
PG-Keys: Keys for Property Graphs
Renzo Angles

Universidad de Talca, IMFD Chile
Angela Bonifati

Lyon 1 Univ., Liris CNRS & INRIA
Stefania Dumbrava

ENSIIE & Inst. Polytechnique de Paris

George Fletcher
Eindhoven Univ. of Technology

Keith W. Hare
JCC Consulting Inc., Neo4j

Jan Hidders
Birkbeck, Univ. of London

Victor E. Lee
TigerGraph

Bei Li
Google LLC

Leonid Libkin
U. of Edinburgh, ENS-Paris/PSL, Neo4j

Wim Martens
University of Bayreuth

Filip Murlak
University of Warsaw

Josh Perryman
Interos Inc.

Ognjen Savković
Free Univ. of Bozen-Bolzano

Michael Schmidt
Amazon Web Services

Juan Sequeda
data.world

Sławek Staworko
U. Lille, INRIA LINKS, CRIStAL CNRS

Dominik Tomaszuk
Inst. of Comp. Sci., U. of Bialystok

ABSTRACT

We report on a community effort between industry and academia to
shape the future of property graph constraints. The standardization
for a property graph query language is currently underway through
the ISO Graph Query Language (GQL) project. Our position is that
this project should pay close attention to schemas and constraints,
and should focus next on key constraints.

The main purposes of keys are enforcing data integrity and
allowing the referencing and identifying of objects. Motivated by
use cases from our industry partners, we argue that key constraints
should be able to have different modes, which are combinations of
basic restriction that require the key to be exclusive,mandatory, and
singleton. Moreover, keys should be applicable to nodes, edges, and
properties since these all can represent valid real-life entities. Our
result is PG-Keys, a flexible and powerful framework for defining
key constraints, which fulfills the above goals.

PG-Keys is a design by the Linked Data Benchmark Council’s
Property Graph Schema Working Group, consisting of members
from industry, academia, and ISO GQL standards group, intend-
ing to bring the best of all worlds to property graph practitioners.
PG-Keys aims to guide the evolution of the standardization efforts
towards making systems more useful, powerful, and expressive.

CCS CONCEPTS

• Information systems → Integrity checking; • Theory of

computation→Datamodeling;Database constraints theory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457561

KEYWORDS

property graphs; key constraints

ACM Reference Format:

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith
W. Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin,WimMartens, Filip
Murlak, Josh Perryman, Ognjen Savković, Michael Schmidt, Juan Sequeda,
Sławek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property
Graphs. In Proceedings of the 2021 International Conference on Management

of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3457561

Brothers and sisters, I have none. But that man’s

father is my father’s son. Who is that man?

–A Classic Riddle about Identity

1 INTRODUCTION

Graphs are a flexible and agile data model for representing complex
network-structured data used in a wide range of application do-
mains, including social networks [64], biological networks [52, 60],
bioinformatics [58], cheminformatics [74], medical data [81], and
knowledge management [41, 82]. In the context of enterprise data
management, many current graph database systems (e.g., Amazon
Neptune [4], Neo4j [70], TigerGraph [29]) support property graphs.
A property graph is a multigraph where nodes and edges can have
labels and properties (i.e., key-value pairs) [14].

The development of standards for property graphs is in process.
In September 2019, ISO/IEC JTC1 approved a project to standardize
a property graph database language GQL. The GQL project is as-
signed to ISO/IEC JTC1 SC32 WG3 Database Languages – the same
committee responsible for developing and enhancing the Database
Language SQL and of which four of this paper’s authors are mem-
bers. A standards effort for a new database model is a daunting
task: the SQL standard was first approved in 1986 and continues to
be enhanced and expanded today. In addition to standardizing the
language for queries, the following aspects also need to be consid-
ered: extensions to the data model, schema language, constraints,

https://doi.org/10.1145/3448016.3457561
https://doi.org/10.1145/3448016.3457561

among others. It is unrealistic to expect that all of these features
can be addressed by the ISO committee in a timely fashion. There-
fore the initial focus of the ISO committee is to standardize a graph
query language. This begs the question: what about standardization
efforts for property graph schema and constraints?

Standards for property graph schema and constraints are critical
to avoid interoperability risks. With the increased popularity of
graph databases and the strong industry uptake, vendors are imple-
menting their own versions of schema and constraints. By the time
the ISO committee starts to address schema and constraints, the
drift will be so large that it will be hard to reconcile approaches.

As a community of graph database industry practitioners and aca-
demics, we acknowledge the need for standardized property graph
schema and constraints. Our work in the Linked Data Benchmark
Council (LDBC) Property Graph Schema Working Group (PGSWG)
is focused on providing community recommendations to the ISO
committee. This paper presents the deliverable and recommenda-
tion of the working group around the notion of PG-Keys, namely
keys for property graphs. Intuitively, a key in a property graph data-
base is used to establish and identify unique nodes, edges, and
properties in the property graph.

Why Keys? Consider the following scenario to motivate the need
for keys in a property graph. An e-commerce company is in its dig-
ital transformation process and in order to be competitive, it needs
to offer customers new functionalities such as personalized rec-
ommendations based on their social network, new offers based on
purchasing habits, etc. To accomplish this goal, the company wants
to create an identity graph in order to achieve a 360 view of a cus-
tomer and subsequently apply graph algorithms for next generation
analytics. This identity graph is the result of integrating several data
sources including the company’s internal relational data (i.e., order
management system, customer relationship management system)
and acquired external data not necessarily in relational format (i.e.,
social media data and consumer behavior data in graph-oriented
format). Notice that some data sources, such as the relational ones,
might already have some constraints. Moreover, data can also be
injected through ETL pipelines, where the constraints are enforced.
However, even with cleaned data sources or input ETL pipelines,
their integration and migration into the graph database might still
bring global inconsistency. Thus, constraints should be persistent
within the graph database, where the integrated and migrated data
is stored, and should be seamlessly enforced on these data. There-
fore, when it comes to integrate data from graph and non-graph
data sources, the need of specifying constraints for the result of the
integration is quite evident, as shown in the following use cases.

Example 1.1 (Identity in the graph). An identity graph providing
a 360 view of customers must have a way to uniquely identify cus-
tomer nodes in the graph. The order management system contains
a unique identifier for a customer which is in the customer_id
column of the Customer table. The following is an example (using
a GQL-like syntax, quite similar with that of Cypher [36, 38]) of
two Customer nodes in the property graph where customerid is
the property that uniquely identifies a Customer node:
(: Customer {customerid:"C123", name:"Alice Smith"}) ,
(: Customer {customerid:"C456", name:"Jan" }) .

Without an identity key, the resulting property graph could have
Customer nodes that appear to be the same when in reality they are
not. This would introduce data errors in the graph. With an identity
key, the integrity of the data is maintained, meaning that there
cannot be another Customer node with the same customerid.

