
Complexity of RDF Validation with Shape Expression Schemas

S lawek Staworko1,2,3

(joint work with Iovka Boneva1,2, Jose E. Labra Gayo4, Samuel Hym2, Eric G.
Prud’hommeaux5, and Harold Solbrig6)

1LINKS, INRIA & CNRS, Lille, France

2CRIStAL, University of Lille & CNRS, France

3University of Edinburgh, UK

4University of Oviedo, Spain

5W3C, Stata Center, MIT

6Mayo Clinic College of Medicine, Rochester, MN, USA

Oxford University

May 14, 2015

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 1 / 22

Background: RDF Graphs

RDF Graph = set of triples 〈subject predicate object〉

bug1 bug2

”04/12/2012” ”Kaboom!”
”02/11/2013” ”Bham!”

user1

”Mr. Smith”
”06/12/2012”

emp1

”Mrs. Smith” ”eva@h.org”

related

related

reportedOn descr reportedOn
descr

reportedBy reportedBy

name
name email

reproducedBy

r
e
p
r
o
d
u
c
e
d
O
n

Originally, introduced as schema-less data format.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 2 / 22

Overview

1. Existing schema formalisms

2. Shape expression schemas and their two semantics

3. Intractability of single-type semantics

4. Complexity of multi-type semantics

5. Determinism, single-occurrence, . . .

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 3 / 22

Existing schema formalisms for RDF
RDF Schema (RDFS) [W3C]:

I lightweight ontology language (types and type inclusion relations)
I range and domain constraints for properties (predicate types)
I virtually no power to constrain the structure of the graph

bug1

bug2

user1

user2

related

reportedBy

reportedBy

rdfs:Classrdf:Property

BugReport User

reportedByrelated

rdf:typerdf:type rdf:type

rdf:type

rd
fs:

su
bCl

rdfs:subC
l

rdfs:subPrrdfs:
su

bPr

rdfs:domain rdfs:range

rdfs:domain

rdfs:range

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 4 / 22

Existing schema formalisms for RDF (cont..)

OWL + CWA + UNA [Sirin, RR’10]

I Potentially confusing nonstandard semantics

I Potentially high complexity of validation

SPARQL (SPIN) [Bolleman et al., SWAT4LS’12]

I Very powerful and expressive

I High complexity

Resource Shapes [IBM, Ryman et al., LDOW’13]

I Extends RDFS with simple cardinality constraints on the outbound neighborhood of
a node

What does exactly RDF validation entail:

Verification : the typing is given (with rdfs:type) and its correctness is to be verified;
this variant is adopted by all existing formalisms.

Model checking : not typing is given and the goal is to construct a valid typing;
this is more general problem that we address in this work

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 5 / 22

Shape expressions schemas for RDF

bug1 bug2

”04/12/2012” ”Kaboom!”
”02/11/2013” ”Bham!”

user1

”Mr. Smith”

”06/12/2012”

emp1

”Mrs. Smith” ”eva@h.org”

related

related

reportedOn descr reportedOn
descr

reportedBy
reportedBy

name
name email

reproducedBy
r
e
p
r
o
d
u
c
e
d
O
n

<BugReport> {
descr xsd:string,
reportedBy @<User>,
reportedOn xsd:dateTime,
(reproducedBy @<Employee>,
reproducedOn xsd:dateTime)?,

related @<BugReport>*
}

<User> {
name xsd:string,
email xsd:string?

}

<Employee> {
(name xsd:string |
(first-name xsd:string,
last-name xsd:string)),

email xsd:string,
}

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 6 / 22

Basics: RDF graphs

We assume a fixed finite set Σ of edge labels.

We model RDF with edge-labeled graphs: G = (V ,E), where E ⊆ V × Σ× V .

We shall constraint the structure of RDF Graph by imposing type constriants on the
outbound neighborhood of a node:

out-lab-nodeG (n) = {(a,m) ∈ Σ× V | (n, a,m) ∈ E}

G0:

n0

n1

n2

n3

n4

a

b

b

a

b

c

a

out-lab-nodeG0 (n0) = {(a, n1), (b, n2), (a, n3)}

What is the collection of labels of outgoing edges of n0?

