1, ti, si+1, . . . , sk) ∈ dom(Sf )}
4: u0 := lcp({w | (t, w) ∈ Sf})
5: prefix0 = u0

6: for i := 1, . . . , k do
7: prefix i := lcp{w | ∃ti+1, . . . , tk. (f(s1, . . . , si, ti+1, . . . , tk), w) ∈ Sf}
8: suffix i := prefix−1

i · ws

9: S′i := ∅
10: for t ∈ Di do
11: w := prefix−1

i−1 · S(f(s1, . . . , si−1, t, si+1, . . . , sk)) · suffix−1
i

12: S′i := S′i ∪ {(t, w)}
13: ui := lcs(ran(S′i))
14: Si := {(t, w · u−1

i ) | (t, w) ∈ S′i}
15: return (u0, S1, u1 . . . , Sk, uk)

From the minimal tree s = f(s1, . . . , sk) of dom(S) rooted by f , the algorithm
essentially tries to decompose ws = S(s) into u0S1(s1) . . . Sk(sk)uk, as defined by
the formal definition of decomp(S, f). Note this is defined only if there are some f
rooted trees in dom(S). The word u0 is simply Left(Sf ). Then, for each i, prefix i
is built such that it is equal to u0S1(s1) . . . Si(si)ui and so suffix i = prefix−1i ws =
Si+1(si+1) . . . uk. From this, residual transformations Si and words ui can be
built simultaneously. For any tree ti ∈ (f, i)−1dom(S), we consider the tree
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t = f(s1, . . . , si−1, ti, si+1, . . . , sk)) (which belongs to dom(S) if is path-closed or
well constructed) and compute S′i(ti) = Si(ti) · ui = prefix−1i−1S(t)suffix−1i . The

word ui is obtained as lcs(ran(S′i)), which allow to obtain Si(ti) = S′i(ti) · u
−1
i .

If the sample is rich enough (a notion that will be made precise in the next
section), the lcp and lcs of the different elements are computed correctly and the
algorithm outputs exactly what it supposed to. If the sample is not rich enough, it
may possibly produce a decomposition which is not necessarily sound: there may
be a tree t = f(t1, . . . , tk) such that which S(t) 6= u0 · S1(t1) · u1 . . . Sk(tk) · uk.
However, in any case, the algorithm answers in time polynomial in the size of S.

Residuals and Equivalence From the decomposition procedure, it is possible
to build the residual of a sample for a path p. residual(S, p) is computed in
a manner analogous to p−1τ : for p = ε, residual(S, p) = reduce(S), and for
p = p′ · (f, i), we compute S′ = residual(S, p) and residual(S, p) = Si, where
decomp(S′, f) = u1 · · ·S1 . . . Sk ·uk. Note that again, residual(S, p) is a polynomial
time procedure.

From this, we can define the relation 'S,D which tries to emulate ≡τ . Recall
that p1 ≡τ p2 iff p−11 τ = p−12 τ and note that two transformations are identical
if they have the same domain and agree on every tree. Because the residuals
p−11 τ and p−12 τ are represented with finite samples S1 = residual(S, p1) and
S2 = residual(S, p2) and their domains need not be necessarily equal, the predicate
p1 'S,D p2 uses the dta D to verify that the domains of the residuals p−11 τ and
p−12 τ are equal and then checks that for every tree in common both samples S1

and S2 produce the same results.
Again, all those procedures are polynomial. Note however that they behave

correctly (i.e. p 'S,D p′ ⇔ p ≡τ p′ for instance) only if the sample is rich enough.
What it means exactly is defined in the next section.

4.3 A Characteristic Sample

In the following, we identify a characteristic sample for stw transformation τ :
CharSet(τ) is a finite set of examples such that whenever learner is provided a
superset of CharSet(τ) as input, it outputs can(τ).