The next source to incorporate is social media data containing
data about Twitter users and the posts they have liked. The fol-
lowing is an example of a user node in the property graph, where
username is a key that uniquely identifies a TwitterUser node:
(: TwitterUser {username:"asmith", firstname:"Alice",

lastname:"Smith", email:"asmith@d.org"}) .
In order to merge Customer and TwitterUser nodes that corre-

spond to the same people, the company applies entity resolution
techniques. The merged entity contains (deduplicated) data from
both sources, for example:

(: Customer {customerid:"C123", name:"Alice Smith",

twitter:"asmith", email:"asmith@d.org"}) .
Note that not every Customer node would have corresponding
social media data, so the following node remains perfectly valid:

(: Customer {customerid:"C456", name:"Jan" }) .
Here, both customerid and twitter are exclusive, meaning that
no two nodes should have identical values of either property. In
addition, customerid is required for each node, while twitter
is optional. Such semantics should ideally be encoded in the key
constraints to prevent ill-formed data from entering the graph.
If each Customer does not have a unique customerid, then the
associated social media information for a single customer may be
incorrectly merged into more than one customer:

(: Customer {customerid:"C456", name:"Alice Smith",

twitter:"asmith", email:"asmith@d.org"}) ,
(: Customer {customerid:"C456", name:"Jan",

twitter:"asmith", email:"asmith@d.org" }) .
Example 1.2 (Integrity in the graph). An Order is placed by a

Customer, as shown in the following graph pattern:
(:Order) -[:placedBy]->(: Customer) .

Business users would want to ensure that (1) an Order must be
associated with a Customer and be exclusive to that Customer and
(2) a Customer can place zero or more Orders. These business rules
can be ensured through key constraints. It is not uncommon that
key constraints like this also imply such a participation constraint.

Without this key constraint for Order, the resulting property
graph could have Order nodes without an associated Customer,
thus introducing data errors in the graph. For example, if in the
process of replicating the order management system to a prop-
erty graph, the Order table has a customer_id column, which is a
foreign key referencing the Customer table, and the customer_id
column is nullable, this can lead to problems. Perhaps that value
is allowed to be changed later, or maybe it is a bug in the order
management system. If a row in the Order table has a NULL value
in the customer_id column, then the resulting property graph can
have an Order nodewithout a corresponding Customer. This would
heavily affect analytics and recommendations and subsequently
create the need to invest more money and effort in data cleaning.

With the key constraints, these problems would be avoided. First,
the keys enforce the data integrity of the property graph. Second,
data quality issues can be identified proactively thus avoiding costly
data cleaning expenses later on. Therefore, business rules can be

modeled as key constraints, thereby maintaining property graphs
consistently and preventing data quality issues.

The above use cases showing the utility of PG-Keys in data
integration and data migration pipelines are recurrent in graph
database applications, as witnessed by the industry members of the
PGSWG (namely Amazon, data.world, Google, Interos, Neo4j, and
TigerGraph). Furthermore, property graph databases such as Neo4j,
Tigergraph, etc., are transactional, therefore they can be used as a
database of record. For this reason, keys are crucial to reference and
identify a node, edge, or property in a graph, avoid duplicate nodes
and edges, provide a base for describing how one entity connects
to another, constrain the structure of the database, and enforce
identity and integrity of the nodes, edges, and properties in a graph,
among others.

From an academic viewpoint, keys are interesting to study be-
cause they are the most basic and most-used type of database con-
straint, and as such play a fundamental role in reasoning over data
and queries for the sake of correctness and performance. For exam-
ple, the existence of keys influences the choice of data structures
and algorithms for indexing, and they can be crucial for determin-
ing if a certain query always has a unique and meaningful result.
So an effective and well-understood formalism for describing keys
is crucial for developing a body of knowledge that can help with
building correct and more efficient databases.

Property graph keys today. Given the popularity of property
graphs and the rise of numerous database vendors, one would
believe that incorporating keys in property graphs would be a
foregone conclusion. Unfortunately, we are at a stage where there
is already a significant drift between database vendors. From an
academic perspective, there has been broad research of keys in a
variety of data models, including graphs; however, the results are
disconnected from the needs of industry.

Industry. The online documentation of thirteen property graph data-
base systems (AgensGraph [3], Amazon Neptune [4], Azure Cosmos
[59], DataStax [27], JanusGraph [45], Memgraph [57], Neo4j [76],
Oracle Spatial and Property Graph [62], RedisGraph [47], Sparksee
[75], TigerGraph [77], TinkerPop [9] and Titan [78]) reveal the fol-
lowing. Some systems (DataStax, Oracle Spatial and Property Graph,
and TigerGraph) offer primary keys for nodes, which combine three
constraints on the property values: unique, mandatory, and single-
valued. Other systems take a more granular approach. AgensGraph,
Memgraph, Microsoft Azure Cosmos, Neo4j, and Sparksee support
a uniqueness constraint on nodes: the same property value may not
appear in more than one node of a given label or type. AgensGraph,
Memgraph, and Neo4j also support a mandatory constraint: every
node having a given label or type must have a value for the given
property. Both uniqueness and mandatory are supported in Oracle
relational database, which are then inherited in the derived Spatial
and Property Graph. Some systems offer some of these constraints
for edges, but no clear pattern emerges. In general, every edge has
an implied constraint, namely that it connects one source node and
one destination node. For TigerGraph, this is extended to say that
these two nodes form the primary key of an edge. This means there
may be only one edge of a given type between a given pair of nodes.
Other systems do not have this built-in constraint, embracing a
multigraph model. To our knowledge, none of these systems offer

user-specified edge cardinality. It is clear that there is no uniform
approach taken for keys in property graphs. This lack of uniformity
underlines the importance of a standardization effort motivated by
existing use cases and based on solid theoretical foundations.

Academia. The notion of “key” exists in most database systems,
although its definition and meaning depend on the underlying
database model. For example, a key in the relational model is a set
of attributes whose values are used to identify tuples inside a table
[2]; in object-oriented data models, object identity is achieved by
equipping each database object with a unique identifier [67] or by
using an arbitrary query [65]; in semi-structured models and XML,
a key can be specified in terms of path expressions [18]; in RDF,
every resource is either identified by an Internationalized Resource
Identifier (IRI) [48] or by using a term described by a vocabulary
[49]. Section 5 gives a closer review of these notions.

In the context of graph databases, we can also find different
approaches to key constraints in the research literature [8, 14]. A
prominent proposal for graph keys [33] relies on a graph model
that differs from the property graph model in that property values
are modeled as data value objects (i.e., special data nodes) and edges
do not have identity or property values. Keys there are a kind of
uniqueness constraint defined in terms of graph patterns (to specify
topological constraints and value bindings), and are interpreted
based on graph pattern matching. The focus of the paper is on
the entity-matching problem rather than on producing a widely
applicable recommendation for the design of keys, rooted in in-
dustrial property graph use-cases. Specifically, the authors analyze
the general complexity of the problem and evaluate two specific
algorithms for entity matching. The work has been extended to
graph functional dependencies [34], though for a model that is less
general than property graphs, as values are only allowed at the
nodes. The extension focuses on the satisfiability, implication and
validation problems for functional dependencies rather than on a
recommendation proposal for property graph databases.

