
Containment of Shape Expression Schemas for RDF
Sławek Staworko

CRIStAL, INRIA LINKS, CNRS

University of Lille

France

slawomir.staworko@inria.fr

Piotr Wieczorek

Institute of Computer Science

University of Wrocław

Poland

piotr.wieczorek@cs.uni.wroc.pl

ABSTRACT
We study the problem of containment of shape expression
schemas (ShEx) for RDF graphs. We identify a subclass of

ShEx that has a natural graphical representation in the form

of shape graphs and whose semantics is captured with a

tractable notion of embedding of an RDF graph in a shape

graph. When applied to pairs of shape graphs, an embedding

is a sufficient condition for containment, and for a practical

subclass of deterministic shape graphs, it is also a necessary

one, thus yielding a subclass with tractable containment.

Containment for general shape graphs is EXP-complete. Fi-

nally, we show that containment for arbitrary ShEx is decid-
able.

CCS CONCEPTS
• Information systems → Graph-based database mod-
els; Resource Description Framework (RDF); • Theory
of computation→ Database theory; Database interoper-
ability.
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1 INTRODUCTION
Although RDF has been originally introduced schema-free,

it has since become a standalone database format and the

need for a schema language has been identified, with the
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emergence of new RDF applications previously reserved to

relational and semi-structured databases [2, 37]. Recently

introduced by W3C, and under continuous development,

shape expression schema (ShEx) is a formalism for defining

valid RDF graphs [21–23, 38]. ShEx allows to define a set of

types, each type defined with a rule describing the admissible

types of the outbound neighborhood of a node. Inspired by

versatility of schema languages for XML [4, 19], the rules of

ShEx are based on regular expressions.

An example of shape expression schema for RDF graphs

storing bug reports is presented in Figure 1. The schema

requires a bug report to have a description and a user who

reported it. Optionally, a bug report may have an employee

who successfully reproduced the bug. Also, a bug report can

have a number of related bug reports. A user has a name and

an optional email address while an employee has a name and

a mandatory email address.

In this paper, we investigate the classical problem of con-
tainment: given two schemas S and S ′, is the set of instances
satisfying S contained in the set of instances satisfying S ′?
This problem has applications to a vast number of problems

that perform non-trivial reasoning tasks such as data ex-

change, query optimization, and inference [1, 3, 9, 10, 14, 16,

40]. The task at hand is difficult for a number of reasons.

Because the neighborhood of a node in an RDF graph is

unordered, regular expressions define bag languages, also

known as commutative languages [18], where the relative or-
der among symbols is irrelevant. This lack of order gives raise

to a significant degree of nondeterminism when working

with regular bag expressions (RBE). For instance, membership

for RBE i.e., deciding whether a bag of symbols belongs to the

language defined by an RBE, is NP-complete [20]. Similarly,

validation for ShEx i.e., deciding whether a RDF graph satis-

fies a ShEx, is NP-complete too [34]. The need for nondeter-

minism can be limited by disallowing disjunction and permit-

ting the Kleene closure on atomic symbols only. This yields

the class RBE0 with tractable membership and tractable

validation for the corresponding class of shape expression

schemas ShEx0. Similarly, single-occurrence regular bag ex-

pressions (SORBE) have tractable membership and give rise

to deterministic shape expression schemas (DetShEx), where
the same symbol can be used only once. Their validation is

also tractable [34]. Both restrictions offer enough room to
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Bug→ descr :: Literal, reportedBy :: User, reproducedBy :: Employee?, related :: Bug*

User→ name :: Literal, email :: Literal?

Employee→ name :: Literal, email :: Literal

Figure 1: An RDF graph with bug reports (top right) together with a shape expression schema (bottom) and the
corresponding shape graph (top left).

accommodate practical uses, and in particular, the schema

in Figure 1 belongs to them both.

Since ShEx is a schema language based on types, com-

paring two schemas requires the ability to compare types,

and consequently, testing S ⊆ S ′ revolves around ques-

tions whether a type t of S is covered by the union of types

s1, . . . , sk of S ′. Indeed, suppose that in the schema in Fig-

ure 1 we replace the type User with two types depending on

whether or not the user has an email address:

User1 → name :: Literal

User2 → name :: Literal, email :: Literal

and adapt the rest of the schema by replacing Bug with

Bug
1
→ descr :: Literal, reportedBy :: User1,

reproducedBy :: Employee?,

related :: Bug*
1
, related :: Bug*

2

Bug
2
→ descr :: Literal, reportedBy :: User2,

reproducedBy :: Employee?,

related :: Bug*
1
, related :: Bug*

2

Although no longer deterministic (the symbol related is

used twice in the type definitions of Bug
1
and Bug

2
), the

modified schema is equivalent to the original one as the type

Bug is covered by the union of the types Bug
1
and Bug

2
, and

the type User by the union of User1 and User2 (the latter

also being equivalent to Employee).

Naturally, the fact that a type might be covered by a union

of types is a source of complexity of the containment problem,

and it is an interesting question if there is a class of schemas

for which comparison on pairs of types alone would suffice.

To answer this question, we use shape graphs, which are

natural graphical representation of ShEx0 (cf. Figure 1), and
propose a graph-theoretic notion of an embedding between

pairs of shape graphs. In essence, an embedding identifies

in a simulation-like manner when a type is covered by an-

other type, and therefore, is a sufficient condition for con-

tainment. We also identify a class DetShEx−0 for which em-

bedding is a necessary condition for containment. DetShEx−0
is the class of deterministic shape expressions schema using

RBE0, which furthermore forbids the use of + and, intuitively,

requires every ? to be referenced through *. In particular, the
schema in Figure 1 belongs to DetShEx−0 because the type

User using email :: Literal?
is (indirectly) referenced by

related :: Bug*
in type Bug.

Because embeddings are carefully crafted to be tractable,

we obtain a class with tractable containment. The additional

restrictions of DetShEx−0 are necessary as we show the con-

tainment problem for full DetShEx0 to be intractable. Inter-

estingly, for a schema S in DetShEx−0 we construct a charac-
terizing graphG such thatG is satisfied by any schema S ′ in
DetShEx−0 if and only if S ⊆ S ′.



Checking the containment S ⊆ S ′ involves implicit nega-

tion: checking whether there is no counter-example, an in-

stance that satisfies S and does not satisfy S ′. The implicit

negation allows to encode disjunction even in classes of

schemas that explicitly forbid using disjunction in type defi-

nitions, such as ShEx0. This renders ShEx0 very powerful and
allows for pairs of schemas for which the smallest counter-

example is of exponential size. Not surprisingly, we observe

a significant impact on complexity: testing containment for

shape graphs is EXP-complete.

The picture of containment for arbitrary shape expres-

sion schemas is far from obvious. It is known that ∃MSO

on graphs is alone insufficient to capture ShEx and needs

to be enriched with Presburger arithmetic [34]. However,

monadic extensions of Presburger arithmetic quickly become

undecidable [13, 31]. The question whether containment for

ShEx is decidable at all is non-trivial but we answer it posi-
tively and give an initial characterization of its complexity:

coNEXP-hard and in co2NEXP
NP
. The precise complexity of

containment for ShEx remains an open question.

Our study has a number of outcomes:

• a thorough characterization of complexity of contain-

ment for classes of shape expression schemas;

• a set of bounds on the size of a minimal graph that

satisfies one schema and violates another;

• a tractable notion of embeddings that is a sufficient

condition for containment, and a necessary one of a

subclass of deterministic shape expression schemas.

Related work. There is a large body of literature dealing

with the containment problem for various database schema

formalisms. The expressivity of ShEx has been studied in

[34]. ShEx is not comparable to neither FO logic on graphs,

nor to ∃MSO on graphs. In order to capture the cardinality

contraints e.g., (a || b)*, expressible by RBE, ∃MSO has to be

extended with Presburger Arithmetic (PA). Such extensions,

as we have already mentioned, can easily get to be undecid-

able [13, 31]. It is, also, a classic result that MSO theory of

N with addition is undecidable, it has been shown in [30]

that even MSO theory of naturals with the double function,

⟨N,+1, 2x , 0⟩, is undecidable.
Schema languages for trees have been extensively studied

in the context of XML. Most of the work, however, has been

devoted to the case of ordered trees. Typically, schema lan-

guages for ordered trees (DTD, XML Schema) are captured by

tree automata. A survey of basic decision problems for tree

automata can be found in [36]. In particular, containment for

nondeterministic tree automata is EXPTIME-complete [33]

but becomes polynomial for deterministic tree automata. The

containment of DTDs over the usual (ordered) nondetermin-

istic regular expressions is PSPACE-complete and remains

intractable even for very simple nondeterministic regular

expressions [24] but drops to PTIME [25] if deterministic reg-

ular expressions are used as mandated by the XML standard

[7]. We point out that in our case, however, determinism

alone is not sufficient, in order to obtain tractability of the

containment we need to enforce additional structural condi-

tions on the shape graphs.

Various forms of DTDs with regular expressions inter-

preted under the commutative closure [28] have been stud-

ied. In the context of trees many formalisms have been intro-

duced to express the numerical constrains on the occurrences

of the different symbols among the children of some node,

e.g., Presburger automata [31, 32], sheaves automata[12],

TQL logic[8]. Unfortunately, the containment problem in all

this settings is NP-hard [20].

The problem of containment of regular expressions with

interleaving is EXPSPACE-complete [26]. A number of ex-

pressive formalisms with interleaving have been shown in

[15] to have highly intractable inclusion.

