
Declarative Inconsistency Handling in
Relational and Semi-structured Databases

Ph.D. Dissertation Defense

S lawek Staworko

Department of Computer Science and Engineering
University at Buffalo, SUNY

9 May 2007

Motivation

Consistent answers are:

{Mary}
John is not a consistent
answer because of r2

Repairs [Arenas et al. PODS’99]:

r1 = {Emp(John, IT),Emp(Mary , IT)}
r2 = {Emp(John,PR),Emp(Mary , IT)}

What about data cleaning?

I all conflicting tuples are removed

I “clean” instance r ′ = {Emp(Mary , IT)}
I may cause loss of information

I sources may be autonomous

I inconsistencies may be results of updates in progress, long running
transactions, manual entry, exceptions from the constraints

r

s2

Emp(John, IT)

s1

Emp(Mary , IT) Emp(John, PR)

Q: who works in IT

Q(X):- Emp(X,IT).
Answers are: {Mary , John}
Are we sure about John ?

Schema

Emp(Name,Dept)

Motivation

Consistent answers are:

{Mary}
John is not a consistent
answer because of r2

Repairs [Arenas et al. PODS’99]:

r1 = {Emp(John, IT),Emp(Mary , IT)}
r2 = {Emp(John,PR),Emp(Mary , IT)}

What about data cleaning?

I all conflicting tuples are removed

I “clean” instance r ′ = {Emp(Mary , IT)}
I may cause loss of information

I sources may be autonomous

I inconsistencies may be results of updates in progress, long running
transactions, manual entry, exceptions from the constraints

r

s2

Emp(John, IT)

s1

Emp(Mary , IT) Emp(John, PR)

Q: who works in IT

Q(X):- Emp(X,IT).
Answers are: {Mary , John}
Are we sure about John ?

Schema

Emp(Name,Dept)

Motivation

Consistent answers are:

{Mary}
John is not a consistent
answer because of r2

Repairs [Arenas et al. PODS’99]:

r1 = {Emp(John, IT),Emp(Mary , IT)}
r2 = {Emp(John,PR),Emp(Mary , IT)}

What about data cleaning?

I all conflicting tuples are removed

I “clean” instance r ′ = {Emp(Mary , IT)}
I may cause loss of information

I sources may be autonomous

I inconsistencies may be results of updates in progress, long running
transactions, manual entry, exceptions from the constraints

r

s2

Emp(John, IT)

s1

Emp(Mary , IT) Emp(John, PR)

Q: who works in IT

Q(X):- Emp(X,IT).
Answers are: {Mary , John}
Are we sure about John ?

Schema

Emp(Name,Dept)

Contributions

1. Analysis of computational complexity of consistent query
answers (CQA) in the presence of universal constraints.

2. Building a practical system for computing CQA.

3. Developing a general framework for preference-based conflict
resolution.

4. Adapting the framework of CQA to semi-structured databases.

Integrity constraints

1. universal constraints

∀∗¬[R1(x̄1) ∧ . . . ∧ Rn(x̄n) ∧ ¬P1(ȳ1) ∧ . . . ∧ ¬Pm(ȳm) ∧ ρ]

where ȳ ⊆ x̄ (for safety [Abiteboul et al.])

2. Horn constraints

R1(x̄1) ∧ . . . ∧ Rn(x̄n) ∧ ρ ⇒ P(ȳ)

3. denial constraints

∀∗¬[R1(x̄1) ∧ . . . ∧ Rn(x̄n) ∧ ρ]

4. functional dependencies (FD)

R : X → Y

Query languages for relational databases

1. relational algebra (a subclass of SQL)

E ::≡ R | σϕ(E) | πX (E) | E1 × E2 | E1 ∪ E2 | E1 \ E2.

2. first-order queries

ϕ ::≡ R(x̄) | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ | ∃x .ϕ(x) | ∀x .ϕ(x).

3. conjunctive queries

Q(x̄) = ∃ȳ .R1(z̄1) ∧ . . . ∧ Rk(z̄k).

Repairs and Consistent Query Answers [PODS’99]

Consistent Query Answers:

answers present in every repair.