A recent formalism [51] allows the definition of property-based
key constraints solely on nodes and discusses its possible imple-
mentation on top of Neo4j using the Cypher language; that is, for a
label and a set of properties, all the properties must exist in all the
nodes with that label, and each combination of the values for these
properties is unique for each node. It is also observed that such
keys can be extended to nodes that carry multiple labels. The focus
of this work is on the implication problem and its axiomatic char-
acterization. Another extension of Neo4j constraints [68] studies
new notions such as “node property uniqueness” to make reference
to a set of properties whose values must be unique for a given set
of nodes, and “mandatory properties” for nodes and edges.

Although various aspects of key constraints for graph database
models have been touched upon in the past, a full-fledged formalism
as the one presented in this paper is missing. Moreover, it is clear
that there is no consensus among the vendors. The existence of this
working group is evidence that a consensus is needed.

Contributions. Motivated by the current situation in property
graph data management systems, and following the success of G-
CORE [6], the Property Graph Schema Working Group was formed
in 2019. This paper documents the consensus based on intensive and
constructive discussions held over 18 months between the industry

and academic members of the group. Our contributions are: (a) an
analysis of the requirements for property graph keys; (b) a proposal
for a modular, flexible, and expressive formalism called PG-Keys,
that defines a syntax and a semantics for specifying keys, satisfying
all design requirements; (c) a comparison of this formalism with
keys in existing database models and data models.

Our contributions impact the following audiences: (1) industry
practitioners building graph databases, who can use our framework
as a guideline to incorporate keys in their systems, (2) graph data-
base standards committee members, who can build upon our rec-
ommendations for upcoming standardization features, and (3) aca-
demics, who are given a concrete model of keys for property graphs,
which they can use as a basis for further research.

2 DESIGN REQUIREMENTS FOR KEYS

In this sectionwe elaborate on the design requirements for a suitable
notion of key for property graphs. We begin by discussing the
relevant functions that keys play in databases.

2.1 Purposes of Keys

A common reason for using keys is to constrain the database
contents and prevent data patterns that are nonsensical, contra-
dictory, or unnatural. For instance, a key can be used to prevent
a database from storing two copies of information for individuals
using the same SSN (Social Security Number). Also, in relational
tables that represent relationships between entities, keys are used
to express participation constraints that restrict the relationships to
many-to-many, one-to-many, and one-to-one kind, cf. Example 1.2.

Another purpose of keys is to allow one to reference database
objects. For example, foreign keys in relational databases allow
one record to reference another, by citing its primary key, a com-
mon mechanism for representing relationships between entities. In
property graphs, relationships are represented with edges rather
than foreign keys, and consequently, keys are not needed for intra-
database referencing. However, a reference mechanism is still re-
quired by external applications that access the database.

A special, but distinct, case of referencing is when keys are used
to identify real-life objects represented by database objects, and
vice versa. To this end, keys specify the identifying information for
each object. This use case is particularly relevant in various entity
resolution problems [23, 31], where it is essential that the identities
of objects can be compared through their identifying information
(cf. Example 1.1). Also, this use of keys is crucial in conceptual
data models and object-oriented database models [42, 43], which
typically introduce an abstract object identifier and a link to real-life
objects needs to be established.

All of the above uses of keys are relevant for property graphs
and motivate the following requirement.

R0 Coverage. The proposed formalism must address the need to
constrain the database and to reference and identify objects.

2.2 Key Types

To properly address the various purposes of keys, we elaborate on
a repertoire of key types of varying power, but first we need to
outline the basic anatomy of keys and how they work.

canonicaltotal
IDENTIFIER

EXCLUSIVE
MANDATORY

EXCLUSIVE
SINGLETON

EXCLUSIVE

Figure 1: Hierarchy for PG-Keys.

A key has a scope, which is the set of objects to which it applies,
and a descriptor, which specifies, for an object in the key scope,
how to obtain a key value. For instance, in relational databases, the
scope of a key is a table and the descriptor consists of a set of (key)
attributes: for an object represented by a single row of a table, the
key value consists of the values of key attributes in that row.

For object identification purposes, the key values need to be:
EXCLUSIVE, no two objects in the key scope can share a key value.
This ensures unambiguity of the reference given by the key.

MANDATORY, every object in the key scope must have a key value.
This ensures that every object in the key scope can be referenced
using the key, which provides a total reference scheme.

SINGLETON, every object in the key scope must have at most one
key value. This ensures that the key value is canonical, and in
particular, for any two objects in the scope that have key values,
the objects are identical if and only if their key values are the
same. So, the key value of an object is equivalent to its identity.

The conditions above are in fact fulfilled by virtually all existing
notions of keys, including keys in relational databases [2], keys in
ER diagrams [22], and keys in XML Schema [20, 53].

For the purposes of referencing objects and imposing constraints,
we additionally consider variants that drop either MANDATORY or
SINGLETON or both. Indeed, such variants are commonly employed
in existing database models and data modeling frameworks. For
instance, XML Schema proposes the <unique> identity constraint
that drops MANDATORY. Similarly, SQL provides a UNIQUE constraint
for relational databases (where SINGLETON is implied by 1NF).

For the presented purposes, we identify four natural key types,
which we illustrate with an example of a system that manages
information about a set of users:
• EXCLUSIVE MANDATORY SINGLETON, or IDENTIFIER for short,
e.g., login: every user is required to have precisely one, and no
two users can have the same login;

• EXCLUSIVE MANDATORY, e.g., email: every user must have at
least one email and no two users can use the same email;

• EXCLUSIVE SINGLETON, e.g., preferred email: every user may
have at most one preferred email for contacting them but again
no two users can have the same preferred email;

• EXCLUSIVE, e.g., alias: every user may have an arbitrary number
of aliases but no two users can have a common alias.

These four key types form a natural hierarchy, presented in Figure 1:
arrows lead from weaker to stronger types of keys.

2.3 Defining Scope and Descriptor

We next identify design requirements that focus on defining the
scope and the descriptor of keys. To illustrate them, we use a small
example of a property graph, presented in Figure 2, representing a

Social Network (SN) graph database inspired by the LDBC Social
Network Benchmark [5, 32]. Recall that a property graph is a di-
rected labeled multigraph whose nodes and edges have (possibly
multiple) labels and properties [7, 8, 14].

For a majority of keys, the scope and the descriptor are defined
by simple means of inspecting labels and property values only. For
instance, countries, represented by nodes with label Country, are
identifiable by their name, stored as the property name.

However, the information relevant to establishing the kind of a
node and its key value may be located outside of the node: accessing
it may require navigating through the graph. For instance, suppose
that we wish to express a key that asserts that forum moderators
can be distinguished through their first and last names alone. The
scope of such a key consists of Person nodes with an incoming
hasModerator edge. Similarly, consider a key stating that a city can
be identified with the combination of its name and its country: the
key descriptor needs to access a Country node reachable from the
City node with an outgoing isPartOf edge. Hence, the following.

R1 Key Scope. The proposed key formalism must support a rich
language that allows specification of relevant elements of the
property graph that represent real-world objects. In particular,
it must allow the selection of nodes, edges, and their properties.
This language cannot assume that a schema is present.

R2 Key Descriptor. Additionally, the proposed key formalism
must support an equally rich language to locate the graph
elements constituting the key value of an object in scope.