Disjunctive multiplicity schemas (DMS) for unordered

XML have been studied in [5]. A DMS is a formalism that

defines for each label the language of allowed children labels

using disjunctive multiplicity expressions (DIME) that are

similar to RBE0 but allow a limited form of disjunction. DMS

assume similar form of determinism as DTDs since types of

nodes are identified with their labels. Additionaly, DIMEs

require each of the alphabet symbols from Σ to appear at

most once. Nevertheless, the containment for DMS is in

PTIME.

Organization. The paper is organized as follows. In Sec-

tion 2 we present basic notions and introduce embeddings

of shape graphs. In Section 3 we investigate decidability of

containment for the full fragment of ShEx by bounding the

size of a counter-example. In Section 4 we analyze the com-

plexity of containment for shape graphs (ShEx0) and show

a tight exponential bound on the size of a counter-example.

In Section 5 we identify a tractable subclass of deterministic

shape expression schemas and investigate the complexity

of constructing embeddings. We summarize our work and

outline directions of further study in Section 6.

2 BASIC NOTIONS
Throughout this paper we employ elements of function no-

tation to relations, and conversely, often view functions as

relations. For instance, for a binary relation R ⊆ A × B we

set dom(R) = {a ∈ A | ∃b ∈ B. (a,b) ∈ R}, ran(B) = {b ∈
B | ∃a ∈ A. (a,b) ∈ R}, R(a) = {b ∈ B | (a,b) ∈ R} for a ∈ A,
and R−1(b) = {a ∈ A | (a,b) ∈ R} for b ∈ B.

Intervals. We use pairs of numbers including the infinite

constant∞ to represent intervals: the pair [n;m], with n ≤
m ≤ ∞, represents the set {i | n ≤ i ≤ m}. We assume

that both n and m are stored in binary. We use a number



of operators on intervals: every interval I = [n;m] has its
lower bound min(I ) = n and its upper bound max(I ) = m.

The point-wise addition of two intervalsA⊕B = {a+b | a ∈
A, b ∈ B} has a natural interpretation: [n1;m1] ⊕ [n2;m2] =

[n1 + n2;m1 +m2]. Note that [0; 0] is the neutral element of

⊕, and hence, for k = 0 the expression I1 ⊕ . . . ⊕ Ik evaluates

to [0; 0]. Also [n1;m1] ⊆ [n2;m2] iff n2 ≤ n1 ≤ m1 ≤ m2.

Four basic intervals are commonly employed in popular

schema languages for semi-structured databases, listed here

together with their shorthand notation: 1 stands for [1; 1],

? for [0; 1], + for [1;∞], and * for [0;∞]. We use I to denote

the set of all intervals andM to denote the the set of basic

intervals.

Bags. Let ∆ be a finite set of symbols. Unordered words are

representedwith bags. Formally, a bag over∆ is a functionw :

∆→ N that maps a symbol to the number of its occurrences.

The empty bag ε has 0 occurrences of every symbol i.e.,

ε(a) = 0 for every a ∈ ∆. Bags are often presented using the

notation {|a, . . .|} with elements possibly being repeated. For

example, when ∆ = {a,b, c}, w0 = {|a,a,a, c, c |} represents
the function w0(a) = 3, w0(b) = 0, and w0(c) = 2. A bag
language is a set of bags.
The equivalent of concatenation for unordered words is

the bag unionw1⊎w2 of two bagsw1 andw2 is [w1⊎w2](a) =
w1(a) +w2(a) for all a ∈ ∆. We also extend this operator to

bag languages: L1 ⊎ L2 = {w1 ⊎ w2 | w1 ∈ L1,w2 ∈ L2}.

Also, for a given bag language L, we define L0 = {ε} and
Li = L ⊎ Li−1

for i > 0.

Regular bag expressions. Regular bag expressions (RBE)
are analogues of regular expressions for defining bag lan-

guages and use disjunction “|,” unordered concatenation “||,”

and unordered repetition. Formally, they are defined with

the following grammar:

E ::= ϵ | a | (E |E) | (E || E) | EI ,

where a ∈ ∆ and I is an interval. Their semantics is defined as

follows: L(ϵ) = {ε}, L(a) = {{|a |}}, L(E1 | E2) = L(E1)∪L(E2),

L(E1 || E2) = L(E1) ⊎ L(E2), and L(E
I ) =

⋃
i ∈I L(E)

i
. By RBE0

we denote the class of expressions of the form aM1

1
|| . . . ||aMn

n ,

where ai ∈ Σ and Mi ∈ M for i ∈ {1, . . . ,n}. We point out

that occurrences of symbols need not be distinct e.g., a ||a+ ||b*

is RBE0.

Graphs. We employ a general graph model that allows to

capture RDF graphs as well as an important subclass of

shape expression schemas (ShEx0). Because shape expres-
sions schemas do not constrain the predicates of the edges of

an RDF graph, we assume a fixed set Σ of predicates names

used to label edges of graphs. To represent (a subclass of)

shape expression schemas as graphs, we additionally label

each edge with an occurrence interval, which intuitively

indicate the admissible number of edges of the given kind

(cf. Definition 2.2). Also, the general graph model allows

multiple edges connecting the same pair of nodes with the

same predicate label, which is not allowed in standard RDF.

Definition 2.1. A graph is a tuple

G = (NG ,EG , sourceG , targetG , labG , occurG ),

where NG is a finite set of nodes, EG is a finite set of edges,
the functions sourceG : EG → NG and targetG : EG → NG
identify resp. the origin node and end point node of an edge,

labG : EG → Σ assigns a (predicate) label to an edge, and

occurG : EG → I assigns an occurrence interval to an edge.

A graph is simple if it uses only the interval 1 and has

no two edges with the same origin, the same end point, and

the same label. By G0 we denote the set of all simple graphs.

A shape graph is a graph that uses only basic occurrence

intervals (in M) and we denote the class of all shape graphs

with ShEx0. □

For the purposes of studying containment of shape expres-

sion schemas the class of simple graph captures adequately

RDF graphs. Although RDF nodes are labeled with URIs,

literal values, and blank identifiers, and shape expression

schemas can constraint node labels, in general these con-

straints can, to some extent, be “simulated.” For instance, if

the schema imposes a type of admissible literal nodes (inte-

ger, date, etc.), literal nodes can be modified to include an

outgoing edge labeled with the type name.

Shape expression schemas constrain the outbound neigh-

borhood of a node, and for that purpose we identify the set

of all outgoing edges of a node n ∈ NG with

outG (n) = {e ∈ EG | sourceG (e) = n}.

Sometimes, if a node n has an outgoing edge leading tom, we

shall callm a child of n (even if n andm are the same node).

Also, we call an a-edge any edge labeled with a ∈ Σ, and
analogously, an I -edge any edge with occurrence interval I .

Shape Expression Schemas. Again, we assume a fixed set

of predicate labels Σ. Given a set of type names Γ, a shape
expression over Γ is an RBE over Σ × Γ and in the sequel

we write (a, t) ∈ Σ × Γ simply as a :: t . A shape expression
schema (ShEx) is a pair H = (ΓH ,δH ), where ΓH is a finite

set of types, and δH is a type definition function that maps

elements of ΓH to shape expressions over ΓH . Typically, we
present a ShEx H as a collection of rules of the form t → E
to indicate that δH (t) = E, where E is a shape expression. For

a class of RBEs C, by ShEx(C) we denote the class of shape
expression schemas using only shape expressions in C.

We recall the formal semantics of ShEx [34] and illustrate

it on the example of a simple graphG0 and a schema H0 in

Figure 2. A typing of a simple graph G w.r.t. H is a relation

T ⊆ NG × ΓH . For instance, a typing of G0 w.r.t. H0 is (for



G0:

n0 n1 n2

a c

b H0:
t0 → a :: t1
t1 → b :: t*

2
|| c :: t3

t2 → b :: t2
? || c :: t3

t3 → ϵ

Figure 2: A simple graph G0 and a schema H0.

clarity, we employ functional notation)

T1(n0) = {t0}, T1(n1) = {t1, t2}, T1(n2) = {t3}.

Note that a node may have a number of types. The signature
of a node n ∈ NG w.r.t. T is an RBE expression

signTG (n) =
����
e ∈outG (n)

(��
t ∈T (targetG (e))

labG (e) :: t
)

For instance, the signature of n1 in G0 w.r.t. T1 is

signT1

G0

(n1) = (b :: t1 | b :: t2) || c :: t3.

A node n satisfies a shape expression E w.r.t. a typing T iff

L(signTG (n)) ∩ L(E) , ∅. For instance, n1 satisfies the type

definition δH0
(t2) ofH0 w.r.t.T1. The typingT is valid iff every

node satisfies the type definition of every type assigned to the

node i.e., L(signTG (n))∩L(δH (t)) , ∅ for every (n, t) ∈ T . Valid
typings of G w.r.t. H form a semi-lattice, with the union as

the meet operation [34]. Consequently, there exists a unique

maximal typing, which we denote by TypingG :H , and in the

sequel we say that a node n has type t if (n, t) ∈ TypingG :H .

Now, G satisfies H if every node of G has at least one type

i.e., dom(TypingG :H ) = NG . By L(H ) we denote the set of all
simple graphs that satisfy H .

Containment. In this paper, we investigate the containment

problem for ShEx: given two shape expression schemas H
and K we say that H is contained in K , in symbols H ⊆ K ,
if L(H ) ⊆ L(K). A counter-example for H ⊆ K is any graph

G ∈ L(H ) \ L(K).

Embeddings.We define a natural notion of embedding that

allows to treat shape graphs as an alternative representation

of ShEx(RBE0).