There can be an exponential number of repairs

Repairs:

r1 = {R(1, 0),R(2, 0)}
r2 = {R(1, 0),R(2, 1)}
r3 = {R(1, 1),R(2, 0)}
r4 = {R(1, 1),R(2, 1)}

R : A → B

A B

1 0
1 1
2 0
2 1

Repair:

a consistent instance minimally different from the database

Computational complexity for universal constraints

Data complexity

I query and IC assumed to be fixed

I input size depends on the DB size only

I standard measure in relational databases [Vardi, STOC’82]

Constraints Repair Consistent Answers to
Checking {∀,∃}-free queries conjunctive queries

Universal coNP-c ΠP
2 -c ΠP

2 -c

Horn PTIME coNP-c coNP-c

Acyclic Horn PTIME PTIME coNP-c

Denial PTIME PTIME coNP-c

[Chomicki and Marcinkowski, IC’05]

Conflict hypergraph [Chomicki and Marcinkowski, IC’05]

Conflict graph

I vertices = tuples from DB

I edges connect conflicting tuples

I repairs ∼= maximal independent sets

I used to effectively compute CQA

Emp(John, IT)

Emp(John,PR)

Emp(Mary , IT)

Conflict: {Emp(John, IT),Emp(John,PR)}

Denial constraint (Emp : Name → Dept)

∀n, d1, d2.¬[Emp(n, d1) ∧ Emp(n, d2) ∧ d1 6= d2]

Extended conflict hypergraph

Extended conflict graph:

I vertices = tuples present and missing in DB

I edges connect conflicting tuples

I repairs ∼= independent sets minimally different from DB

Emp(John, IT)

Emp(John,PR)
Emp(Mary , IT)

Dept(HR,Bob)

¬Emp(Bob,HR)

Emp(Bob,HR)

Conflict: {Dept(HR,Bob),¬Emp(Bob,HR)}

Universal constraint
(Dept(DeptName,MgrName) ⇒ Emp[MgrName,DeptName])

∀n1, n2, d1, d2.¬[Dept(d ,m) ∧ ¬Emp(m, d)]

Computing consistent answers to π-free queries

Handling projection

co-NP-complete problem

Efficiency

I for {σ,×}-queries no
overhead

I for {σ,×,∪, \}-queries
twice the time of
standard evaluation

System Hippo:

I π-free queries

I denial constraints

I implemented in Java

I JDBC front-end

Query

Enveloping

Evaluation DB IC

Candidates Conflict Detection

Prover Conflict Hypergraph

Answer Set

Related work: Computing consistent query answers

1. Query rewriting [Arenas et al., PODS’99]
I A query Q is rewritten to a query Q ′ defining consistent

answers to Q.
I easy to incorporate into already existing applications
I relatively small overhead
I applicable to a limited class of queries and constraints
I ConQuer: Select-Project-Join SQL queries in the presence of

key dependencies [Fuxman et al., SIGMOD’05].

2. Logic programs
I logic programs specify all repairs
I evaluation with existing systems like dlv or smodels
I very general: arbitrary first order queries and universal

constraints (even some referential constraints)
I computationally expensive: Πp

2-completeness of logic programs
I INFOMIX: incorporates various optimizations [Eiter et al.,

SIGMOD’05]

Further work

1. Adding projection (π)

2. Analysis of inconsistencies encountered in practice

3. Benchmarking CQA systems

4. Universal constraints without the safety restriction

∀x .¬[¬P(x) ∧ x < 100] ≡ ∀x < 100.P(x)

Priorities, Preferences, and Cleaning

ω�(r) = {t ∈ r |¬∃t′ ∈ r .t′ � t}

Database cleaning with a total �
I r ′ := ∅
I while ω�(r) 6= ∅ do

1. choose any x ∈ ω�(r)
2. add x to r ′

3. remove x from r with
neighbors

I return r ′

Emp(John,PR)

Emp(John, IT)

Emp(Mary , IT)

Emp(John, PR) � Emp(John, IT)

Preferred CQA

I use � to define a family of preferred
repairs Rep(�)

I preferred consistent answers w.r.t. � are
the answers present in every preferred
repair w.r.t �

Priority �
I an acyclic orientation of

the conflict graph

I � is called total when all
edges are oriented

Priorities, Preferences, and Cleaning

ω�(r) = {t ∈ r |¬∃t′ ∈ r .t′ � t}

Database cleaning with a total �
I r ′ := ∅
I while ω�(r) 6= ∅ do

1. choose any x ∈ ω�(r)
2. add x to r ′

3. remove x from r with
neighbors

I return r ′

Emp(John,PR)

Emp(John, IT)

Emp(Mary , IT)

Emp(John, PR) � Emp(John, IT)

Preferred CQA

I use � to define a family of preferred
repairs Rep(�)

I preferred consistent answers w.r.t. � are
the answers present in every preferred
repair w.r.t �

Priority �
I an acyclic orientation of

the conflict graph

I � is called total when all
edges are oriented

Priorities, Preferences, and Cleaning

ω�(r) = {t ∈ r |¬∃t′ ∈ r .t′ � t}

Database cleaning with a total �
I r ′ := ∅

I while ω�(r) 6= ∅ do

1. choose any x ∈ ω�(r)
2. add x to r ′

3. remove x from r with
neighbors

I return r ′

Emp(John,PR)