2.4 Object Identity

In R1, we state the need to consider nodes, edges, and properties
as the objects which one may wish to identify with a key. The
justification for nodes is straightforward, since they are typically
used to represent real-world objects. Edges represent relationships,
which may capture events and facts. For instance, in the SN graph
database, the studyAt edges represent the fact that an individual at-
tends university and, as such, we may wish to identify them. Finally,
it is also conceivable that a real-world object is not represented
directly in a graph database with a dedicated node or edge, but
rather by a property value. For instance, a mobile phone may be
represented by its IMEI number, stored as an attribute of the node
representing its owner. We point out, however, that property values
are literal values and, hence, do not have an identity of an abstract
data object, such as nodes and edges. Consequently, the treatment
of property values needs to adequately address this difference.

In the context of the relational model, keys are modeled as equal-
ity generating dependencies [2], where the generated equalities are
between domain values. However, they can also be understood as a
way of determining if two records represent the same real-world ob-
ject. Namely, any two records that agree on key attributes represent
the same real-world object and, therefore, should be equal. Keys for
property graphs can also be understood in this way as a mechanism
for determining the identity of the objects by nodes, edges, and
property values. This leads to the following requirements.
R3 Node Identity. Our formalism must allow determining the

identity of nodes in a graph database.
R4 Edge Identity. Our formalism must allow determining the

identity of edges in a graph database.

R5 Property Value Identity.Our formalismmust also allow iden-
tification of property values of both nodes and edges. In par-
ticular, the formalism must allow the determination that two
properties must or must not have the same value.

Note the distinction between object identity and the ability of users
to observe and compare object identifiers (i.e., the concrete object
ID values used internally by a system implementation). Towards
maximal flexibility for system designers and implementors, we do
not require access to observable object identifiers in our formalism.

2.5 Pragmatic Concerns

Finally, we list requirements of a pragmatic nature. They are con-
cerned with ease of use and feasibility of implementation.
R6 Usability. The keys defined by the formalism must be under-

standable and intuitive for the intended users. Preferably the
formalism should be declarative.

R7 Validation. It should be relatively straightforward to validate
a key, i.e., check whether it holds in a given property graph. Its
complexity should be comparable to the complexity of execut-
ing a query in the available querying apparatus.

3 QUERYING PROPERTY GRAPHS

In this section, we discuss languages that can be used to specify the
scope and descriptor of key constraints for property graphs. To this
end, we first treat property graphs themselves. A property graph is a
directed labelledmultigraphwith the special characteristic that each
node or edge maintains a (possibly empty) set of properties, where
a property is a name-value pair. From a data modeling point of
view, a node represents an entity, an edge represents a relationship
between entities, a label represents a classification or type, and a
property represents an attribute of an entity or relationship.

The general structure of a property graph can be restricted to
satisfy specific requirements. In this paper we will assume the
following restrictions: each node/edge has an exclusive object iden-
tifier (oid); each node/edge has zero or more labels; each node/edge
has zero or more properties; the value of a property must be either
a simple value (e.g., a number, a string, a date) or a complex value
(e.g., a tuple, a set, a JSON structure); and two properties (inside a
single node/edge) cannot have the same name.

We now give a formal definition of property graphs. Assume
that L is a countably infinite set, containing labels and property

names, andV is a countably infinite set of property values.

Definition 3.1 (Property Graph). A property graph is defined as a
tuple𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜋) where: 𝑁 is a finite set of nodes; 𝐸 is a finite
set of edges such that 𝑁 ∩𝐸 = ∅; 𝜌 : 𝐸 → (𝑁 ×𝑁) is a total function
mapping edges to ordered pairs of nodes; 𝜆 : (𝑁 ∪ 𝐸) → 2L is a
total function mapping nodes and edges to sets of labels (including
the empty set); 𝜋 : (𝑁 ∪𝐸) × L ↦→ V is a partial function mapping
nodes / edges and property names to property values.

Example 3.2. Consider the property graph in Figure 2. We have
𝑁 = {𝑐𝑡2, 𝑐𝑛2, . . . ,𝑚2,𝑚1};𝐸 = {𝑝𝑜2, 𝑟1, . . . , 𝑠2}; 𝜌 (𝑝𝑜2) = (𝑐𝑡2, 𝑐𝑛2),
. . ., 𝜌 (𝑟1) = (𝑚2,𝑚1); 𝜆(𝑐𝑡2) = {City}, . . . , 𝜆(𝑚1) = {Message,
Post}, 𝜆(𝑝𝑜2) = {isPartOf}, . . . , 𝜆(𝑠2) = {studyAt}; and 𝜋 (𝑐𝑡2,
name) = Wassenaar, . . . , 𝜋 (s2, classYear) = 2021.

ct1 :City

name:Wassenaar

cn1 :Country

name: Japan

ct2 :City

name:Wassenaar

cn2 :Country

name: The Netherlands

𝑢1 :University

name: The Hague University

𝑝2 :Person

firstname: Akira
lastname: Miyazaki

𝑝1 :Person

firstname: Hayao
lastname: Kurosawa
birthday: 1988-06-24

𝑓0 :Forum

title: Databases

𝑚1 :Message :Post

contents: Keys are. . .
lang: en

𝑚2 :Message :Comment

contents: Indeed, . . .
lang: en

l1 :isLocatedIn
l2 :isLocatedIn

l3 :isLocatedIn
p
o1

:isPartOf

p
o2

:isPartOf

𝑠1 :studyAt

classYear: 2020

𝑠2 :studyAt

classYear: 2021

m
d1 :hasModerator

mb1 :hasMember

c1 :containerOf

c2 :containerOf

r1 :replyOf

Figure 2: An example of a property graph: a Social Network (SN) graph database. For ease of reference, we associate with every node and
edge an identifier and employ consistent typographic conventions. For instance, take the node 𝑢1 representing the Hague University: 𝑢1 is
its identifier, University is its only label, name is a property name, and The Hague University is its value.

For defining the scope and descriptor of key constraints, we
assume that we can use a language that allows us to map property
graphs 𝐺 to tables 𝑇 , where a table 𝑇 is a set of bindings that
map variables to values. Concretely, we assume that we can write
statements such as:

𝑞(𝑥) ,
where 𝑥 is a tuple of variables that bind to nodes, edges, and property
values. We will use these statements to describe the scope and
descriptor of keys. Informally, such a statement could be the query

“Return all bindings to (𝑥,𝑦, 𝑧) such that 𝑥 is a person,

𝑦 the city that 𝑥 is located in, and 𝑧 is the name of 𝑦.”

On the data in Figure 2, this query would return the table

𝑥 𝑦 𝑧

𝑝1 𝑐𝑡1 Wassenaar
𝑝2 𝑐𝑡1 Wassenaar

where the first and second row express that (𝑥,𝑦, 𝑧) can be bound
to (𝑝1, 𝑐𝑡1, Wassenaar) and (𝑝2, 𝑐𝑡1, Wassenaar), respectively.

Notice that our convention to let variables bind to nodes, edges,
and property values implies that (a) queries cannot output paths
and (b) queries can only output entire property values, treating
them as atomic. We will consider extensions of our formalism that
relax these conditions in Sections 6.2 and 6.3.