The Characteristic Sample We first introduce some notations and definitions.
For p ∈ paths(dom(τ)) let cp be the minimal context with x at path p. The finite
set of all minimal representatives of equivalence classes of ≡τ is StatePath(τ) =
{minPath([p]τ ) | p ∈ paths(dom(τ))}. We also define EdgePath(τ), which adds to
the shortest paths their extensions with one additional step i.e., EdgePath(τ) =
StatePath(τ) ∪ {p · (f, i) ∈ paths(dom(τ)) | p ∈ StatePath(τ)}.

Example 11. τ2 has 3 distincts residuals: ε−1τ2, (f, 1)−1τ2 and (f, 2)−1τ . There-
fore, StatePath(τ2) = {ε, (f, 1), (f, 2)} and EdgePath(τ2) = StatePath(τ2)∪
{(f, 1)(f, 1), (f, 1)(f, 2), (f, 2)(f, 1), (f, 2)(f, 2)}.

Let us consider a path p ∈ EdgePath(τ), and a set of trees T ⊆ TΣ . Then, T
is structurally representative for τ with respect to p if
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(S0) the tree minTree(dom(p−1τ)) belongs to T ;

(S1) lcp((p−1τ)(T )) = ε and lcs((p−1τ)(T )) = ε;

(S2) lcp(ran(p−1τ) \ {ε}) = lcp((p−1τ)(T ) \ {ε}).

Additionally, we say that T is discriminant for τ with respect to p if

(DI) for any p0 ∈ StatePath(τ), if Tp,p0 = {t ∈ dom(p−1τ) ∩ dom(p−10 τ) |
p−1τ(t) 6= p−10 τ(t)} is nonempty, then minTree(Tp,p0) belongs to T .

For a path p, conditions (S0), (S1) and (S2) ensure that T contains all
elements needed to correctly decompose the residual transformation p−1τ . Con-
dition (DI) ensures that T contains witnesses necessary to distinguish different
equivalence classes.

Example 12. Consider transformation τ2 and take for instance p = (f, 1). The
tree Tp,ε is the smallest tree whose image differs in p−1τ2 and ε−1τ2. In fact,
Tp,ε = f(a, a) as p−1τ2(f(a, a)) = #2 and ε−1τ2(f(a, a)) = #3. For other
p′ ∈ {(f, 2), (f, 2)(f, 1), (f, 2)(f, 2)}, Tp,p′ = a.

To satisfy condition (S1) and (S2), one can take {a, b, f(a, a)} ∈ Tp. This
allows to satisfy (S1) as lcp({(p−1τ2)(a), (p−1τ2)(b), (p−1τ2)(f(a, a))}) = lcp({#,
ε, #3}) = ε and the same for lcs . For (S2), we have lcp({(p−1τ2)(a), (p−1τ2)(b),
(p−1τ2)(f(a, a))} \ {ε}) = lcp({#, ε,#3} \ {ε}) = # which is indeed equal to
lcp(ran(p−1τ) \ {ε}).

Let τ be a transformation in ST W and let p be a path in EdgePath(τ). A
sample S is characteristic for τ at path p if (i) S ⊆ p−1τ and ; (ii) for all paths
p0 such that p ·p0 ∈ EdgePath(τ), the set of trees c−1p0 dom(S) is discriminant and
structurally representative for τ with respect to p · p0. A sample is characteristic
for τ if it is characteristic for τ at path ε.

An important property is that it is possible to build a characteristic sample
whose cardinality is with a polynomial bound on the number of distinct residuals
of τ . Indeed, to have property (DI), one need a quadratic number of trees
while conditions (S0), (S1), and (S2) all require a linear number of trees. We
denote by CharSet(τ, p) the minimal characteristic sample for τ at path p and
by CharSet(τ) the set CharSet(τ, ε). This yields the following lemma.

Lemma 13. For any estw M there exists a characteristic sample CharSet([[M ]])
of cardinality polynomial in the size of M .