Emp(John, IT)

Emp(Mary , IT)

Emp(John, PR) � Emp(John, IT)

Preferred CQA

I use � to define a family of preferred
repairs Rep(�)

I preferred consistent answers w.r.t. � are
the answers present in every preferred
repair w.r.t �

Priority �
I an acyclic orientation of

the conflict graph

I � is called total when all
edges are oriented

Desirable Properties of Preferred Repairs

(P1) Non-emptiness

Rep(�) 6= ∅

(P2) Monotonicity

�1 ⊆ �2 ⇒ Rep(�2) ⊆ Rep(�1)

(P3) Non-discrimination

Rep(∅) = Rep

(P4) Categoricity

� is total ⇒ |Rep(�)| = 1

Optimal Use of Priorities

Rep

L-Rep

P-Rep

G-Rep

Properties: Complexity:
(of CQA) Priority enforcement:

NoneP1–P3 PTIME

Local
(single tuple)

P1–P3 co-NP-c

ParetoP1–P4 co-NP-c

Global
(tuple sets)

P1–P4 Πp
2-c

C-Rep: Common optimal repairs

Properties

I C-Rep satisfies P1− P4

I C-Rep ⊆ G-Rep

I C-Rep = G-Rep for priorities that cannot be extended to a
cyclic orientation

I CQA: co-NP-complete

Common optimal repairs

r ′ ∈ C-Rep(�) iff r ′ is a result of cleaning the database with �.

Related work: Preferred consistent query answers

1. Conditioned active integrity constraints [Flesca, et all.,
PPDP’04] allow to specify how to resolve some conflicts

I repairs may be not optimal
I P1 and P2 are satisfied
I P3 and P4 are violated

2. Repair constraints can be used to restrict considered repairs
[Greco and Lembo, ER’04]

I P3 is satisfied, but P1 is violated
I in a weaker version: P1 is satisfied, but P3 is violated

Further work

1. Experimental evaluation
I one FD → PTIME

2. Cyclic priorities (what about monotonicity)

3. Generalization to denial and universal constraints

XML and DTD

Example of DTD

C → (A,B)*
A → EMPTY | PCDATA
B → EMPTY

DTD is a function that:

I takes the label of a node

I returns a regular expression
to which the labels of the
children must comply

C(A(d),B(e),B) doesn’t satisfy D,
but C(A(d),B()) does.

C(A(d),B(e),B)

C

A B B

d e PCDATA

XML Documents

I ordered finite trees

I labels from finite Σ

I PCDATA for text nodes

I text labels from Γ

Editing operations

A

DB

C

Insert
Cost: 3

A

DE

F G

B

C

A

E

F G

D

Delete
Cost: 2

B

C

D

H Modify
Cost: 1

A

D B

C

M
ov

e

Cost: 1

A

E

D

B

C

General Insert

Cost: 1

A

E

D

C

General Delete

Cost: 1

Editing operations

A

DB

C

Insert
Cost: 3

A

DE

F G

B

C

A

E

F G

D

Delete
Cost: 2

B

C

D

H Modify
Cost: 1

A

D B

C

M
ov

e

Cost: 1

A

E

D

B

C

General Insert

Cost: 1

A

E

D

C

General Delete

Cost: 1

Editing operations

A

DB

C

Insert
Cost: 3

A

DE

F G

B

C

A

E

F G

D

Delete
Cost: 2

B

C

D

H Modify
Cost: 1

A

D B

C

M
ov

e

Cost: 1

A

E

D

B

C

General Insert

Cost: 1

A

E

D

C

General Delete

Cost: 1

Editing operations

A

DB

C

Insert
Cost: 3

A

DE

F G

B

C

A

E

F G

D

Delete
Cost: 2

B

C

D

H Modify
Cost: 1

A

D B

C

M
ov

e

Cost: 1

A

E

D

B

C

General Insert

Cost: 1

A

E

D

C

General Delete

Cost: 1

Editing operations

A

DB

C

Insert
Cost: 3

A

DE

F G

B

C

A

E

F G

D

Delete
Cost: 2

B

C

D

H Modify
Cost: 1

A

D B

C

M
ov

e

Cost: 1

A

E

D

B

C

General Insert

Cost: 1

A

E

D

C

General Delete

Cost: 1

Editing operations

A

DB

C

Insert
Cost: 3

A

DE

F G

B

C

A

E

F G

D

Delete
Cost: 2

B

C

D

H Modify
Cost: 1

A

D B

C

M
ov

e

Cost: 1

A

E

D

B

C

General Insert

Cost: 1

A

E

D

C

General Delete

Cost: 1

Editing operations

A

DB

C

Insert
Cost: 3

A

DE

F G

B

C

A

E

F G

D

Delete
Cost: 2

B

C

D

H Modify
Cost: 1

A

D B

C

M
ov

e

Cost: 1

A

E

D

B

C

General Insert

Cost: 1

A

E

D

C

General Delete

Cost: 1

Edit distance, repairs, and valid query answers

Valid Query Answers

x is a valid answer to query Q in T w.r.t. D iff
x is an answer to Q in every repair of T w.r.t. D.

