Declarative Inconsistency Handling in

Relational and Semi-structured Databases

Ph.D. Dissertation Defense

Stawek Staworko

Department of Computer Science and Engineering
University at Buffalo, SUNY

9 May 2007

r

Emp(Name, Dept)

Emp(Mary, IT) Emp(John, PR)]

Q: who works in IT 5 /

QX):- Emp(X,IT). %
Answers are: {Mary, John} Emp(John, IT)
Are we sure about John ?

:

Emp(Name, Dept)

S1
[Emp(Mary, IT) Emp(John, PR)]

Q: who works in IT s /

Q(X):- Emp(X,IT). 7
Answers are: {Mary, John} [Emp(John, IT)

Are we sure about John 7

What about data cleaning?

» all conflicting tuples are removed

“clean” instance r’ = {Emp(Mary, IT)}

>

» may cause loss of information
> sources may be autonomous
>

inconsistencies may be results of updates in progress, long running
transactions, manual entry, exceptions from the constraints

r

Emp(Name, Dept)

S1
| Emp(Mary, T) Emp(John, PR) |

Q: who works in IT /

5
Q(X):- Emp(X,IT). [7]

E John, IT
Answers are: {Mary, John} mp(John, IT)
Are we sure about John 7

Repairs [Arenas et al. PODS'99]:

rn = {Emp(John, IT), Emp(Mary, IT)} . {Mary} .
ry = {Emp(John, PR), Emp(Mary, IT)} John is not a consistent
answer because of r

Contributions

1. Analysis of computational complexity of consistent query
answers (CQA) in the presence of universal constraints.

2. Building a practical system for computing CQA.

3. Developing a general framework for preference-based conflict
resolution.

4. Adapting the framework of CQA to semi-structured databases.

Integrity constraints

1. universal constraints
V*A[Ri(X1) A e oo A Rp(X0) A=P1(1) Ao A =Pm(Vm) A p]

where y C x (for safety [Abiteboul et al.])

2. Horn constraints
Ri(x1) Ao ARn(%a) A p = P(y)
3. denial constraints
V*5[R1(X1) A ... A Ra(Xn) A pl
4. functional dependencies (FD)

R:X—=Y

Query languages for relational databases

1. relational algebra (a subclass of SQL)
E:=R|o,(E)|mx(E) | EEx B | EEUE | B\ E.
2. first-order queries
= R(X) o1V e | w1 A e | —p | Ixp(x) | Vx.p(x).
3. conjunctive queries

Q()_() = 3)_/./‘-\)1(21) VANPIAN Rk(fk).

Repairs and Consistent Query Answers [PODS'99]

a consistent instance minimally different from the database

R:A—B _
i
110 rn :{R(I,O),R(Q,O)}

1 1 r2_{R(170)’R(271)}
2 0 r3—{R(171)3R(270)}
211 ry = {R(lv 1)a R(27 1)}

There can be an exponential number of repairs

Consistent Query Answers:

answers present in every repair.

Computational complexity for universal constraints

Data complexity

» query and IC assumed to be fixed

» input size depends on the DB size only

» standard measure in relational databases [Vardi, STOC'82]

Constraints Repair Consistent Answers to
Checking | {V,3}-free queries | conjunctive queries
Universal coNP-c n5-c nS-c
Horn PTIME coNP-c coNP-c
Acyclic Horn | PTIME PTIME coNP-c
Denial PTIME PTIME coNP-c

[Chomicki and Marcinkowski, 1C'05]

Conflict hypergraph [Chomicki and Marcinkowski, 1C'05]

Denial constraint (Emp : Name — Dept)
Vn, dy, do.=[Emp(n, di) A Emp(n, d2) A di # dy]

Conflict: {Emp(John, IT), Emp(John, PR)}

| Emp(John, PR) |

Emp(John, IT)
Conflict graph

> vertices = tuples from DB

Emp(Mary, IT)

> edges connect conflicting tuples
> repairs = maximal independent sets
> used to effectively compute CQA

Extended conflict hypergraph

Universal constraint
(Dept(DeptName, MgrName) = Emp[MgrName, DeptName])

Vm, m, di, db.=[Dept(d, m) A =Emp(m, d)]

Conflict: {Dept(HR, Bob), ~Emp(Bob, HR)}

Emp(Bob, HR)
[
| ~Emp(Bob, HR)|

Dept(HR, Bob)
Extended conflict graph:

» vertices = tuples present and missing in DB

| Emp(John, PR)|

Emp(Mary, IT)
Emp(John, IT)

» edges connect conflicting tuples

> repairs = independent sets minimally different from DB

Computing consistent answers to 7-free queries

System Hippo:

» 7-free queries

» denial constraints
» implemented in Java
» JDBC front-end

» for {o, x }-queries no
overhead

» for {o, x,U, \ }-queries
twice the time of
standard evaluation

Handling projection

co-NP-complete problem

Enveloping
Evalllation m

i

’ Cand‘idates ‘ i ’ Conflict Detection ‘

— Pr(;E<—{ Conflict H'ypergraph ‘

A,

Answer Set

Related work: Computing consistent query answers

1. Query rewriting [Arenas et al., PODS'99]

>

vV vyVvVYyy

A query Q is rewritten to a query Q' defining consistent
answers to Q.

easy to incorporate into already existing applications
relatively small overhead

applicable to a limited class of queries and constraints
ConQuer: Select-Project-Join SQL queries in the presence of
key dependencies [Fuxman et al., SIGMOD’05].