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 7 / 22

Basics: Bags of symbols (unordered words)

Bag (multiset) is a function mapping a symbol to the number of its occurrences.

w0 = {|a, a, a, c, c|} represents the function w0(a) = 3, w0(b) = 0, and w0(c) = 2.

The collection of outgoing labels is a bag:

out-labG (n) = {|a | (n, a,m) ∈ EG |}

G0:

n0

n1

n2

n3

n4

a

b

b

a

b

c

a

out-labG0 (n0) = {|a, a, b|}

Bag union: {|a, c, c|}] {|a, b|} = {|a, a, b, c, c|} (concatenation of unordered words).

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 8 / 22

Regular Bag Expressions (RBEs)
Language of regular expressions for defining bags (unordered concatenation ||)

E ::= ε | a | E∗ | (E“|”E) | (E“||”E)

with natural macros: E? := (ε | E) and E+ := (E || E∗)

Examples

I a∗ || b+ || c || c –arbitrary number of a’s, positive number of b’s, and two c’s

I (a || b)∗ – the same number of a’s and b’s

I (a || b || c)∗ – the same number of a’s, b’s, and c’s.

RBEs are equivalent to

1. Presburger arythmetic,

2. Parikh images of context-free languages,

3. semilinear sets.

Computational properties

I Membership w ∈ E is NP-complete,

I Emptiness E1 ∩ E2 = ∅ is coNP-complete.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 9 / 22

RBE0 a simple and well-behaved subclass of RBEs

RBE0

I RBEs using only symbols with multiplicities {0, 1, ∗,+, ?} and || operator only

I can be canonized a || a? ≡ a[1,2], b+ || b+ ≡ b[2,∞], etc.

I the canonical form is a[n,n′] || b[m,m′] || . . .
I Presburger formulas: conjunctions of atoms #a < n and #a > n

I captures IBM’s Resource Shapes

Computational properties: simple arithmetic

A lightweight class enjoying tractability of a number of problems:

I membership

I containment

I intersection (also with RBE1)

Also learnable from positive examples [DBPL’13]

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 10 / 22

Shape expression schemas
A Shape Expression Schema is a tuple S = (Σ, Γ, δ), where

I Γ is a finite set of types,

I δ maps types to type definitions (RBEs over Σ× Γ)
a :: t stands for (a, t)

G0:

n0

n1

n2

n3

n4

t0

t1

t2

t1

t2

a

b

b

a

b

c

a
S0: t0 → (a :: t1)+ || b :: t2

t1 → (a :: t1 | b :: t2)∗

t2 → b :: t2 | c :: t1

out-lab-typeλ0
G0

(n0) = {|a :: t1, a :: t1, b :: t2|}

A single-type typing is a function λ : V → Γ.

λ is valid if every node n satisfies its type definition i.e.,

out-lab-typeλG (n) = {|a :: λ(m) | (n, a,m) ∈ E |} ∈ δ(λ(n)).

A valid single-type typing of G0 w.r.t. S0

λ0(n0) = t0, λ0(n1) = t1, λ0(n2) = t2, λ0(n3) = t1, λ0(n4) = t2.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 11 / 22

Shape expression schemas
A Shape Expression Schema is a tuple S = (Σ, Γ, δ), where

I Γ is a finite set of types,

I δ maps types to type definitions (RBEs over Σ× Γ)
a :: t stands for (a, t)

G0:

n0

n1

n2

n3

n4

t0

t1

t2

t1

t2

a

b

b

a

b

c

a
S0: t0 → (a :: t1)+ || b :: t2

t1 → (a :: t1 | b :: t2)∗

t2 → b :: t2 | c :: t1

out-lab-typeλ0
G0

(n0) = {|a :: t1, a :: t1, b :: t2|}

A single-type typing is a function λ : V → Γ.

λ is valid if every node n satisfies its type definition i.e.,

out-lab-typeλG (n) = {|a :: λ(m) | (n, a,m) ∈ E |} ∈ δ(λ(n)).