Definition 2.2. Given two graphs G and H , a binary re-

lation R ⊆ NG × NH is a simulation of G in H iff for any

(n,m) ∈ R there exists a witness of simulation of n bym w.r.t.

R, i.e., a function λn,m : outG (n) → outH (m) such that for

every e ∈ outG (n)

1. labG (e) = labH (λn,m(e)),
2. (targetG (e), targetH (λn,m(e))) ∈ R,

and for every f ∈ outH (m)

3.

⊕
{occurG (e) | e ∈ EG , λn,m(e) = f } ⊆ occurH (f ).

An embedding of G in H is a simulation R of G in H such

that dom(R) = NG , and we write G ≼ H if G there is an

embedding of G in H . □

Figure 3 presents an example of an embedding between

the simple graph G0 and the shape graph corresponding to

the shape expression schema H0 in Figure 2.

G0:

n0 n1 n2

a c

b H0:

t0 t1 t2 t3

b?

c

a b*

c

Figure 3: An embedding of G0 in H0.

The set of simulations ofG in H is a semi-lattice (with the

meet operation interpreted with the set union), and conse-

quently, there exists exactly one maximal simulation of G
in H . We use embeddings to treat graphs as schemas. The

language of a graph H is the set of all simple graphs that can

be embedded in H i.e., L(H ) = {G ∈ G0 | G ≼ H }.
There is a natural correspondence between shape expres-

sion schemas using RBE0 only and shape graphs, and we

show that the existence of a witness of a simulation is equiv-

alent to type satisfaction.

Proposition 2.3. ShEx0 captures precisely ShEx(RBE0),
i.e., for every ShEx(RBE0) schema there is a shape graph in
ShEx0 defining the same language and for every shape graph
in ShEx0 there is a ShEx(RBE0) schema defining the same
language.

Embeddings are closed under composition, which imme-

diately gives the following.

Lemma 2.4. For any G and H , G ≼ H implies G ⊆ H .

The converse does not hold as illustrated in Figure 4, where

two equivalent graphs are given but embedding holds only in

one direction. This example basically illustrates that a shape

H1 :

a *

b *

K1 :

a* a *

b

a*

b

b*

Figure 4: Containment does not imply an embedding:
H1 ⊆ K1 but H1 $ K1.

expression b :: t*
is equivalent to ϵ | b :: t | b :: t+

, a (disjoint)

union that enumerates cases of the original expression. In

Section 5 we identify a practical subclass of shape graphs for

which embedding is also a necessary condition for contain-

ment and then, we analyze the complexity of constructing

an embedding.



3 SHAPE EXPRESSION SCHEMAS
In this section, we address the question of decidability of con-

tainment for ShEx, which is far from obvious as ShEx caries
some expressive power of ∃MSO on graphs combined with

Presburger arithmetic [34] and monadic extensions of Pres-

burger arithmetic easily become undecidable [13]. We show

a triple-exponential upper bound on the size of a counter-

example, which can be compressed to double-exponential

size. The compression does not change the complexity of

validation, which permits us to give a preliminary upper

bound on the complexity of testing containment for ShEx

3.1 Counter-example
To illustrate the analysis of the size of a counter-example we

present in Figure 5 two shape expression schemas H2 and K2

and a counter-exampleG2 for the containment H2 ⊆ K2. We

H2 : t0 → a :: t*
1

t1 → b :: t?
1

K2 : s0 → a :: s1 | (a :: s1 || a :: s2)
*

s1 → b :: s?
2

s2 → ϵ

G2:
({t0}, ∅)

({t1}, {s1})({t1}, {s1})

({t1}, {s1, s2})

a
a

a

b b

F2:
({t0}, ∅)

({t1}, {s1})({t1}, {s1, s2})

a 2
a

b

Figure 5: Two schemas H2 ⊈ K2 (top), a counter-
exampleG2 (bottom left), and its compression F2 (bot-
tom right).

associate with every node of G2 its kind (T , S), the set of all
types T of H2 and the set of all types S of K2 that the node

satisfies. Our goal is to construct a graph that has at most one

node of any possible kind. We point out that in any counter-

example there is at least one node that does not satisfy any

type of K2 (while it satisfies some types of H2). In G2 there

is a single such node and its kind is ({t0}, ∅). This node has
two a-children of the kind ({t1}, {s1}) and one a-child of

the kind ({t1}, {s1, s2}). Notice that none of the ({t1}, {s1})-

nodes can be removed or the ({t0}, ∅)-node would satisfy

the type s0 and the resulting graph would not longer be a

counter-example. Instead, we fuse the ({t1}, {s1})-nodes into

a single one, and use a singleton interval 2 to indicate two

copies of the a-edge. Essentially, this allows to compress the
counter-example into a graph with at most exponentially

many nodes. We then use the existing results on solutions

to Presburger arithmetic formulas to characterize bounds

on the sizes of the intervals necessary in the compressed

counter-examples.

Compression. Simple graphs do not allow multiple edges

with the same label between the same pair of nodes. We

propose a model that allows it by attaching to every edge

a cardinality indicating the number of such edges. More

precisely, a singleton interval is an interval of the form [k ;k]
for any natural k , and a compressed graph is a graph that

uses only singleton intervals on its edges and like simple

graphs allows only one edge per label in Σ between a pair of

nodes. Given a compressed graph F , its unpacking is a simple

graph obtained by making a sufficient number of copies of

each node, each copy has the same outbound neighborhood

but receiving at most one incoming edge.Since intervals are

stored in binary, the unpacking of a compressed graph F is

of size at most exponential in the size of F .

Proposition 3.1. The size of the unpacking of a compressed
graph F is at most exponential in the size of F .

We adapt the definition of validation of ShEx to com-

pressed graphs by extending the definition of node signature.

Given a shape expression schemaH and a compressed graph

F , the signature of a noden ∈ NF w.r.t. a typingT ⊆ NF×ΓH
is

signTG (n) =
����
e ∈outF (n)

(��
t ∈T (targetF (e))

labF(e) :: t
)occurF (e).

Again, the typing T is valid iff L(signTG (n)) ∩ L(δH (t)) , ∅
for every (n, t) ∈ T , there exists a unique maximal valid

typing TypingF:H of F w.r.t. H , and also F satisfies H if

dom(TypingF:H ) = NF . Naturally, if F satisfies H , then its

unpacking also satisfiesH . Checking the satisfaction of ShEx
for compressed graphs remains in NP and to prove it we

employ known results on Presburger arithmetic that we

present next.

Presburger Arithmetic. The Presburger arithmetic (PA) is
the first-order logical theory of natural numbers with addi-

tion that has decidable satisfiability [29]. We point out that

any natural number n can be easily defined with an existen-

tially quantified formula of length linear in log(n). Since we
use PA formulas to define bags, we use a convenient nota-

tion. When the set of symbols ∆ = {a1, . . . ,ak } is known
from the context, a bag w over ∆ can be represented as a

(Parikh) vector of k natural numbers ⟨w(a1), . . . ,w(ak )⟩ and
if a vector of variables x̄ is used to describe a bag over ∆,
we use elements of ∆ to index elements of x̄ : xai designates
w(ai ), for 1 ≤ i ≤ k . Also, we write φ(w) to say that φ is

valid forw .

We extend RBE with intersection L(E1 ∩ E2) = L(E1) ∩

L(E2) because intersection is used to define satisfiability of

a graph w.r.t. a schema and intersection is easily expressed

in Presburger arithmetic. Now, for a regular bag expression

E we recursively construct a formula ψE (x̄) = ψ (x̄ , 1) as



follows.

ψϵ (x̄ ,n) :=
∧

a xa = 0

ψa(x̄ ,n) := xa = n ∧
∧

b,a xb = 0

ψE [k ;ℓ] (x̄ ,n) := (n = 0 ∧
∧

a xa = 0) ∨

(n > 0 ∧ ∃m. k ≤ m ∧m ≤ ℓ ∧ψE (x̄ ,m))
ψE1 |E2

(x̄ ,n) := ∃x̄1, x̄2,n1,n2. n = n1 + n2 ∧

x̄ = x̄1 + x̄2 ∧ψE1
(x̄1,n1) ∧ψE2

(x̄2,n2)

ψE1 ||E2
(x̄ ,n) := ∃x̄1, x̄2. x̄ = x̄1 + x̄2 ∧ψE1

(x̄1,n) ∧

ψE2
(x̄2,n)

ψE1∩E2
(x̄ ,n) := ψE1

(x̄ ,n) ∧ψE2
(x̄ ,n)

The main claim, proven with a simple induction, is that

ψE (w,n) iff w ∈ L(E)n for any bag w over ∆ and any n ≥
0. It follows that L(E) , ∅ iff ∃x̄ .ψE (x̄) is valid. Validity

of existentially quantified PA formulas is known to be in

NP [17], and consequently, we obtain an upper bound on

complexity of validation of compressed graphs.

Proposition 3.2. Validation of compressed graphs w.r.t.
ShEx is in NP.

The following result is instrumental in our analysis of

upper bounds on the size of a counter-example for ShEx.

Proposition 3.3 ([39]). Let Φ = Q1x̄1 . . .Qk x̄k .φ be a
closed formula of Presburger arithmetic in prenex normal
form with k quantifier alternations over the variables x̄ =
x̄1∪. . .∪x̄k (φ is quantifier-free). ThenΦ is valid if and only ifΦ
is valid when restricting the first-order variables ofΦ to be inter-
preted over elements of {0, . . . ,B}, where log(B) = O(|φ |3 |x̄ |

k
).