2. Logic programs

>

>

>

logic programs specify all repairs

evaluation with existing systems like d1v or smodels
very general: arbitrary first order queries and universal
constraints (even some referential constraints)

» computationally expensive: 5-completeness of logic programs
» INFOMIX: incorporates various optimizations [Eiter et al.,

SIGMOD'05]

1. Adding projection ()
2. Analysis of inconsistencies encountered in practice
3. Benchmarking CQA systems

4. Universal constraints without the safety restriction

Vx.—[=P(x) A x < 100] = Vx < 100.P(x)

Priorities, Preferences, and Cleaning

» an acyclic orientation of
the conflict graph

» > is called total when all
edges are oriented

Emp(John, IT)

I Emp(Mary, IT)

| Emp(John, PR) |

Emp(John, PR) = Emp(John, IT)

Priorities, Preferences, and Cleaning

il SN

> use > to define a family of preferred
repairs Rep(>-)

» an acyclic orientation of

the conflict graph :
» preferred consistent answers w.r.t. > are

the answers present in every preferred
repair w.r.t >

» >~ is called total when all
edges are oriented

Emp(John, IT)

I Emp(Mary, IT)

| Emp(John, PR) |

Emp(John, PR) = Emp(John, IT)

Priorities, Preferences, and Cleaning

il SN

> use > to define a family of preferred
repairs Rep(>-)

» an acyclic orientation of

the conflict graph .
> preferred consistent answers w.r.t. > are

the answers present in every preferred
repair w.r.t >

Database cleaning with a total >
Emp(John, IT)

I > =g

» >~ is called total when all
edges are oriented

Emp(Mary, IT
p(Mary, IT) > while w. (r) # @ do

’ Emp(John, PR) ‘ 1. choose any x € w. (r)
2. add x to r’
Emp(John, PR) ~ Emp(John, IT) 3. remove x from r with
neighbors

we(r)y={ter|-3t' e r.t’ =t}
» return r’

Desirable Properties of Preferred Repairs

(P1) Non-emptiness
Rep(>-) # &

(P2) Monotonicity
=1 C =2 = Rep(-2) C Rep(>1)

(P3) Non-discrimination

Rep(2) = Rep

(P4) Categoricity

> is total = |Rep(>)| =1

Optimal Use of Priorities

Properties: Complexity:

(of CQA) Priority enforcement:
P1-P3 PTIME None
P1-P3 co-NP-c Local

(single tuple)

P1-P4 co-NP-c Pareto

P1-P4 ns-c Global
(tuple sets)

C-Rep: Common optimal repairs

Common optimal repairs

r' € C-Rep(>) iff r’ is a result of cleaning the database with >.

» C-Rep satisfies P1 — P4
» C-Rep C G-Rep

» C-Rep = G-Rep for priorities that cannot be extended to a
cyclic orientation

» CQA: co-NP-complete

Related work: Preferred consistent query answers

1. Conditioned active integrity constraints [Flesca, et all.,
PPDP’04] allow to specify how to resolve some conflicts
> repairs may be not optimal
» P1 and P2 are satisfied
» P3 and P4 are violated

2. Repair constraints can be used to restrict considered repairs
[Greco and Lembo, ER'04]

» P3 is satisfied, but P1 is violated
» in a weaker version: P1 is satisfied, but P3 is violated

1. Experimental evaluation
» one FD — PTIME

2. Cyclic priorities (what about monotonicity)

3. Generalization to denial and universal constraints

XML and DTD

XML Documents DTD is a function that:

» ordered finite trees > takes the label of a node

» labels from finite * > returns a regular expression

> PCDATA for text nodes to which the labels of the

> text labels from children must comply
Example of DTD

ay ® © C— (AB)*
A — EMPTY | PCDATA

n e ~~-PCDATA B — EMPTY

. .
C(A(d),B(e),B) C(A(d),B(e),B) doesn't satisfy D,

but C(A(d) ,B()) does.