dist = 1C

A B B

C

B B

C

A B

C

A B A B

C

A B

Repair

T ′ is a repair of T w.r.t D iff

dist(T ′, T) = dist(T , D)

DTD

C → (A,B)*
A → EMPTY | PCDATA
B → EMPTY

Distance to a DTD

dist(T , D) is the minimal cost
of repairing T w.r.t D i.e.,

min{dist(T , S)|S valid w.r.t D}

Distance between documents

dist(T , S) is the minimal cost
of transforming T into S

Edit distance, repairs, and valid query answers

Valid Query Answers

x is a valid answer to query Q in T w.r.t. D iff
x is an answer to Q in every repair of T w.r.t. D.

dist = 1C

A B B

C

B B

C

A B

C

A B A B

C

A B

Repair

T ′ is a repair of T w.r.t D iff

dist(T ′, T) = dist(T , D)

DTD

C → (A,B)*
A → EMPTY | PCDATA
B → EMPTY

Distance to a DTD

dist(T , D) is the minimal cost
of repairing T w.r.t D i.e.,

min{dist(T , S)|S valid w.r.t D}

Distance between documents

dist(T , S) is the minimal cost
of transforming T into S

Edit distance, repairs, and valid query answers

Valid Query Answers

x is a valid answer to query Q in T w.r.t. D iff
x is an answer to Q in every repair of T w.r.t. D.

dist = 1C

A B B

C

B B

C

A B

C

A B A B

C

A B

Repair

T ′ is a repair of T w.r.t D iff

dist(T ′, T) = dist(T , D)

DTD

C → (A,B)*
A → EMPTY | PCDATA
B → EMPTY

Distance to a DTD

dist(T , D) is the minimal cost
of repairing T w.r.t D i.e.,

min{dist(T , S)|S valid w.r.t D}

Distance between documents

dist(T , S) is the minimal cost
of transforming T into S

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del

C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Trace graph

Repairing Paths:

I (Read, Read, Del)

I (Read, Read, Ins A, Read)

I (Read, Del, Read)

A B B

Compact representation of all repairs

Q0

Q1

Q0

Q1

Q0

Q1

Q0

Q1

Read Re
ad

Re
ad

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

Q0,0

Q1,1

Q0,1

Q1,0

Q0,0

Q1,1

Q0,1

Q1,2

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

In
s

A

In
s

B

Del

Del

Del

Del

Del

Del

Q0 Q1

Read A

Read B

Ins A

Ins B

Del Del
C

A B B

DTD

C → (A,B)*
A → EMPTY

| PCDATA
B → EMPTY

Complexity of VQA

XPath queries

sequences of steps (with filter conditions) to navigate through the tree.

Combined complexity

I both the document and the query are parts of the input

I standard evaluation in PTIME [Gottlob et al., PODS’03]

Positive results

I VQA in PTIME for simple XPath queries (only descending axes, no
negation, no union/disjunction, and no join conditions)

I Rhino: uses trace graphs to effectively compute VQA

Negative results

VQA is coNP-complete for other XPath queries.

Related work: Consistent query answers for XML

1. [Flesca et. all, Xsym’03] queries valid documents that violate
FDs

I two operations: marking nodes as unreliable and setting null
value

I polynomial time algorithm for queries of form A1/ . . . /An

I no experimental evaluation

2. [Flesca et. all, WISE’05] deals with invalid documents and
FDs

I edit operations similar to ours, but
I a different (set-theoretic) definition of repairs: C(A(d), B(e), B)

has only one repair C(A(d), B, A, B).
I polynomial algorithm for a restricted class of queries (no

union) and DTDs
I no experimental evaluation

Further work: Valid query answers

1. Other editing operations
I General Deletion/Insertion: dist(T ,D) computed in

O(|T |5) time [Suzuki, SAC’05].

I Moving nodes: intractable for string edit distance
[Comrode et al., SODA’02] and edit distance on
unordered trees [de Rougement, ISIP’03]

2. Incorporation of semantic constraints (e.g., key
dependencies)

3. Data complexity

Conclusions

I CQA: foundation of enlivened research in the ares of
inconsistent databases (more than 100 papers over the last 10
years)

I practical systems have been constructed

I tractability has been studied

I framework has been adapted to XML databases