Compressed counter-example. We take two schemas H
and K such that H ⊈ K and fix a counter-example G ∈
L(H ) \ L(K). We know that there is at least one node of G
that satisfies at least one type of H but no type of K . In
general, for a node n ofG we identify a pair (T , S) consisting
of a set T of types of H and a set of types S of K that n
satisfies. We say that the node n is of the (T , S)-kind and we

identify the set C of all kinds present in G.

kind(n) = (TypingG :H (n), TypingG :K (n)),

C = {kind(n) | n ∈ NG }.

Shape expression schemas may only inspect the labels of the

outgoing edges of a node and the types of the nodes at the

end points of the edges. Consequently, if we replace a node

by a node of the same kind, or more precisely we redirect

all incoming edges of the node to the other node, then the

types of the nodes in the graph do not change, in particular,

it remains a counter-example. Furthermore, we can fuse the

set of all nodes of the same kind into a single node that

belongs to the same kind, and still obtain a graph that is a

counter-example. When fusing several nodes we gather the

incoming edges into a fused node but for the outgoing edges

we use only the outgoing edges of one (arbitrarily chosen)

of the fused nodes, while discarding the outgoing edges of

the remaining nodes. We point out that the obtained graph

needs not longer to be simple, fusing a set of nodes may lead

to several incoming edges with the same label originating

from the same node. Such multiple edges can, however, be

easily compressed to a single one.

We describe the construction of the compressed counter-

example F more precisely. First for every kind κ ∈ C we

pick an (arbitrarily chosen) representative node nκ ∈ G such

that kind(nκ ) = κ. The set of nodes of F is the set of all kinds

ofG , NF = C. For every edge connecting two representative

nodes F has a corresponding edge:

EF = {⟨κ,a,κ
′⟩ | ∃e ∈ EG . sourceG (e) = nκ ,

targetG (e) = nκ′, labG (e) = a}

and for ⟨κ,a,κ ′⟩ ∈ EF

sourceF(⟨κ,a,κ ′⟩) = κ, labF(⟨κ,a,κ ′⟩) = a,

targetF(⟨κ,a,κ
′⟩) = κ ′, occurF(⟨κ,a,κ ′⟩) = [k ;k],

where

k = |{e ∈ outG (nκ ) | labG (e) = a, kind(targetG (e)) = κ
′}|.

The main claim is that G and F satisfy precisely the same

schemas. Furthermore, the number |C| of possible kinds is

at most exponential in the number of types in H and K , and
from the above construction, F has at most one node per

kind.

Bounding the node degree. The remaining question is

how big the cardinalities of the edges of F must be. We

answer this question with the help of Proposition 3.3 by de-

scribing the outbound neighborhood of a node of F with

Presburger arithmetic formula.

For the kind (T , S) ∈ C the formula Φ(T ,S ) examines the

existence of an outbound neighborhood of a node of that

kind that satisfies all types in T and all types in S . This
neighborhood is captured as a bag x̄ over ∆C = {a :: (T ′, S ′) |
a ∈ Σ, (T ′, S ′) ∈ C}, where an occurrence of the symbol

a :: (T ′, S ′) corresponds to one outgoing edge labeled with a
and leading to a node of the kind (T ′, S ′).

Φ(T ,S ) := ∃x̄ .
∧
t ∈T

φt (x̄) ∧
∧

t ∈ΓH \T

¬φt (x̄) ∧∧
s ∈S

φs (x̄) ∧
∧

s ∈ΓK \S

¬φs (x̄).

The formulas φt (x̄) and φs (x̄) verify whether the types t
of H and s of K are satisfied in this neighborhood. This is

done in two phases and we present it only for φt (x̄); the
formula φs (x̄) is defined analogously. The variable xa::(T ′,S ′)
represents the number of outgoing edges with label a to

nodes that satisfy all types in T ′ (and types in S ′). In the



context of satisfying definition of the type t each outgoing

edge is used with exactly one type. Consequently, the next

formula partitions the number of outgoing edges xa::(T ′,S ′)
into all types in T ′. Here, we use a vector ȳ of variables over

{a :: (T ′, S ′) → a :: t ′ | a ∈ Σ, (T ′, S ′) ∈ C, t ′ ∈ T ′}, where
ya::(T ′,S ′)→a::t ′ represents the part of xa::(T ′,S ′) edges that is to

be used with the type t ′.

φt (x̄) := ∃ȳ.
∧

a::(T ′,S ′)∈∆C

xa::(T ′,S ′) =
∑
t ′∈T ′

ya::(T ′,S ′)→a::t ′ ∧ φ
′
t (ȳ).

Finally, the edges with the same label and type of the end

point are aggregated in the vector z̄ representing a bag over

∆H = Σ × ΓH , which is then is fed to the formulaψδH (t ) that
defines the type definition of t (cf. proof of Proposition 3.2).

φ ′t (ȳ) := ∃z̄.
∧

a::t ′∈∆H

za::t ′ =
∑

a::(T ′,S ′)∈∆C
s.t. t ′ ∈ T ′

ya::(T ′,S ′)→a::t ′ ∧ψδH (t )(z̄).

The formula Φ(T ,S ) can be easily converted to prenex normal

form, and then, it is of exponential length, uses an exponen-

tial number of quantified variables, and has only one alter-

nation of quantifiers. Since Φ(T ,S ) is valid for any (T , S) ∈ C,
by Proposition 3.3 the satisfying values for the variables x̄
are bound by a triple exponential, and consequently, have

a binary representation whose size is bounded by double-

exponential function in the size of H and K .

Theorem 3.4. For any two ShEx H and K , if H ⊈ K , then
there exists a compressed graph F that satisfies H , does not
satisfy K , and whose size is at most double-exponential in the
size of H and K .

3.2 Complexity
Very recently containment for RBE has been shown to be

coNEXP-complete [18], and immediately, we obtain this

lower bound.

Proposition 3.5. Containment for ShEx is coNEXP-hard.

The upper bound follows from Theorem 3.4 and Proposi-

tion 3.2. A (universally) nondeterministic Turing machine

for an input pair (H ,K) guesses a compressed graph F and

uses an NP oracle to verify that F satisfies the schema H
and violates the schema K . The input pair is accepted if the

test is passed on every computation path.

Corollary 3.6. Containment for ShEx is in co2NEXP
NP.

4 SHAPE GRAPHS
In this section we consider shape graphs ShEx0, which cor-

respond to the subclass ShEx(RBE0) of shape expression

schemas that use only RBE0 expression for type definitions

(cf. Proposition 2.3). First, we show that the size of a counter-

example is at most exponential and that the bound is tight.

Then, we show that the complexity of the containment prob-

lem for ShEx0 is EXP-complete.

4.1 Counter-example
In Section 3 we have presented an argument showing that a

smallest counter-example has at most exponential number

of nodes, and next we show that for ShEx0 this bound is in

fact tight.

Lemma 4.1. For any n, there exist two shape graphs H and
K such that H ⊈ K and the smallest graph G ∈ L(H ) \ L(K)
is of size exponential in n.

Proof. In our construction the counter-example i.e., G ∈
L(H ) \ L(K), is essentially a binary tree of depth n modeled

with the rules (for i ∈ {1, . . . ,n})

t (i) → L :: t (i+1) || R :: t (i+1)

The leaves of this tree store each a subset ofA = {a1, . . . ,an},
modeled with the two rules

t (n+1) → a1 :: t?
o || . . . || an :: t?

o to → ϵ

The schema H consists exactly of all the above rules while

the schema K contains all but the rule defining type t (1).
Clearly, at this point a counter-example ofH ⊈ K exists, one

whose root node has type t (1) in H but no type in K , how-
ever, it may be small as it suffices to use a dag. To eliminate

small counter-examples, by adding them to the language

of K , we ensure that all leaves of the counter-example are

labeled with distinct subsets of A. In essence, we require

in the counter-example a node at level i to have all leaves

of its left subtree labeled with subsets containing ai and all

leaves of its right subtree labeled with subsets missing ai . For
that purpose, we introduce types s(j)i,1,d (s(j)i,0,d ), which identify
nodes at level j that are using (missing resp.) the symbol ai ;
the additional parameter d ∈ {L,R} is used to handle dis-

junction and essentially indicates the subtree from which

the usage information comes from. The rules for leaves are

(for i ∈ {1, . . . ,n},M ∈ {0, 1}, and d ∈ {L,R})

s(n+1)

i,M,d → a1 :: t?
o || . . . || ai−1 :: t?

o ||

ai :: tMo || ai+1 :: t?
o || . . . || an :: t?

o

The information of using a symbol ai in a branch is propa-

gated upward but only to the level i + 1 with the rules (for

i ∈ {1, . . . ,n}, j ∈ {i + 1, . . . ,n}, andM ∈ {0, 1})

s(j)i,M,L → L :: s(j+1) ?
i,M,L || L :: s(j+1) ?

i,M,R || R :: t (j)

s(j)i,M,R → L :: t (j) || R :: s(j+1) ?
i,M,L || R :: s(j+1) ?

i,M,R

Finally, a tree is invalid for our purposes if a node at depth i
is missing the symbol ai in a leaf of its left subtree or is using

the symbol ai in a leaf of its right subtree. This situation is

identified and propagated to the root node with the rules



(for i ∈ {1, . . . ,n} and j ∈ {1, . . . , i − 1})

p(i)i,L → L :: s(i+1) ?
i,0,L || L :: s(i+1) ?

i,0,R || R :: t (i+1)

p(i)i,R → L :: t (i+1) || R :: s(i+1) ?
i,1,L || R :: s(i+1) ?

i,1,R

p(j)i,L → L :: p(j+1) ?
i,L || L :: p(j+1) ?

i,R || R :: t (j+1)

p(j)i,R → L :: t (j+1) || R :: p(j+1) ?
i,L || R :: p(j+1) ?

i,R

Now, the claim, proven with a simple induction, is that for

any G ∈ L(H ) unless G contains an exponential tree, any

node that has the type t (1) of H also has a type p(1)i,d of K for

some i ∈ {1, . . . ,n},M ∈ {0, 1}, and d ∈ {L,R}. □

The lower bound on the size of a minimal counter-example

for ShEx0 is tight.