Editing operations

Editing operations

Editing operations

Cost 2

o nsert o Delete o
/\ 7
O®© ©®©

Editing operations

(Cost: 2)

o Modn‘y o nsert o Delete o
— /\ ~~ ™
OlGIONNGIO

Editing operations

Cost: 1 Cost 2

Modify o nsert o Delete o
/\ 7 ™
OlGIONNGIO

eaoe
(> ()
O@%@)

(™)

Editing operations

o Modify :,‘ Insert ° Delete o
a— 7 = ~7 ™
)

§®
N
@

0c®

Editing operations

o Modify :,‘ Insert o Deet
a— 7 = ~7 ™
gzl
o ’7&@7 o General Delete

/\
© ©®

Edit distance, repairs, and valid query answers

Distance between documents

dist(T,S) is the minimal cost
of transforming T into S

o dist =1 G
®® ® ® ®©

Edit distance, repairs, and valid query answers

Distance between documents

dist(T,S) is the minimal cost
of transforming T into S

Q =l @
dist(T, D) is the minimal cost o e e e e

of repairing T w.r.t D i.e.,

min{dist(T,S)|S valid w.r.t D}

o
C — (AB)*
A—>|(EMP)TY|PCDATA o e oeee 0 e

B — EMPTY

Edit distance, repairs, and valid query answers

Distance between documents

dist(T,S) is the minimal cost
of transforming T into S

Q ==l (Q
dist(T, D) is the minimal cost 0 e e e e

of repairing T w.r.t D i.e.,

min{dist(T,S)|S valid w.r.t D}

o
C — (AB)*
A—>|(EMP)TY|PCDATA 0 e eeee 0 e

B — EMPTY

Valid Query Answers

T' is a repair of T w.r.t D iff

x is a valid answer to query @ in T w.r.t. D iff
dist(T', T) = dist(T, D) x is an answer to Q in every repair of T w.r.t. D.

Trace graph

AQ DTD
_©
@O ©| < eer
| PCDATA
B — EMPTY

& & ©

Trace graph

AQ DTD
_©
@O ©| < eer
| PCDATA
B — EMPTY

& & ©

Trace graph

e DTD
@O ©| < eer
| PCDATA
B — EMPTY

& & ©

Trace graph

e DTD
@O ©| < eer
| PCDATA
B — EMPTY

& & ©

,%‘90' 5 &

Trace graph

e DTD
@O ©| < eer
| PCDATA
B — EMPTY

@
DeI Delr@ DeIV

&

=
o
Q]
—
eT0}
()
O
T
—

T

| PCDATA

C — (AB)*
A — EMPTY
B — EMPTY

DTD

L9
[O161C]

d suy|
|
~__ v

Ins A

=
o
Q]
—
eT0}
()
O
T
—

T

| PCDATA

C — (AB)*
A — EMPTY
B — EMPTY

DTD

L9
[O161C]

Ins A
\ 4
K] £,)
A N a
/
d sy|

d syj
|

P
—

~_ |

Ins A

Trace graph

JO) DTD
@08 -0
| PCDATA
B — EMPTY

®

ﬂ’ Repairing Paths:
o » (Read, Read, Del)

S0 &
»> (Read, Read, Ins A, Read)

(@u0)—~(Qu1) > (Read, Del, Read)

Trace graph

AQ DTD
— _
@O B -hor
| PCDATA
B — EMPTY

{Compact representation of all repairs}

(0.0 (@D

» Qg?b > (Read, Read, Del)
»> (Read, Read, Ins A, Read)

NG &
ﬂ, > (Read, Del, Read)

V sy

Complexity of VQA

XPath queries

sequences of steps (with filter conditions) to navigate through the tree.

Combined complexity

» both the document and the query are parts of the input
» standard evaluation in PTIME [Gottlob et al., PODS'03]

Positive results

» VQA in PTIME for simple XPath queries (only descending axes, no
negation, no union/disjunction, and no join conditions)

» Rhino: uses trace graphs to effectively compute VQA

Negative results
VQA is coNP-complete for other XPath queries.

Related work: Consistent query answers for XML

1. [Flesca et. all, Xsym'03] queries valid documents that violate
FDs

> two operations: marking nodes as unreliable and setting null
value

» polynomial time algorithm for queries of form A;/... /A,

> no experimental evaluation

2. [Flesca et. all, WISE'05] deals with invalid documents and
FDs

» edit operations similar to ours, but

» a different (set-theoretic) definition of repairs: C(A(d),B(e),B)
has only one repair C(A(d), B, A, B).

» polynomial algorithm for a restricted class of queries (no
union) and DTDs

» no experimental evaluation

Further work: Valid query answers

1. Other editing operations
» General Deletion/Insertion: dist(T, D) computed in
O(|T|°) time [Suzuki, SAC'05].

» Moving nodes: intractable for string edit distance
[Comrode et al., SODA’'02] and edit distance on
unordered trees [de Rougement, ISIP'03]

2. Incorporation of semantic constraints (e.g., key
dependencies)

3. Data complexity

Conclusions

» CQA: foundation of enlivened research in the ares of
inconsistent databases (more than 100 papers over the last 10
years)

» practical systems have been constructed
» tractability has been studied
» framework has been adapted to XML databases