The language for specifying 𝑞(𝑥) will be a parameter of PG-
Keys. This means that different database systems can use different
languages for specifying 𝑞(𝑥) and still fully conform to PG-Keys.
We recommend using languages with a good expressiveness/com-
plexity balance, which will allow efficient implementations of key
validation, while providing sufficient expressive power.

In order to be able to present examples in the paper, however,
we will specify 𝑞(𝑥) as queries in a language where the patterns
are expressed in a GQL-like syntax, similar to that of Cypher [36],
a popular graph query language. In this syntax the above query
would be written as

x, y, y.name WITHIN

(x:Person) -[: isLocatedIn]->(y:City).

Here, the part preceding keyword WITHIN specifies the output of
the query, whereas the part following WITHIN specifies the pattern
to be matched in the property graph. Notice that our syntax does
not require giving an explicit name to every variable. For instance,

we just use y.name to refer to “the name of 𝑦”, which we called 𝑧
before. We will use this convention throughout the paper.

If there is exactly one output variable and this is the only variable
in the pattern, as for example in x WITHIN (x:Person), then we
allow the query to be specified by just the pattern (x:Person).

We will also assume that all variables in the query, including the
implicit ones, must be bound to existing objects in the property
graph. In Section 6.1, we discuss what happens when a reference to
an undefined property is allowed to occur. In that case, following the
practice of existing graph query languages, a null (or more precisely,
a non-applicable null) is returned. Existing query languages tend
to follow SQL’s three-valued approach to handling nulls, though
in Section 6.1 we suggest another approach that fits in better with
the semantics of undefined properties: namely, returning false for
results of comparisons using such properties.

4 A GUIDED TOUR OF PG-KEYS

In this section, we define PG-Keys formally and demonstrate how
they satisfy the design requirements identified in Section 2.

We begin with a basic example illustrating the general shape
of PG-Keys. Suppose that cities can be identified by their name
and the country they are in (if this information is known). More
precisely, this means that the combination of the name property of
a city node, with the country node to which it has an isPartOf
edge, identifies the city node. The corresponding PG-Key

FOR (x:City) EXCLUSIVE x.name , z WITHIN

(x) -[:isPartOf]->(z:Country)

involves two queries. The query (x:City) specifies the scope of the
PG-Key, which is the set of all possible targets; here, city nodes. The
query x.name, z WITHIN (x)-[:isPartOf]->(z:Country) is the descriptor
that selects a key value for each target; here, the city’s name and
the country it is part of. The keyword EXCLUSIVE indicates that the
PG-Key asserts that the key value is exclusive to each target.

4.1 PG-Keys Formally

A PG-Key is an expression of the form
FOR 𝑝 (𝑥)
EXCLUSIVE [MANDATORY | SINGLETON] | IDENTIFIER 𝑞 (𝑥, 𝑦) ,

where𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) for some positive integer 𝑛, and 𝑝 (𝑥) and
𝑞(𝑥,𝑦) are queries, called the scope and the descriptor, respectively.

Note that the keyword WITHIN appearing in the basic example
belongs to our syntax for queries.

The keywords EXCLUSIVE, MANDATORY, and SINGLETON indicate
which assertions the PG-Key makes:
EXCLUSIVE — no two targets can have the same key value;
MANDATORY — for each target there is at least one key value;
SINGLETON — for each target there is at most one key value.
More precisely, the assertions can be formulated as follows:
(K1) for all 𝑜1 and 𝑜2 such that 𝑝 (𝑜1) and 𝑝 (𝑜2), for all 𝑟 such that

𝑞(𝑜1, 𝑟) and 𝑞(𝑜2, 𝑟), it holds that 𝑜1 = 𝑜2;
(K2) for all 𝑜 such that 𝑝 (𝑜), there exists 𝑟 such that 𝑞(𝑜, 𝑟);
(K3) for all 𝑜 such that 𝑝 (𝑜), for all 𝑟1 and 𝑟2 such that 𝑞(𝑜, 𝑟1) and

𝑞(𝑜, 𝑟2), it holds that 𝑟1 = 𝑟2.
A graph 𝐺 satisfies: an EXCLUSIVE constraint if condition (K1)

holds, an EXCLUSIVE MANDATORY constraint if (K1) and (K2) hold,
an EXCLUSIVE SINGLETON constraint if (K1) and (K3) hold, and
an IDENTIFIER constraint if (K1), (K2), and (K3) hold. That is,
IDENTIFIER is a shorthand for EXCLUSIVE MANDATORY SINGLETON.
PG-Keys clearly satisfies design requirements R1–R5 of Section 2:
there is full support for specifying the scope (R1) and descriptor
of a key (R2); and, key constraints can be defined for nodes (R3),
edges (R4), and property values (R5).

In the following Sections 4.2–4.4, we give a guided tour highlight-
ing how design requirement R6 (Usability) is also satisfied, through
the intuitive declarative way in which PG-Keys are specified. We
further address design requirement R0 (Full coverage): PG-Keys
allows us to constrain the graph database, reference objects within
the database, and identify objects in the database. Indeed, our pre-
sentation follows the modular structure of the PG-Keys formalism,
showcasing the support provided for finely controlling the scope
and descriptor (which can be complex queries over object proper-
ties and graph topology) and for the four key types identified in
Section 2. Last but not least, the discussion of validation of PG-Keys
in Section 4.5 addresses design requirement R7 (Validation).

4.2 Keys on Nodes

Keys Defined Using Properties. Suppose that we are in the process
of building our SN graph, and not all country nodes have name
property values yet. However, the name property should be unique
for each country, for countries that already have a name. More
precisely, if it exists, the name property of a country node should
identify the country node. This is a uniqueness (or exclusivity)
constraint, allowing us to reference countries:

FOR (x:Country) EXCLUSIVE x.name .
In other words, given any two nodes 𝑛1 and 𝑛2 labeled Country,
if they have the same value for the property name, then it must be
the case that 𝑛1 = 𝑛2.

As the data becomes more complete, suppose that we further
require that each country must have a name. In this case, reference
constraints and identification constraints are equivalent, because
our data model does not include multi-valued properties:

FOR (x:Country) EXCLUSIVE MANDATORY x.name ,
FOR (x:Country) IDENTIFIER x.name .

Keys Defined Using Properties and Topology. To further illustrate
the distinction between EXCLUSIVE MANDATORY and IDENTIFIER,

we return to the example with which we opened this section, where
cities are identified by their name and the country they are part of
(if this information is known). This is an example of a uniqueness
constraint allowing us to reference cities, i.e., given any two nodes
𝑛1 and 𝑛2 labeled City, if they have the same value for the property
name and both have an isPartOf edge to a common node𝑛3 labeled
Country, then it must be the case that 𝑛1 = 𝑛2. If we further require
that cities must have names and must be part of a country, then it
would be natural to specify the constraint

FOR (x:City) EXCLUSIVE MANDATORY x.name , z WITHIN

(x) -[:isPartOf]->(z:Country)

allowing to reference cities and impose the required constraints
on the graph topology. If we further require that cities are part of
exactly one country, we would specify the identification constraint:

FOR (x:City) IDENTIFIER x.name , z WITHIN

(x) -[:isPartOf]->(z:Country) .