Theorem 4.2. For any H ,K ∈ ShEx0 such that H ⊈ K
there exists a graph G ∈ L(H ) \ L(K) whose size is at most
exponential in the size of H and K .

The proof consists of two parts. The first shows that there

are at most exponentially many kinds of nodes, and we use

the same argument in the proof of Theorem 3.4 in Section 3.

The second part uses a pumping argument to show that the

outbound degree of a minimal counter-example is polyno-

mially bounded.

4.2 Complexity
The lower bound on the complexity of containment for ShEx0
is obtainedwith a reduction from nondeterministic top-down

tree automata known to be EXP-complete [11]. The reduc-

tion is non-trivial because RBE0 does not allow directly the

disjunction necessary to express nondeterminism, and the

proof needs to account for graphs that might have cycles

and do not represent trees.

Theorem 4.3. Containment for ShEx0 is EXP-hard.

Since validation for ShEx0 is polynomial [34], the bound

on the size of a counter-example yields a coNEXP procedure

for testing containment. We provide, however, a tight EXP

bound with an exponential procedure for deciding contain-

ment of shape graphs. We outline the main ideas with the

examples that follow. The first example gives a rough sketch

of the framework, while the remaining examples present

more challenging aspects of the problem at hand and how

we address them.

Example 4.4. We consider the two shape graphsH3 andK3

in Figure 6, that represent the two shape expression schemas

presented in Section 1. First, we introduce the notion of type

covering, which essentially for every type t of H3 identifies

sets of types of K3 that capture t . For instance, the type U is

covered by {U1,U2} and the type B is covered by the types

{B1,B2}. Then, we prove an important property of support

H3:

B

U E

L

r*

u

e?

d

n

m? m

n

K3:

B1B2

U1U2

E

L

r*

r*

u

e?

d

r*

r*

u
e?

d

mn

n

n

m

Figure 6: Covering between two shape graphs.

of type t being covered by a set of types S : the definition of

the type t can be unfolded to a disjunction of type definitions

of (a subset of) S . For instance, we take the type definition
ofU

δH3
(U ) = n :: L ||m :: L?,

and decomposem :: L?
into the following disjunction

(n :: L) | (n :: L ||m :: L)

which is equal to δK3
(U1) | δK3

(U2). This indeed shows that

U is covered by {U1,U2}. Here, the types L and E are the

same in both schemas and for simplicity use the same name.

Because shape expression schemas are recursive, the no-

tion of support needs to be defined in a (co)inductive fashion.

For instance, for the type definition of B

δH3
(B) = r :: B* || u ::U || d :: L || e :: E?

sinceU is covered by {U1,U2} we get

(r ::B* ||u ::U1 || d ::L || e ::E?) | (r ::B* ||u ::U2 || d ::L || e ::E?)

and since B is covered by {B1,B2}

(r :: B*
1
|| r :: B*

2
|| u ::U1 || d :: L || e :: E?) |

(r :: B*
1
|| r :: B*

2
|| u ::U2 || d :: L || e :: E?)

which is equal to δK3
(B1) | δK3

(B2). This shows that B is

covered by {B1,B2} even though this very fact is assumed

to hold when constructing the unfolding. □

While unfolding atoms a ::t1
and a ::t?

is relatively straight-

forward, the next example shows that unfolding atoms a :: t*

is more complicated than the previous example might sug-

gest.

Example 4.5. Consider the following two schemas:

H4: t0 → a :: t* K4: s0 → a :: s*
1

s ′
0
→ a :: s+

2
|| a :: s*

1

t → a :: t∅ || a :: t?
∅ s1 → a :: s∅ s2 → a :: s∅ || a :: s∅

t∅ → ϵ s∅ → ϵ



Clearly, t∅ is covered by {s∅}, and consequently, t is covered
by {s1, s2}. We also point out that s1 and s2 are incomparable

and so are s0 and s
′
0
. Essentially, s0 allows only outgoing edges

that lead to nodes of type s1, while s
′
0
requires at least one

outgoing edge that leads to a node of type s2 and an arbitrary

number of edges that lead to nodes of type s1. Naturally, t0
is covered by {s0, s

′
0
}. When constructing the unfolding of

δH4
(t) = a :: t*

0
we observe that since t is covered by {s1, s2}

the type definition a :: t*
can be unfolded to

a :: s*
1
| (a :: s2 || a :: t*)

and then again to

a :: s*
1
| (a :: s2 || a :: s*

1
|| a :: s*

2
)

which after a simple normalization yields δK4
(s0) | δK4

(s ′
0
).□

The next example illustrates why we trace the lineage of

atoms in unfolding and why we additionally consider the

problem of testing emptiness of intersection. In this example

we use arbitrary intervals for brevity, and for instance,a::t [1;2]

is short for a :: t || a :: t?
.

Example 4.6. Consider the following two schemas:

H5: t0 → c :: t

t → a :: t [1;2]

∅ || b :: t [1;2]

∅
t∅ → ϵ

K5: p0 → c :: p1 p ′
0
→ c :: p2 s0 → c :: s1

p1 → a :: t∅ || b :: t∅ s1 → a :: t2
∅ || b :: t [1;2]

∅
p2 → a :: t [1;2]

∅ || b :: t2
∅ s2 → a :: t3

∅ || b :: t [1;2]

∅
p3 → a :: t [2;3]

∅ || b :: t∅ t∅ → ϵ

It is easy to see that t is covered by {p1,p2,p3} and p3 is

covered by {s1, s2}. We shall prove that t0 is covered by

{p0,p
′
0
, s0} by constructing an unfolding of δH5

(t0) = c ::t . We

first use the fact that t is covered by {p1,p2,p3} and obtain

the following disjunction

c :: p1 | c :: p2 | c :: p3 = δK5
(p0) | δK5

(p ′
0
) | c :: p3

To further unfold the atom c :: p3 one use the fact that p3 is

covered by {s1, s2}, which yields

δK5
(p0) | δK5

(p ′
0
) | δK5

(s0) | c :: s2

The remaining atom c ::s2 is in fact void and can be discarded.

Indeed, if we inspect its lineage, we observe that the type t
has been initially replaced by p3 and then by s2. However,

the intersection of the types t ∩ p3 ∩ s2 is empty i.e., there is

no graph with a node having the three types. □

4.2.1 Emptiness of intersection. To identify void atoms in

derivations we present a method for identifying sets of types

whose intersection is empty, a problem of independent in-

terest. The method is based on techniques that are simpler

versions of those central in proving Lemma 4.11, which are

too complex to be presented in full detail.

We introduce the notion of rooted graph, which is a simple

graph with one distinguished root node.We fix a shape graph

H and for a shape expression E by [[E]] we denote the set of
rooted graphs whose root nodes satisfy E. We extend this

notion to sets of shape expressions [[E]] =
⋃
{[[E]] | E ∈ E}.

Since shape expressions useRBE0 and the unordered concate-
nation operator is commutative, we view shape expressions

as unordered collections (bags) of atoms of the form a :: tM

without repetitions of atoms using *. We also use the empty

atom ϵ that is the neutral element of the unordered con-

catenation operator i.e., E = E || ϵ . W.l.o.g. we assume that

the interval + is not used: indeed a :: t+
can be replaced by

a :: t || a :: t*
.

Our method is based on pumping and tagging shape ex-

pressions, which reduces the problem to (disjunctions) of

single-occurrence expressions that use only the interval 1,
denoted SORBE0(1). Letm = max{|δH (t1)|, . . . , |δH (tk )|}+1,

where |E | is the number of atoms in E and ΓH = {t1, . . . , tk }.
Pumping removes ? and * by producing expressions with

none or one occurrences of atoms using ? and up tom oc-

currences of atoms using *. For instance, form = 2 pumping

a :: t? || b :: s || c :: t*
yields

b :: s, a :: t || b :: s,

b :: s || c :: t , a :: t || b :: s || c :: t ,

b :: s || c :: t || c :: t , a :: t || b :: s || c :: t || c :: t .

Note that after pumping the obtained shape expression use

only the interval 1. To obtain single-occurrence expressions

we use tagging, which considers all permutations of atoms

in an expression and numbers the symbols accordingly. For

instance, the expression a :: t || a :: s || b :: t has the following
taggings

a1 :: t || a2 :: s || b3 :: t , a1 :: t || a3 :: s || b2 :: t ,

a2 :: t || a1 :: s || b3 :: t , a2 :: t || a3 :: s || b1 :: t ,

a3 :: t || a1 :: s || b2 :: t , a3 :: t || a2 :: s || b1 :: t .