We also point out that any sample S consistent with [[M ]] that contains
CharSet([[M ]]) is also characteristic for [[M ]].

Example 14. From previous example, one can build a characteristic sample for
τ . In particular, the minimal context for (f, 1) is f(x, a). In example 12, it is
argued that trees {a, b, f(a, a)} are in Tp, which means that CharSet(τ) contains
(f(a, a),#3), (f(b, a),#2) (f(f(a, a), a),#5). A similar approach has to be also
considered for all other elements of EdgePath(τ) to obtain the full CharSet(τ).
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Decomposition of Characteristic Samples It remains to see that from the
characteristic sample of a transduction, the procedures used by the learning
algorithm behave as expected. We begin with the decomposition. The first lemma
shows that the factors of a decomposition are identified whenever a superset of
the characteristic sample is provided to the decomposition procedure.

Lemma 15. Let τ ∈ ST W and p ∈ StatePath(τ). Let S be a characteristic
set for τ at path p, For any f ∈ Σ(k) such that the decomposition of p−1τ at
f is u0 · τ1 . . . τk · uk, then decomp(S, f) = u0 · S1 . . . Sk · uk where each Si is
characteristic for τ at path p · (f, i)

This decomposition lemma relies on the idea that the properties required
by the formal definition can be observed locally on a characteristic sample: for
instance property (D1) and (D2) simply comes from consistency of the sample
(S ⊆ τ), while (C1) is observable on S thanks to property (S1). However, (C2)
does not translate directly into a property that a characteristic sample should
fulfill. This is of course the role played by property (S2).

The link between (S2) and (C2) is actually an indirect consequence of
following property: let W and W ′ be two sets of words in ∆∗, if lcp(W \ {ε}) =
lcp(W ′ \{ε}), and lcp(W ) = lcp(W ′), then lcp({w ·u | w ∈W}) = ε for a u ∈ ∆∗
implies that lcp({w′ · u | w′ ∈W ′}) = ε.

Now, consider a transformation τ ∈ ST W, a path p ∈ StatePath(τ) and
a sample S characteristic for τ in a path p. If we consider decomp(p−1τ, f) =
u0τ1 . . . τkuk, then for any i ∈ {1, . . . , k} we have lcp{τi(ti) · ui · . . . · τk(tk) · uk |
ti ∈ (f, i)−1dom(S), . . . , tk ∈ (f, k)−1dom(S)} = ε.. This is a direct consequence
of above property and the fact that S satisfy (S1) and (S2), and allows us to
prove Lemma 15.

As the construction of residuals residual(S, p) relies on the decomposition,
Lemma 15 has the important consequence that those residuals can be computed
properly for any p ∈ EdgePath(τ). This gives the following two results. First, if S
is characteristic for τ , and p ∈ EdgePath(τ), then residual(S, p) is characteristic for
τ w.r.t. p. Second, as a consequence and because of (DI), if p, p′ ∈ EdgePath(τ)
then p 'S,D p′ ⇔ p ≡τ p′. Ultimately, this indicates that from a sample S
characteristic for τ , the learning algorithm builds Can(τ):

Lemma 16. Let τ ∈ ST W and D a dta with [[D]] = dom(τ). From any sample
S characteristic with τ , learnerD(S) = Can(τ).

This, along with Lemmas 10 and 13 proves Theorem 9.

5 Conclusion

We presented the first polynomial time learning algorithm for tree to string
transformation. This algorithm present the particularity to abstain answering at
some point. This is due to the fact that the consistency problem is NP-complete
for stw, and so, it is simply not possible to provide a transducer consistant with
some input sample.
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Also note that the language of strings outputed by an stw are context free
languages. Therefore, inference of stw is linked to inference of Context Free
Grammars (CFG) and can be seen as the inference of a CFG using words and
their derivative trees as input. This work may therefore bring some highlight to
the problem of Context Free Grammar inference.
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