Keys Defined Using Topology. As an example of a constraint defined
purely in terms of graph topology, consider forums which can be
identified by the posts that they contain, i.e., knowing a post, the
forum that contains it is uniquely identified. This is a uniqueness
constraint, allowing us to reference forums:

FOR (x:Forum) EXCLUSIVE z WITHIN

(x) -[: containerOf]->(z:Post) .
In other words, given any two nodes 𝑛1 and 𝑛2 labeled Forum, if
they both have a containerOf edge to the same Post, then it must
be the case that 𝑛1 = 𝑛2. If we further require that forums must
have posts, we specify an EXCLUSIVE MANDATORY constraint on the
database. Further, it is not expected that forums must each have
exactly one post (since these would be rather lonely forums), hence
it doesn’t make sense that posts are identifiers for forums. We can
express that each post is contained in exactly one forum as

FOR (z:Post) MANDATORY SINGLETON x WITHIN

(x:Forum) -[: containerOf]->(z) ,
but this is a participation constraint rather than a key constraint,
and is not part of PG-Keys.

Keys With Complex Scope. So far, we have defined constraints on
nodes based on a fairly simple scope, namely, by only considering
the label of the node. As a final example illustrating the need for
more complex scope, consider the constraint that a forum which
has members (1) must have a moderator and (2) is identified by the
moderator. In PG-Keys, we have

FOR x WITHIN (x:Forum) -[:hasMember]->(:Person)

IDENTIFIER p WITHIN (x) -[: hasModerator]->(p:Person) .
In other words, a forum with members must have exactly one
moderator and, furthermore, given any two such forum nodes 𝑛1
and 𝑛2, if they both have a hasModerator edge to the same Person,
then it must be the case that 𝑛1 = 𝑛2.

4.3 Keys on Edges

Keys Defined Using Topology. For our first edge key constraint,
consider that there is only one isPartOf edge from a given country
to a given continent, i.e., the identity of an isPartOf edge from
a country to a continent is determined by the country and the
continent. More formally, this actually means that there is at most
one isPartOf edge from a given country to a given continent,
which is a uniqueness constraint:

FOR y WITHIN (: Country)-[y:isPartOf]->(: Continent)

EXCLUSIVE x, z WITHIN (x:Country)-[y]->(z:Continent) .
In other words, given any two edges 𝑒1 and 𝑒2 labeled isPartOf, if
they have the same source node 𝑛𝑠 labeled Country and the same
target node 𝑛𝑡 labeled Continent, then it must hold that 𝑒1 = 𝑒2.

Keys Defined Using Properties and Topology. Suppose that people
can study at the same university in different years, but for a given
year, the studyAt edge between a person and a university is unique.
Rephrased, this means that, in a given year, the information that
a person studies at a given university is stored only once. More
precisely, if you have a studyAt edge from a person to a univer-
sity with the property classYear, then this edge is identified by
the person, the university, and the value of classYear. This is a
uniqueness constraint, which we can express in PG-Keys as

FOR y WITHIN (: Person)-[y:studyAt]->(: University)

EXCLUSIVE x, y.classYear , z WITHIN

(x:Person)-[y]->(z:University) .
In other words, given any two edges 𝑒1 and 𝑒2 labeled studyAt
with property classYear, if they have the same source node 𝑛𝑠
labeled Person, the same target node 𝑛𝑡 labeled University, and
have the same value for the property classYear, then it must be
the case that 𝑒1 = 𝑒2.

As another example, suppose that studyAt edges must have a
classYear property (and always be fromperson nodes to university
nodes). As our properties are single-valued and edges have a single
source and a single target, we have an identification constraint:

FOR y WITHIN () -[y:studyAt]->()

IDENTIFIER x, y.classYear , z WITHIN

(x:Person)-[y]->(z:University) .
Note that this is not the same as:

FOR y WITHIN (: Person)-[y:studyAt]->(: University)

IDENTIFIER x, y.classYear , z WITHIN (x)-[y]->(z) ,
which has the scope limited to those studyAt edges that are from
Person to University.

As a final example, suppose that our edge constraint only holds
for study years after 1970. We can express this as

FOR y WITHIN () -[y:studyAt]->() WHERE y.classYear > 1970

IDENTIFIER x, y.classYear , z WITHIN

(x:Person)-[y]->(z:University) .

4.4 Keys on Properties

We close our tour of the functionality of PG-Keys with an illustra-
tion of a constraint on properties. Consider that study semesters
belong to a particular year, e.g., the first semester of 2019. That
is, the classYear property of a studyAt edge is identified by the
semester property of the edge (if it is known):

FOR y.classYear WITHIN () -[y:studyAt]->()

EXCLUSIVE y.semester .
In other words, for any classYear property values 𝑣1 and 𝑣2 of
studyAt edges 𝑒1 and 𝑒2, if 𝑒1 and 𝑒2 have the same value for
property semester, then it must be the case that 𝑣1 = 𝑣2.

4.5 Validation of PG-Keys

The crucial task related to PG-Keys is validation; that is, determining
if a given property graph satisfies a given PG-Key. Validation of
PG-Keys can be recast as query evaluation. Indeed, recall that the

satisfaction of a PG-Key is expressed in terms of conditions (K1),
(K2), and (K3). Each of these conditions can be reformulated as
emptiness of a query built from the scope and the descriptor of the
PG-Key. We explain this with an example from Section 4.2:

FOR (x:City) IDENTIFIER y, x.name WITHIN

(x) -[:isPartOf]->(y:Country) .
The query for (K1) is obtained by combining two copies of the

scope with different scope variables and two copies of the descriptor
with the same descriptor variable:

MATCH (x1:City), (x1) -[:isPartOf]->(y:Country),

(x2:City), (x2) -[:isPartOf]->(y:Country)

WHERE x1 <> x2 AND x1.name IS NOT NULL AND

x2.name IS NOT NULL AND x1.name = x2.name

RETURN x1, x2 .
Because the property name is also a component of the key, we
additionally check that it is set and that x1.name = x2.name. The
resulting query finds pairs of different targets that share a key value.
Hence, (K1) holds exactly when the query returns no answers.

For (K2), we select targets in the scope for which the descriptor
cannot be matched:

MATCH (x:City)

WHERE NOT EXISTS(x.name) OR

NOT (x) -[:isPartOf]->(y:Country)

RETURN x .
Notice that matching the descriptor also involves checking that the
property name is set. Again, (K2) holds exactly when this query
returns no answers.

For (K3), the query selects targets for which two different key
values exist. It is built from one copy of the scope and two copies
of the descriptor with different descriptor variables:

MATCH (x:City), (x) -[:isPartOf]->(y1:Country),

(x) -[:isPartOf]->(y2:Country)

WHERE y1 <> y2

RETURN x .
Note that we do not need to check that there is only one value of
the property name, because our data model does not include multi-
valued properties. Like in both previous cases, (K3) holds exactly
when the constructed query returns no answers.