Our procedure constructs the setXH of all subsets of types

of H whose intersection is nonempty

XH = {{t1, . . . , tk } ⊆ ΓH | [[δH (t1)]] ∩ . . . ∩ [[δH (tk )]] , ∅}

Initially, we begin X0 = P(ΓH ) and we iteratively refine it as

follows. Suppose, at an iteration we have a set X ⊆ P(ΓH ).
Let E1, . . . ,Ek be SORBE0(1) expressions each having the

same number n of atoms and using precisely the same labels

a1, . . . ,an i.e., Ei = a1 ::ti,1 || . . . ||an ::ti,n for i ∈ {1, . . . ,k}. We

say that E1, . . . ,Ek are supported by X if {t1, j , . . . , tk, j } ∈ X
for every j ∈ {1, . . . ,n}. Take any {t1, . . . , tk } ∈ X and

for i ∈ {1, . . . ,k} let Ei be the set of SORBE0(1) expres-
sions obtained by pumping and tagging δH (ti ). We say that



{t1, . . . , tk } is supported by X if for every i ∈ {1, . . . ,k}
there is Ei ∈ Ei such that E1, . . . ,Ek are supported by X.

The one-step refinement function is

Refine(X) = {T ∈ X | T is supported by X}.

Naturally, the above function is monotone, and therefore,

when iteratively applied to X0 = P(ΓH ) it has a fix-point

Refine∗(X0). We claim that this fix point is in fact XH . To

prove that this procedure works in time exponential in the

size of H it suffices to observe that each iteration of Refine
removes from X at least one element, and therefore, the

number of iteration is at most exponential in the number

of types of H , and each iteration works in time exponential

since the sets Ei have a number of expressions exponential

inm and each expression is of size at mostm2
.

Lemma 4.7. Checking emptiness of intersection of a set of
types of a shape graph is in EXP.

4.2.2 Type coverings. We begin with a natural notion of cov-

erage that captures the disjunction introduced by schemas.

For technical reasons and in the interest of simplicity of pre-

sentation, the definitions in the reminder of this section are

for a single shape graph H that is obtained by taking the

disjoint union H ⊎ K of the two shape graphs H and K .

Definition 4.8. Given a shape expression schemaH , a type

t ∈ NH is covered by a set of types S ⊆ NH iff in any simple

graphG all nodes satisfying the type t also satisfy one of the

types in S i.e.,

∀G ∈ G0. Typing−1

G :H
(t) ⊆

⋃
s ∈S Typing

−1

G :H
(s).

The type covering ofH is the relation

CoveringH = {(t , S) ∈ NH × P(NH) | t is covered by S}.
□

Type covering allows us to decide containment in a straight-

forward fashion.

Proposition 4.9. H ⊆ K if and only if for every t ∈ NH
there is S ⊆ NK such that (t , S) ∈ CoveringH⊎K .

We now fix a shape graph H = H ⊎ K and propose an

iterative algorithm for constructing the type covering ofH

using a local characterization of support for elements of type

covering (Definition 4.10). The algorithm begins with the full

relation R = NH × P(NH) and iteratively removes any (t , S)
from R that is not supported by R. It returns the maximal self-

supported relation R which is precisely the type covering

(Lemma 4.11). We show that testing whether an element of R
is supported can be done in exponential time (Lemma 4.12),

and since R has an exponential number of elements and

at most exponential number of iterations is performed, the

algorithm works in exponential time (Theorem 4.13).

Unfolding. Again, we view shape expressions as unordered

collections (bags) of atoms of the form a :: tM , without repe-

titions of atoms using *, and we assume that the interval +
is not used. We propose a method that for a pair (t , S) ∈ R
uses R and basic properties of RBE0 to unfold the type defi-

nition of t into a disjunction of shape expressions. If t can
be unfolded into a disjunction contained in S , then (t , S) is
supported by R and there is no reason to believe that t is not
covered by S , and consequently, no reason to remove (t , S)
from R (at this iteration).

The unfolding is defined with a set of unfolding operations

on RBE0 atoms that return a disjunction of RBE0 expressions.
This set captures: the disjunction from RBE0

a ::t? → ϵ | a ::t a ::t* → ϵ | (a ::t || a ::t*) (1)

from every (t , {s1, . . . , sm}) ∈ R the straightforward disjunc-

tion

a ::t1 → a ::s1
1
| . . . | a ::s1

m (2a)

a ::t? → a ::s?
1
| . . . | a ::s?

m (2b)

as well as disjunction from a :: t*
atoms (for 0 ≤ k ≤ m)

a ::t* → (a ::s*
1
|| . . . || a ::s*

k ) |

(a ::sk+1 || a ::t*) | . . . | (a ::sm || a ::t*)
(2c)

and finally, the containment of RBE0

ϵ → a ::t? a ::t → a ::t? a ::t? → a ::t*
(3)

An unfolding tree w.r.t. R is a unranked tree whose nodes

are labeled with RBE0 expressions and if a non-leaf node is

labeled with an expression E || e , then there is an unfolding

operation (w.r.t. R) e → e1 | . . . | em and the children of

the node are labeled with the expressions E || e1,. . . , E || em .
Furthermore, with a type t in a node we associate its lineage:
the set of types {t , t1, . . .} of its ancestors that have led to

the type. A type used at a node is void if the intersection of

its lineage is empty. A type t that is void at a node n of an

unfolding tree is pruned as follows: if t is used in an atom

a :: t , then the node and all its descendants are removed; if t
is used in an atom a :: t?

or a :: t*
, then the atom is removed

from that the expression at that node and so is any derived

atom in the descendants of the node. Now, an unfolding of

an RBE0 E w.r.t. R is a unfolding tree w.r.t. R whose root is

labeled with all types pruned.

Support.We use unfolding to identify a defining property

of the type covering.

Definition 4.10. Given a shape graph H and R ⊆ NH ×
P(NH), a pair (t , S) ∈ NH×P(NH) is supported by R if δH(t)
has an unfolding w.r.t. R contained in δH(S) = {δH(s) | s ∈
S}. R ⊆ NH × P(NH) is self-supported if every (t , S) ∈ R is

supported by R. □



Because the union of two self-supported relations is also

self-supported, there exists precisely onemaximal self-supported

relation. The support property is an alternative definition

of the type covering, which is the base of our algorithm for

constructing the type covering.

Lemma 4.11. For anyH ∈ ShEx0, the type covering ofH
is the maximal self-supported relation.

Proof. The proof is non-trivial, technically complex, and

we outline only the main key ideas. We show that type cov-

ering is self-supported i.e., if t is covered by S then δH(t)
has an unfolding (w.r.t. the type uncovering) contained in

δH(S), using a series of complex arguments. We generalize

the notion of covering to shape expressions in the natural

fashion.

First, we use a pumping and tagging technique, similar

to the one in Section 4.2.1. We obtain the set of SORBE0(1)
expression E from δH(t) and the set E ′ from δH(S), and we

show that every E ∈ E is covered by E ′. We view a shape

expression E = a1 ::t1 || . . . ||an ::tn as defining a n-cubeQ that

is covered by a set {Q1, . . . ,Qk } of n-cubes corresponding
to expressions from E ′. We then show that Q is covered

by a single n-cube, which is captured with (3) operations

or it can be decomposed into smaller n-cubes each covered

by a proper subset of {Q1, . . . ,Qk }, which is captured with

(2a) operations. This yields an unfolding of E into E ′ that

we use as a skeleton for constructing an unfolding of δH(t)
into δH(S). Furthermore, we observe that the height of the

constructed unfolding is polynomially-bounded.

To show that the type covering is the maximal self-sup-

ported relation, we first prove the following claim.

Claim. Let R be the maximal self-supported relation for H .
For any (t , S) ∈ R that is supported by R with an unfolding
using the facts (t1, S1), . . . , (tk , Sk ) ∈ R, for any graph G and
any node n ∈ NG of type t , if for every childm of n the fact
thatm has a type ti also implies thatm has a type in Si , then
n has a type in S .

We use the above claim to show that for any (t , S) ∈ R, in
any graph G, any node of type t has also a type in S , and
consequently, (t , S) ∈ CoveringH . □

Search graph. The polynomial bound on the depth of an

unfolding allows to show that the number of relevant expres-

sions derived from δH(t) is bounded exponentially, even if

we store the lineage information with every type. We con-

struct an oriented hypergraph, whose nodes are all relevant

expressions and oriented hyperedges represent one-step un-

foldings with void atoms pruned with the help of Lemma 4.7.

We reduce the problem of checking the existence of an un-

folding to the reachability problem in alternating graphs,

known to be P-complete. This gives us an exponential upper

bound on testing the existence of a relevant unfolding.

Lemma 4.12. ForH ∈ ShEx0 and R ⊆ NH ×P(NH), check-
ing that (t , S) ∈ R is supported by R can be done in time
exponential in the size ofH .

Lemmas 4.11 and 4.12 together with Proposition 4.9 give.

Theorem 4.13. Containment for ShEx0 is in EXP.

5 DETERMINISM
In this section we identify a tractable subclass of determin-

istic shape expression schemas that is arguably of practical

use (recall that determinism forbids using the same edge

label twice in type definition). We show that containment of

deterministic shape expression schemas is intractable even if

type definitions use RBE0 only (Theorem 5.7). Interestingly,

if the set of intervals is further restricted to 1 and *, con-
tainment is equivalent to the existence of embedding, which

we show to be tractable (Theorem 5.4). Adding support for

other basic intervals is tricky as unrestricted use of ? leads

to intractability. Consequently, we employ the technique of

characterizing example [27, 35] to find a relatively rich and

tractable subclass of deterministic shape graphs that allows

unrestricted use of 1 and * and a restricted use of ?. We

believe this subclass is of potential practical interest, and

in particular it includes the schema in Figure 1. While our

technique does allow to include +, the further restriction

this addition causes render the class impractical, and conse-

quently, we forbid + altogether (in practice using * instead

of + is often acceptable).