A valid single-type typing of G0 w.r.t. S0

λ0(n0) = t0, λ0(n1) = t1, λ0(n2) = t2, λ0(n3) = t1, λ0(n4) = t2.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 11 / 22

Shape expression schemas
A Shape Expression Schema is a tuple S = (Σ, Γ, δ), where

I Γ is a finite set of types,

I δ maps types to type definitions (RBEs over Σ× Γ)
a :: t stands for (a, t)

G0:

n0

n1

n2

n3

n4

t0

t1

t2

t1

t2

a

b

b

a

b

c

a
S0: t0 → (a :: t1)+ || b :: t2

t1 → (a :: t1 | b :: t2)∗

t2 → b :: t2 | c :: t1

out-lab-typeλ0
G0

(n0) = {|a :: t1, a :: t1, b :: t2|}

A single-type typing is a function λ : V → Γ.

λ is valid if every node n satisfies its type definition i.e.,

out-lab-typeλG (n) = {|a :: λ(m) | (n, a,m) ∈ E |} ∈ δ(λ(n)).

A valid single-type typing of G0 w.r.t. S0

λ0(n0) = t0, λ0(n1) = t1, λ0(n2) = t2, λ0(n3) = t1, λ0(n4) = t2.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 11 / 22

Shape expression schemas
A Shape Expression Schema is a tuple S = (Σ, Γ, δ), where

I Γ is a finite set of types,

I δ maps types to type definitions (RBEs over Σ× Γ)
a :: t stands for (a, t)

G0:

n0

n1

n2

n3

n4

t0

t1

t2

t1

t2

a

b

b

a

b

c

a
S0: t0 → (a :: t1)+ || b :: t2

t1 → (a :: t1 | b :: t2)∗

t2 → b :: t2 | c :: t1

out-lab-typeλ0
G0

(n0) = {|a :: t1, a :: t1, b :: t2|}

A single-type typing is a function λ : V → Γ.

λ is valid if every node n satisfies its type definition i.e.,

out-lab-typeλG (n) = {|a :: λ(m) | (n, a,m) ∈ E |} ∈ δ(λ(n)).

A valid single-type typing of G0 w.r.t. S0

λ0(n0) = t0, λ0(n1) = t1, λ0(n2) = t2, λ0(n3) = t1, λ0(n4) = t2.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 11 / 22

Intractability of single-type validation

Validation problem

Checking if there exists a valid typing of given input graph w.r.t. a given input schema.

Sources of complexity

1. guessing a typing

2. checking that it is valid (RBE membership is already NP-complete)

Theorem
Single-type validation is NP-complete (even for RBE0).

Reduction from graph 3-colorability:

tr → :: t∗b || :: t∗g tg → :: t∗r || :: t∗b tb → :: t∗g || :: t∗r

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 12 / 22

Intractability of single-type validation

Validation problem

Checking if there exists a valid typing of given input graph w.r.t. a given input schema.

Sources of complexity

1. guessing a typing

2. checking that it is valid (RBE membership is already NP-complete)

Theorem
Single-type validation is NP-complete (even for RBE0).

Reduction from graph 3-colorability:

tr → :: t∗b || :: t∗g tg → :: t∗r || :: t∗b tb → :: t∗g || :: t∗r

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 12 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1

t2

t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0

t1

t2

t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1

t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t. . .

I we inspect the outbound neighborhood out-lab-nodeG (n) = {(a,m) | (n, a,m) ∈ E}

I a node m may assume any of its assigned types λ(m), one per edge incoming from n

I (n, a,m) ∈ E yields the choice |t∈λ(m) a :: t

I OutType(n, λ) = ||(n,a,m)∈E (|t∈λ(m) a :: t)

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t. . .

I we inspect the outbound neighborhood out-lab-nodeG (n) = {(a,m) | (n, a,m) ∈ E}
I a node m may assume any of its assigned types λ(m), one per edge incoming from n

I (n, a,m) ∈ E yields the choice |t∈λ(m) a :: t

I OutType(n, λ) = ||(n,a,m)∈E (|t∈λ(m) a :: t)

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t. . .