Clearly, such rewritings into queries can be directly obtained for
any PG-Key. This additionally addresses the design requirement
R6 identified in Section 2, allowing to express the semantics of
PG-Keys in the very familiar terms of query semantics. Moreover,
while additional mechanisms would be needed to handle aspects
like batching or incremental validation, implementations of PG-
Keys can leverage existing facilities for efficient query evaluation.
Hence, PG-Keys have excellent potential for direct deployment and
impact in practice, satisfying design requirement R7.

Incremental validation. Database constraints must be enforced by
a DBMS when the state of a database changes after an update.
This is standard with relational constraints and updates. The state
of graph database updates is far from being fixed, with GQL not
yet offering such facilities, and even in well-established languages
such as Cypher it is accepted that update features need to be re-
designed as they have several deficiencies [38]. Some variants of
PG-Keys are very close to relational (see Section 5.2) and thus
easily maintainable under updates that resemble relational inser-
tions/deletions. Others are more complex, akin to SQL’s assertions,
and thus their incremental validation will require techniques from

incremental view/integrity maintenance [13]. Such techniques are
well developed for languages that do not use recursion or reach-
ability queries, see e.g. [39, 69]. If reachability, or more generally
regular path queries (see Section 6.2) are present, incremental val-
idation with non-recursive queries becomes impossible without
the use of complex auxiliary data structures [15, 30] and special-
ized algorithms based on maintenance of datalog queries [40, 61].
Hence, the cost of incremental validation will heavily depend on
the cost of maintaining the underlying complex data structures
under insertions, deletions and update operations. Related to this
is the question of constraint-enforced cascading updates, similarly
to cascading deletes in the presence of foreign keys. All the above
issues need to be studied once the standardization process of graph
query and update languages has concluded.

To summarize this section, we conclude that PG-Keys satisfies
all eight of the design requirements (R0–R7) specified in Section 2.

5 RELATIONSHIP TO OTHER PARADIGMS

In this section, we compare PG-Keys to key formalisms in existing
database models and data models.

5.1 Conceptual Data Models

By conceptual data models we mean here data models that are
conceptual in nature, i.e., the Entity-Relationship Model, UML Class
diagrams and ORM diagrams.

The Entity-Relationship Model. The classical ER Model [22] allows a
group of attributes to be declared as key of an entity type. Moreover,
it introduces the notion of weak entity-type, which has a partial key
that, combined with the keys of entity types that are connected via
identifying relationships, can identify entities in the entity type.

Both constructs are easily represented in PG-Keys, assuming
that the nodes that represent entities are labeled with the entity
type. For example, if the entity type Person has a key consisting of
name and birthday then this can be represented as

FOR (x:Person) IDENTIFIER x.name , x.birthday .
The same holds for weak entity types with partial keys. For example,
consider a case where we have a weak entity type City, which is
identified by a combination of its attribute name and the entity
of type Country that it is reached via the identifying relationship
isPartOf. This can be represented in PG-Keys as

FOR (x:City) IDENTIFIER y, x.name WITHIN

(x) -[:isPartOf]->(y:Country) .

UML Class Diagrams. UML class diagrams model the structure of
a system in terms of classes and their relationships. When used
for the conceptual perspective [35] they can serve as a conceptual
data model. There is no special graphical notation for keys, and
these are usually represented by comments or stereotypes. How-
ever, OCL, the Object Constraint Language, which is part of UML,
allows the expression of key constraints with the collection operator
isUnique(). For example, if a class City represents a weak entity
type where entities are identified by their name and the Country
they are part of, then the EXCLUSIVE aspect of the key constraint
can be represented as

City.allInstances ->

isUnique(Tuple{ctyName=name ,cntryName=isPartof }) .

There is a close similarity to PG-Keys: the collection to which
isUnique() is applied corresponds to the scope of a PG-Key, which
in the example is defined by City.allInstances. The function
with which isUnique() is parameterized, which is here a function
that constructs a tuple containing the name property and the coun-
try that the city is part of, corresponds to the descriptor. Given
this similarity, the expressive power of the isUnique() operator is
similar to that of PG-Keys if the used OCL expressions for defining
the scope and the descriptor are similar in expressive power to the
queries used in the PG-Keys.

ORM Diagrams. The Object-Role Modelling (ORM) approach [42]
extends Entity-Relationship modelling with an elaborate graphical
notation for a wide range of constraints and a specific language-
based design methodology. It treats attributes and relationships as
equals and unifies them in the concept of fact types. As a conse-
quence, it uses for each the same notation to denote key, cardinality
and other constraints.

An example of an ORM diagram with key constraints is:

City

has

City name

Country

has

Country name

is part of

It illustrates an internal uniqueness constraint on the fact type is
part of, represented by a line over its first role, which indicates
that each City has at most one associated Country. It also illus-
trates an external uniqueness constraint, represented by a horizontal
line in a circle connected to the second role of is part of and
the second role of City.has.City name, which indicates that each
combination of Country and City name is associated with at most
one City. It will be clear that the internal uniqueness constraint
corresponds to an EXCLUSIVE PG-Key for edges, and the external
uniqueness constraint to an EXCLUSIVE PG-Key for nodes.

In addition ORM has the concept of reference scheme which is
a special type of external uniqueness constraint that corresponds
to the IDENTIFIER constraint in PG-Keys. This latter notion is
explicitly designed as the mechanism that allows users to refer
unambiguously to objects in the instance of a diagram [43].

As illustrated in the ORM diagram, the uniqueness constraints
can be combined with mandatory participation constraints, indi-
cated by bullets. This allows in fact the representation of all the
four types of keys in PG-Keys.

5.2 Relationships to Relational Keys

Relational data are often migrated to graph databases, where expen-
sive joins can be replaced by more efficient navigational exploration
allowed by graph query languages. Can the key constraints present
in a relational database 𝑅 be expressed by PG-Keys over the cor-
responding graph representation 𝐺𝑅? We illustrate how this is
possible by means of an example that involves both keys and for-
eign keys. Consider the relations:
City(ID,name ,country ,population) ,
Person(name ,birthday ,cityID)

storing information about persons and the city they live in. We
assume that cityID is a foreign key referring to the ID attribute
of City. Suppose that these relations are translated to a property

graph, as follows. Each tuple in City becomes a different node with
label City and properties ID, name, country, and population. Each
tuple in Person becomes a different node with label Person and
properties name and birthday. Finally, for each tuple in Person
with cityID not null, we add a livesIn-edge from the relevant
person node to the city node that is identified by cityID. This
translation follows closely that of a recent proposed method for
systematically mapping relational data to property graphs [73].

To express that ID is a key for City, we use the PG-Key
FOR (x:City) IDENTIFIER x.ID .