We first illustrate the method of characterizing example on

the example in Figure 7, where we generate a characterizing

example G6 for the schema H6 (which is a representation of

the schema in Figure 1). The central property ofG6 is that any

H6:
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U E
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r*

u

e?

d

n

m? m

n

G6:

b1 b2

u1 e u2

l1 l2

r

r

u e

d

u

d

n

m

n m n

W6:

B0

U0

L0

r*

ue*

d

nm?

Figure 7: Constructing embedding of H6 intoW6 from
embedding of the characterizing example G6 intoW6.

schema K (in DetShEx−0 ) that satisfies G6 is satisfied by all



graphs that satisfy H6. In other words, H6 can be embedded

in any K such that G6 ∈ L(K) and hence for any G ′ ∈ L(H6)

we haveG ′ ∈ L(K). The proof takes the embedding ofG6 inK
and constructs an embedding ofH6 inK . Such a construction
is feasible due to a key observation, whichwe illustrate on the

schemaW6. Since the nodeb1 has the typeB0, by determinism

ofW6 the nodes b1 and b2 have the same type B0. Transitively,

the nodes u1 and u2 have the same typeU0 and similarly the

nodes l1 and l2 have the same type L0. The characterizing

exampleG6 is constructed in such a manner as to make sure

that every type of H6 is described by a set of nodes ofG6, all

embedded into a corresponding type ofW6, which ensures

embedding of the type of H6 in the corresponding type of

W6. For instance, u1 and u2 are embedded intoU0 and since

u1 has an outgoingm-edge and u2 does not, the definition of

the corresponding type inW6 must usem :: L?
0
orm :: L*

0
.

We now define formally the subclass of shape expression

schemas in question. Given a shape graph H and a type

t ∈ NH , a reference to t is any edge e ∈ EH that leads to t i.e.
targetH (e) = t . A reference e is *-closed if occurH (e) = * or

all references to sourceH (e) are *-closed.

Definition 5.1. A shape graphH is deterministic if for every
node n ∈ NH and every label a ∈ Σ, n has at most one

outgoing edge labeled with a. By DetShEx0 we denote the
class of all deterministic shape graphs. By DetShEx−0 we

denote the class of deterministic shape graphs that do not

use + and any type using ? is referenced at least once and

all references to it are *-closed. □

Intuitively, we require that any type using ? must be ref-

erenced and can only be referenced (directly or indirectly)

through *. The schema in Figure 1 belongs toDetShEx−0 since
both uses of the ? operator are closed by the edge related
with interval *.

5.1 Characterizing example
Interestingly, the classDetShEx−0 allows construction of graphs
that characterize any schema in DetShEx−0 up to contain-

ment.

Lemma 5.2. For any H ∈ DetShEx−0 , there exists a simple
graph G ∈ L(H ) of size polynomial in the size of H such that
for any K ∈ DetShEx−0 we have that G ≼ K implies H ≼ K .

The precise construction of the graphG that characterizes

H is in Appendix B. Here, we outline the main ideas and

illustrate them on an example in Figure 8. In essence, for

every type t ∈ NH the graphG needs to contain a number of

nodes of type t that serve the purpose of characterizing t . If t
has an outgoing *-edge e labeled with a that leads to the type
s , then at least one node n of G that characterizes t needs to
have at least two outgoing edges labeled with a that lead to

nodes A that characterize the type s . When n is mapped to a

H7:

*

*

?

*

*

?

G7:

Figure 8: Characterizing example. Different colors de-
note different labels.

type t ′ of K that has an outgoing edge e ′ labeled with a and

leading to s ′, all a-children Amust to be mapped to s ′. This
shows that e ′ is an *-edge. Interestingly, this observation
propagates to descendants ofA. If the type s has an outgoing

edge with label b that leads to the type u, then any b-child
of a node in Amust have the type u, and furthermore, they

are all mapped to a type u ′ that is reachable from s ′ with an

edge labeled with b, etc.
Now, for a type t with an outgoing ?-edge labeled with a

we need two nodes inG that characterize t , which guarantee

that the corresponding type in K uses the right occurrence

interval: one node with one outgoing edge with label a and

one node with no such outgoing edge. Naturally, we need

to make sure that those two nodes are mapped to the same

type in K and this is accomplished by making sure there is

an ascending path from every ?-edge to every closest *-edge.
In general, every type in H is characterized by a number

of nodes that is at most 2 plus the number of ?-edges in H .

Lemma 5.2 renders containment and embeddings equivalent.

Corollary 5.3. For H ,K ∈ DetShEx−0 , H ⊆ K iff H ≼ K .

5.2 Complexity
To characterize the complexity of containment forDetShEx−0
we study the complexity of testing embedding between two

graphs. Interestingly, it turns out that constructing embed-

dings for shape graphs, which use only basic occurrence

intervals, is tractable and becomes intractable if arbitrary

intervals may be used. This rise in computational complexity

does not come from binary encoding of intervals, in fact

the results remain negative even if the arbitrary intervals

are encoded in unary. We also point out that shape graphs

using only basic intervals are as expressive as graphs using

arbitrary intervals because RBE0 with basic intervals and rep-
etition are equivalent to RBE0 with arbitrary intervals. The

difference in complexity is not a contradiction but merely



H8: r

v

o

x1x2
x3

t?f ?

K8:

v0

r 0

1

r 0

2

r 0

3

v

x 1

x
2

x
3

x2

x1

x3

x
3x 2

x 1

r 1

1

r 1

2

r 1

3

v1

x
1 x 2

x 3

x2

x1

x3

x 3

x
2

x
1

o

t?

f ?

t

f

v1

1

v1

2

v1

3

v2

1

v2

2

v2

3

rd
1

rd
2

x
1

x
2

x3

x
1

x2

x 3

t

f

t?
f ?

f ?
t?
t

f

Figure 9: An example of reduction on φ = (x1 ∧ ¬x2) ∨ (x2 ∧ ¬x3).

reflects the fact that containment does not necessarily imply

embedding.

Theorem 5.4. Testing the existence of embeddings between
shape graphs is in P.

The proof of the above theorem consisting of a polynomial

algorithm constructing embeddings between two graphs can

be found in Appendix A. As a result of Corollary 5.3 and

Theorem 5.4, we obtain.

Corollary 5.5. Containment for DetShEx−0 is in P.

Constructing an embedding becomes intractable if arbi-

trary intervals can be employed.

Theorem 5.6. Testing the existence of embeddings between
graphs with arbitrary intervals is NP-complete.

Finally, we observe that lifting the additional restrictions

we impose on DetShEx−0 leads to intractability.

Theorem 5.7. Containment for DetShEx0 is coNP-hard.

Proof (sketch). The proof is by reduction from tautology

of DNF formulas, which we illustrate on the example of

φ = (x1 ∧ ¬x2) ∨ (x2 ∧ ¬x3). We construct two deterministic

schemas H8 and K8 presented in Figure 9. The schema H8 is

satisfied by all graphs defining a valuation of the variables

of φ: a node with the root type r has outgoing edges labeled

with the name of the variable leading to a node of typev that

represents the value of the variable t or f . BecauseDetShEx0
does not allow disjunction, nodes of type v may also have

both outgoing edges t and f , or neither of them. These cases

are covered in K8 by the types r 1

i ’s and r
0

i ’s respectively. The

types rdj ’s capture precisely the valuations that satisfy the

clauses of φ. Hence, K8 is not satisfied by the graphs that

correctly define a valuation that does not satisfy φ. Naturally,
H8 ⊆ K8 iff φ is a tautology. □

6 CONCLUSIONS AND FUTUREWORK
This work was prompted by our recent work on data ex-

change for RDF [6] and ongoing work on schema inference

for RDF, where not only do we ask the questions of type

implication but are also interested in instances satisfying

constraints expressed with the help of ShEx. In this paper,

we have considered ShEx and its two practical subclasses

ShEx0 and DetShEx−0 . While the precise complexity of con-

tainment for ShEx remains open, the complexity results we

have obtained, summarized in Figure 10, provide a good sep-

aration of the presented schema classes. Determinism shows

DetShEx−0 ShEx0 ShEx

P EXP-complete

coNEXP-hard

co2NEXP
NP

Figure 10: Summary of complexity results

promise in allowing reduction in complexity. For instance,

containment for DetShEx is in co2NEXP since validation for

DetShEx is in P. But its precise impact on complexity of con-

tainment needs to be studied further. It is an open question

whether using arbitrary intervals in shape graphs has an

impact on the complexity of testing containment; interest-

ingly the answer to this question is negative for ShEx and
positive for DetShEx−0 . The class of regular bag expression
DIME that permits restricted use of disjunction yet allows for

tractable containment for schemas for unordered XML [5]

and it would also be interesting to see if there are any com-

putational benefits that can be drawn for shape expression

schemas using DIME.
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A CONSTRUCTING EMBEDDINGS

Theorem 5.4. Testing the existence of embeddings between

shape graphs is in P.

Proof. We fix shape graphs G and H and present a itera-

tive procedure for constructing an embedding ofG inH . The

procedure begins with R0 = NG × NH and iteratively refines

it Ri = Refine(Ri−1) by removing any pair of nodes with no

simulation witness

Refine(R) = {(n,m) ∈ R | there exists a

witness λ of simulation of n bym w.r.t. R}.

This process terminates at the earliest iteration k when a fix-

point is reached Refine∗(R0) = Rk = Refine(Rk ). The fix-point
is in fact the maximal simulation ofG inH and naturally, it is

an embedding if its domain contains all nodes ofG . The core
difficulty is in testing the existence of a witness of simulation.