I we inspect the outbound neighborhood out-lab-nodeG (n) = {(a,m) | (n, a,m) ∈ E}
I a node m may assume any of its assigned types λ(m), one per edge incoming from n

I (n, a,m) ∈ E yields the choice |t∈λ(m) a :: t

I OutType(n, λ) = ||(n,a,m)∈E (|t∈λ(m) a :: t)

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

When defining that a node n satisfies a type t. . .

I we inspect the outbound neighborhood out-lab-nodeG (n) = {(a,m) | (n, a,m) ∈ E}
I a node m may assume any of its assigned types λ(m), one per edge incoming from n

I (n, a,m) ∈ E yields the choice |t∈λ(m) a :: t

I OutType(n, λ) = ||(n,a,m)∈E (|t∈λ(m) a :: t)

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Multi-type semantics of shape expressions

A multi-type typing is a function λ : V → 2Γ that assign to every node a set of types.

G1: n0 n1 n2
a c

b

S1: t0 → a :: t1

t1 → b :: t2 || c :: t3

t2 → (b :: t2)? || c :: t3

t3 → ε

G2: m0 m1

a

b
t0 t1 t2

S2: t0 → a :: t1 || b :: t2

t1 → (c :: t1)∗

t2 → (d :: t2)?

t0 t1 t2 t3

λ1(n0) = {t0}, λ1(n1) = {t1, t2}, λ1(n2) = {t3}.

OutType(n1, λ1) = (b :: t1 | b :: t2) || c :: t3

Talk declarative to me
λ is valid if every node satisfies every of its associated types.

n satisfies t w.r.t. λ if OutType(n, λ) ∩ δ(t) 6= ∅,
where OutType(n, λ) = ||(n,a,m)∈E (|t∈λ(m) a :: t)

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 13 / 22

Refinement algorithm

The set of all valid multi-type typings of G w.r.t. S is a semi-lattice.

1. Start with the universal typing λ(n) := Γ

2. Iteratively refine it λ := Refine(λ)

[Refine(λ)](n) = {t ∈ λ(n) | OutType(n, λ) ∩ δ(t) 6= ∅}.

3. Until a fix-point is reached

4. The graph satisfies the schema iff the fix-point λ is valid . . .
. . . and then λ is also the maximal valid multi-type typing.

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 14 / 22

Satisfiability of RBEs

OutType yields expressions of the form (RBE1)

(a1 | · · · | ak) || · · · || (z1 | . . . | zm)

The essential decision problem for a class C of RBEs used in the schema is

INTER1(C) = {(E0,E) ∈ RBE1 × C | E0 ∩ E 6= ∅}.

Lemma
Tractability of INTER1 is a necessary and sufficient condition for tractability of multi-type
validation.

Corollary

Multi-type validation is NP-complete.

Theorem
Multi-type validation for schemas using RBE0 is in PTIME

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 15 / 22

Determinism

Determinism of shape expressions

Given the type (of a node) and the label of an outgoing edge, the expression specifies the
type that the target node must satisfy.

a :: t1 || b :: t∗2 || a :: t1 || c :: t2 (a :: t1 || b :: t2) | (a :: t3 || c :: t4) a :: t1 || b :: t∗2 || a :: t3

deterministic not deterministic not deterministic

Lemma
For schemas using only deterministic shape expressions, tractability of membership is a
sufficient and necessary condition for tractability of multi-type validation

Proof sketch

I Knowing the label a of an outgoing edge determines the type ta for the target node

I OutType(n, λ) = ||(n,a,m)∈E (|t∈λ(m) a :: t) becomes ||(n,a,m)∈E (a :: ta)

I ||(n,a,m)∈E (a :: ta) defines a singleton {w} with w = {|a :: ta | (n, a,m)|}
I OutType(n, λ) ∩ δ(t) 6= ∅ ≡ w ∈ δ(t).

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 16 / 22

Determinism

Determinism of shape expressions

Given the type (of a node) and the label of an outgoing edge, the expression specifies the
type that the target node must satisfy.

a :: t1 || b :: t∗2 || a :: t1 || c :: t2 (a :: t1 || b :: t2) | (a :: t3 || c :: t4) a :: t1 || b :: t∗2 || a :: t3

deterministic not deterministic not deterministic

Lemma
For schemas using only deterministic shape expressions, tractability of membership is a
sufficient and necessary condition for tractability of multi-type validation

Proof sketch

I Knowing the label a of an outgoing edge determines the type ta for the target node

I OutType(n, λ) = ||(n,a,m)∈E (|t∈λ(m) a :: t) becomes ||(n,a,m)∈E (a :: ta)

I ||(n,a,m)∈E (a :: ta) defines a singleton {w} with w = {|a :: ta | (n, a,m)|}
I OutType(n, λ) ∩ δ(t) 6= ∅ ≡ w ∈ δ(t).

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 16 / 22

Going further: unambiguity

Unambiguity of shape expressions

Given the type, the context (all labels on outgoing edges), and the label of an outgoing
edge, the expression specifies at most one type for the target node.

a :: t1 || b :: t∗2 || a :: t1 || c :: t2 (a :: t1 || b :: t2) | (a :: t3 || c :: t4) a :: t1 || b :: t∗2 || a :: t3

deterministic not deterministic not deterministic
and but and

unambiguous unambiguous not unambiguous

Theorem
Testing unambiguity is coNP-complete :(

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 17 / 22

Single-occurrence REBs (SORBEs)

SORBE allows a symbol to be used at most once in an expression but also allows a[n,m]

Theorem
Membership for SORBE is in PTIME :)

a :: t1 || b :: t∗2 || a :: t1 (a :: t1 || b :: t2) | (a :: t3 || c :: t4) (a :: t1 || b :: t2)∗ || c :: t3

deterministic not deterministic deterministic
but yet and

not single-occurrence single-occurence single-occurrence

Theorem
Multi-type validation for deterministic shape expressions using SORBE is in PTIME. :)

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 18 / 22

Validation with pretyping

Pretyping is a typing λ : V → 2Γ that need not be valid (given on input)

Universal type t> is satisfied by all nodes i.e., δ(t>) = (Σ× Γ)∗

Goal: Find an extension of λ that is a valid multi-type typing.

Lemma
For deterministic shape expression schemas with universal type, if λ admits a valid
extension, then it admits a unique minimal valid extension.

Theorem
The minimal valid extension of a pretyping can be constructed in polynomial time for
deterministic shape expression schemas that use SORBE

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 19 / 22

Flooding algorithm

Algorithm 1 MinValidExt(S ,G , λ)

Input: S = (Σ, Γ, δ) a deterministic ShEx,
G = (V ,E),
λ ⊆ V × Γ a pre-typing;

Output: λ ⊆ V × Γ the minimal valid extension of λ .
1: let F := λ
2: let λ := ∅
3: while F 6= ∅ do
4: choose (n, t) ∈ F and remove it from F

5: let out-lab-typeδG (n, t) := {|(a, tδ(t)
a) | (a,m) ∈ out-lab-nodeG (n)|}

6: if out-lab-typeδG (n, t) 6∈ δ(t) then
7: fail
8: λ := λ ∪ {(n, t)}
9: for (a,m) ∈ out-lab-nodeG (n) do

10: if t
δ(t)
a 6= t> and (m, t

δ(t)
a) 6∈ λ then

11: F := F ∪ {(m, tδ(t)
a)}

12: return λ

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 20 / 22

Summary

1. Formalization of shape expression schemas

2. Two semantics (single- and multi-type)

3. Identification of complexity bottlenecks:
I Intersection with RBE1 for arbitrary shape expressions
I Membership for deterministic shape expressions

4. Initial complexity analysis

RBE0 RBE SORBE
SORBE SORBE

det. det. + λ + t>
multi-type PTIME NP-complete PTIME
single-type NP-complete PTIME

5. Initial analysis of expressive power
I automata-like formalism
I incomparable to FO and MSO (unless we forbid ∗ over expressions)
I incomparable with NR and HR graph grammars
I closed under intersection but not under union or negation
I single-type semantics is more expressive than multi-type semantics

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 21 / 22

Future work

1. Continuing work (W3C)

2. Popularization effort

3. Identifying tractable and practical subclasses of RBE

4. Hybrid flooding/refinement algorithm

5. Inference of shape expression schemas

S lawek S. (LINKS&UoE) Shape Expressions for RDF Oxford’15 22 / 22