We fix a relation R ⊆ NG × NH and a pair of nodes

(n,m) ∈ R. We abstract the problem of existence of a witness

of simulation of n bym w.r.t. R as a flow routing problem,

where we are given a set of sources V = outG (n), a set of
sinksU = outH (m), and a source-to-sink connection table

E = {(v,u) ∈ V ×U | labG (v) = labH (u) ∧

(targetG (v), targetH (u)) ∈ R},

every source v ∈ V outputs a volume of water between

v .min = min(occurG (v)) andv .max = max(occurG (v)), and
every sink u ∈ U requires an input of at least u .min =
min(occurH (u)) but no more than u .max = max(occurH (u)).
The flow routing problem is to find a valid routing λ : V → U
i.e., a routing such that (v, f (v)) ∈ E for every source v ∈ V
and there are no deficits or overflows at any source. Formally,

given a routing λ we estimate the inflow at a sink u with

min-inflowλ(u) =
∑

λ(v)=u v .min,

max-inflowλ(u) =
∑

λ(v)=u v .max .

A sink u is in deficit if min-inflowλ(u) < u .min and u is in

overflow if max-inflowλ(u) > u .max. Observe that the con-
ditions 1 and 2 in Definition 2.2 are ensured by the definition

of E while the condition 3 follows from lack of deficits and

overflows. Also, w.l.o.g. we can assume that in E every source

is paired with at least one sink.

In essence, the algorithm for constructing a valid routing

(1) starts with an empty routing, (2) assigns it assigns a sink

to every source while distributing any overflow by pushing

it forth to other sinks, and (3) solves any deficit at a sink by

pulling back the input from sources assigned to other sinks.

The main reason why this approach is successful is the

use of basic occurrence intervals in shape graphs, which

implies that the lower bounds are only 0 and 1 while the

upper bounds are 1 and∞. When constructing the routing λ

we need to pay attention to saturated sinks that are unable

to accept any additional inflow. However, saturated sinks are

exactly those u’s with u .max = 1 and max-inflowλ(u) = 1.

Furthermore, w.l.o.g. we can assume thatv .max ≤ u .max for
(v,u) ∈ E, and in particular a source with∞ upper bound can

only be routed to a sink with upper bound∞. Consequently,

any overflow created by the algorithm at a sink u is singular
i.e., max-inflowλ(u) = 2 and u .max = 1.

Given a (partial) routing λ and a sourcev with no assigned

sink, the algorithm assigns to v any admissible sink u0 i.e.,

such that (v,u0) ∈ E. If an overflow is created at u0, the

algorithm attempts to find an acyclic path π from u0 to fin
in the push-forth graph G→λ = (N ,A), where the nodes are
N = V ∪U ∪ {fin} and the oriented edges A are (for v ∈ V
and u ∈ U ):

• u → v if λ(v) = u and u is saturated; an additional

inflow of 1 at sinku must be redirected further and this

can be done by redirecting the output of v to another

sink.

• v → u if (v,u) ∈ E but λ(v) , u; the source v can be

routed to u and any additional inflow at u is at most 1.

• u → fin if u is not saturated; the sink can accept an

additional inflow of 1.

Rerouting λ in accordance with a path from u to fin gives us

a overflow-free routing.

When a total overflow-free routing λ is constructed, the
algorithm identifies any sink u0 with a deficit and tries to

solve it by finding an acyclic path π from u0 to fin in the

pull-back graph G←λ = (N ,A), where the nodes are N =
V ∪ U ∪ {fin}, and oriented edges A are (for v ∈ V and

u ∈ U ):

• u → v if λ(v) , u and v .min = 1; rerouting v to u will

solve a deficit of 1 at u and may create a overflow at u
but only if u = u0 and then the overflow is singular.

• v → u if λ(v) = u, u .min = 1, and v is the only source

such that λ(v) = u and v .min = 1; rerouting v away

from u will create a deficit of 1 at u.
• v → fin if λ(v).min , 1,v .min = 1, and there isv ′ , v
such that λ(v ′) = λ(v) and v ′.min = 1; rerouting the

source v from the sink λ(v) will not create a deficit at
λ(v).

Rerouting λ in accordance with π renders λ deficit-free at

u0. If the rerouting creates a singular overflow at u0, the

algorithm uses the push-forth graph G→λ to find an acyclic

path π ′ from u0 to fin that is deficit-free i.e., with no edge

u → v such that u .min = v .min = 1, which guarantees that

further rerouting λ in accordance with π ′ yields a overflow-
free routing with one sink node u0 less in deficit.

Naturally, the algorithm is polynomial because the sizes

of the push-forth and pull-back graphs are bounded by the

size of E, and all constructed paths are acyclic. □



B CHARACTERIZING EXAMPLES FOR
DETERMINISTIC SHAPE GRAPHS

Lemma 5.2. For any H ∈ DetShEx−0 , there exists a simple

graphG ∈ L(H ) of size polynomial in the size of H such that

for any K ∈ DetShEx−0 we have that G ≼ K implies H ≼ K .

Proof. Let E? = (e1, . . . , em) be all edges in H with occur-

rence interval ?, in an arbitrary but fixed order. The graph

G is constructed as follows. The graph hasm + 2 nodes per

type of H : NG = NH × {0, 1, . . . ,m + 1}, and for simplicity

we shall write t i for (t , i) ∈ NG . The nodes are used to char-

acterize the occurrence intervals used on the outgoing edges

of the type. For an edge e ∈ EH such that t = sourceH (e),
s = targetH (e), and a = labH (e), we construct the following
edges:

(1) if occurH (e) = 1, then t i has one outgoing edge with
label a that leads to si for i ∈ {0, . . . ,m + 1};

(2) if occurH (e) = ? and e = eℓ i.e., ℓ is the position of

e on the list E?, then t i has one outgoing edge with

label a that leads to si for i ∈ {0, . . . ,m + 1} \ {ℓ} and
tℓ has no outgoing edges with label a;

(3) if occurH (e) = *, then for i ∈ {0, . . . ,m} the node t i

has no outgoing edge with label a and the node tm+1

has an outgoing edge with label a that leads to tj for
every j ∈ {0, . . . ,m + 1}.

We now assume thatG ∈ L(K) and construct the following
embedding of H in K :

R = {(t ,u) | u ∈ TypingG :K (t
m+1), inH (t) = ∅} ∪

{(t ,u) | u ∈ TypingG :K (t
m+1), ∃e ∈ inH (t). ∃f ∈ inK (u).

labH (e) = labK (f ) ∧ sourceH (e) = s ∧

sourceK (f ) ∈ TypingG :K (s
m+1)},

where inH (t) = {e ∈ EH | tarдetH (e) = t}. Essentially,
R uses types of the nodes tm+1

but only essential ones: all

types for root nodes (with no incoming edges) and for nodes

with incoming edges only those types that are needed to

ensure satisfaction of their predecessors. It is easy to see that

dom(R) = NH . To prove that it is indeed an embedding we

make several observations. First, we point out that for deter-

ministic shape graphs the concept of witness is redundant

since an edge with a given label can be mapped only to an

edge with the same label. Consequently, we only need to

make sure that R maps nodes in a manner consistent with

the labels of the connecting edges and in quantities within

the bounds of the occurrence interval.

Now we take any edge e ∈ EH and let t = sourceH (e),
s = targetH (e), and a = labH (e). We take anyu ∈ R(t), which
implies that tm+1

ofG has the type u. Since tm+1
has an edge

labeled a and leading to sm+1
, there is an edge f ∈ EK with

label a from u to some v ∈ R(s). We can make the following

observations about the occurrence interval on f :

• In general occurG (f ) ∈ {1, ?, *}, which is adequate if

occurH (e) = 1;
• If occurH (e) = *, thenwe observe that tm+1

hasm+2 ≥

2 outgoing edges labeled with a, all of witch must be

embedded in f , and therefore, occurK (f ) = *.
• If occurH (e) = ?, then we diligently construct a path

ek , . . . , e1, e0 = e such that occurH (ek ) = *, occurH (ej ) ,
* for j ∈ {k − 1, . . . , 1}, and targetH (ei ) = source(ei−1)

for i ∈ {k, . . . , 1}, together with two sequences of

types (tk+1, . . . , t1) and (uk+1, . . . ,u1) such that ti =
sourceH (ei−1) for i ∈ {k + 1, . . . , 1}, (ti ,ui ) ∈ R for

i ∈ {k + 1, . . . , 1} and there is an edge fi ∈ EK from

ui+1 to ui for i ∈ {k + 1, . . . , 1}. We let t1 = t and
u1 = u. Assume we have constructed the path up to ei
with type ti = sourceH (ei ) and the type ui such that

(ti ,ui ) ∈ R. If occurH (ei ) = *, we terminate the con-

struction of the path. Otherwise, from construction of

R there is a type of u ′ that is a parent of ui with an

edge with label a′ as well as a type t ′ ∈ NH connected

to ti with an edge e ′ ∈ EH such that (t ′,u ′) ∈ R. We

set ti+1 = t and ui+1 = u
′
, and ei+1 = e ′. This process

terminates thanks to the definition of DetShEx−0 .
Now, let the edge e be the ℓ-th element in the ordering

E?. we take two corresponding paths in G:

tm+1

k+1
, tm+1

k . . . , tm+1

1
and tm+1

k+1
, t ℓk . . . , t

ℓ
1
;

both following the edges ek , . . . , e1. With a simple in-

ductive proof we show that both t ℓ
1
and tm+1

1
have the

same type u1, and since t
ℓ
1
does not have any outgoing

edge labeled with a, the interval occurK (f ) must be

either ? or *.
This concludes the proof. □
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