Notice that each node always has at most one value of the property
ID, just like each tuple in the relation City has at most one value
in the column ID. Consequently, the SINGLETON restriction, built
into IDENTIFIER, is redundant here and we can equivalently use
EXCLUSIVE MANDATORY. Candidate keys and uniqueness constraints,
including multi-attribute ones, can be handled in a similar fashion.
For instance, to express that (name,country) is unique in the table
City, we can use

FOR (x:City) EXCLUSIVE x.name , x.country .
PG-Keys can also ensure referential integrity on the property

graph side. The foreign key itself expresses only that the entity in
which a person lives is a city. However, assuming that the prop-
erty graph will be allowed to evolve after translation, in order to
guarantee that it can be translated back to relations we also need
to ensure that each person lives in at most one place. (Recall that
each Person node in the graph corresponds to a single tuple in the
relation Person.) The combination of these two conditions can be
expressed using the following two PG-Keys:
FOR (x:Person) EXCLUSIVE SINGLETON y WITHIN

(x) -[y:livesIn]->() ,
FOR (x:Person) -[:livesIn]->() IDENTIFIER y WITHIN

(x)-[y:livesIn]->(:City) .
The first PG-Key states that, for each node with label Person, there
is at most one outgoing livesIn-edge. Notice that this requires us-
ing SINGLETON, which does not have a counterpart in the relational
setting. The second PG-Key states that each node with label Person
and an outgoing livesIn-edge, has exactly one outgoing livesIn-
edge pointing to a node with label City. The precise formulation of
referential integrity constraints on the graph side depends on the
concrete translation from relations to property graphs. However,
PG-Keys are sufficiently flexible to express these constraints if the
translations stay true to the underlying data.

Having taken care of the foreign key, we can easily handle keys
built on top of it. For instance, to express that (name,cityID) is a
key in the relation Person we can use PG-Key
FOR (x:Person) IDENTIFIER x.name , y.ID WITHIN

(x) -[:livesIn]->(y:City) .
Overall, under natural translations from relations to property graphs,
PG-Keys offer full support for relational keys and foreign keys.
Moreover, while in the relational model the scope is always one
whole relation and the descriptor is a list of attributes, in PG-Keys
the power to specify the scope and the descriptor is only limited
by the chosen query language. The expressiveness of such keys
(as those of object-oriented databases [21]) is similar to those in
the ER Model in that it allows the representation of strong entity
types and weak entity types. In general, a formal comparison with
relational constraints is an important topic for further study.

5.3 XML Keys

The literature on XML keys includes industrial standards like XML
Schema [53] and DSDL (including RelaxNG and Schematron) [1],
as well as a large body of academic work [18–20, 44, 54] proposing
various extensions and improvements. Due to the space limitations
we focus on XML Schema.

XML Schema offers two constructors for keys: UNIQUE and KEY.
UNIQUE requires that an attribute or element value must be unique
within a certain scope. For instance,

<unique name="PersonUnique">

<selector xpath="../ Person"/>

<field xpath="@name"/>

<field xpath="@birthday"/>

</unique >

corresponds to the EXCLUSIVE SINGLETON example in Section 5.4.
The selector describes the scope: every Person node in the tree.
The fields specify the components of the key: the values of the
attributes @name and @birthday of each selected node. The XPath
expression in the field must return a single value for each selected
node.

KEY extends UNIQUE such that an entity value must be unique
and cannot be set to nil (i.e., is not nillable) which corresponds to
our IDENTIFIER when focusing on values. For instance,

<key name="personKey">

<selector xpath="../ Person"/>

<field xpath="@email"/>

</key >

corresponds to the PG-Key
FOR (x:Person) IDENTIFIER x.email .
As we can see, there is indeed a close relationship between keys

for XML and PG-Keys. The main difference between the two is per-
haps the navigational language. Whereas XPath is perfectly suited
for navigation in trees (and can be adapted for graphs [50]), we aim
at using languages that were specifically designed for navigation
in property graphs, such as GQL and Cypher.

5.4 Keys in Semantic Web Stack

We now discuss how PG-Keys can be used to simulate key con-
straints available in the Semantic Web Stack (SWS). Due to the
limited space, we forsake the existing academic work [49, 66] and
focus on the standards [11, 46, 48, 71].

At the lower layers of SWS, RDF [48, 80] uses Internationalized
Resource Identifiers (IRIs) to provide a rudimentary mechanism for
reference but not identification since the same real-world object
may be described with multiple IRIs.

Going up the SWS, OWL [11] supports keys using the HasKey
construct. For example, assuming :Person is a class and :name and
:birthday are properties, the snippet
:Person owl:hasKey (:name :birthday) .

asserts that instances of :Person are uniquely identified by the
combination of the values of :name and :birthday; it does not
say that those values exist nor that there is only one of each. This
corresponds precisely to the PG-Key

FOR (x:Person) EXCLUSIVE x.name , x.birthday .
If :name and :birthday were declared as functional, e.g.,
:name rdf:type owl:FunctionalProperty .

the corresponding PG-Keywould be an EXCLUSIVE SINGLETON con-
straint. Ensuring that all key components exist, under the open-
world assumption adopted by OWL, is very hard.

Recent RDF constraint languages [79], such as SHACL [26, 46]
or ShEx [72], adopt the closed-world assumption. They do not have
built-in key constraints, but they support cardinality constraints
which can be used to emulate simple keys; keys with multiple
components, like in the first example, cannot be expressed directly.

6 EXTENSIONS OF PG-KEYS

We discuss extensions of PG-Keys that are not in our core formalism
but would need to be eventually supported by a fully fledged design.

6.1 NULL Values

So far we have tacitly assumed that property values cannot be nulls.
In real life, nulls are abundant and arise for two principal reasons.
First, a value may exist but be currently unknown (for example,
the birthday of a person may not be known). Second, a value may
not even exist (for example, one may refer to a property of a node
that does not exist, say x.age instead of x.birthday). In relational
database practice, and in particular in SQL, these different scenarios
are represented by the same NULL [28], and the practice has been
extended to graph query languages like Cypher [36, 38].

SQL’s approach to handling nulls is based on a three-valued logic
(3VL) that extends the standard Boolean logic of true and false with
a truth value unknown. It can be summarized as follows: (1) every
condition involving a null evaluates to unknown; (2) truth values
propagate through connectives AND, OR, and NOT by using the rules
of SQL’s 3VL; (3) once a condition is evaluated in the WHERE clause
of a SQL query, only true tuples remain.

With PG-Keys, we propose to follow SQL’s approach that a
constraint holds if it does not evaluate to false. In this case one can
validate a key 𝜃 by a query 𝑄𝜃 that looks for violations of 𝜃 , that
is, it computes witnesses of the negation of 𝜃 , as is explained in
Section 4.5. If the key 𝜃 itself evaluates to true or unknown, then its
negation is false or unknown, according to 3VL, and therefore 𝑄𝜃

produces no output.
Nulls in conditions however need to be handled with care. To

give a simple relational example (easily mimicked in a property
graph), if we have a relation R(A,B) with a UNIQUE declaration on
attribute A, then adding tuples (NULL,1) and (NULL,2) is possible.
The uniqueness constraint, stating that there are no two different
tuples with the same value of A, will evaluate to unknown, and
hence will be validated. To fall back to the two-valued logic of true
and false, one needs to impose NOT NULL constraints. This is what
happens with primary keys: then the situation above when two
NULLs can be entered is no longer possible.

We now explain how PG-Keys work in the presence of nulls. To
start, we must specify what the queries used in PG-Keys are. We
assume, in line with all the examples so far, that they are patterns
with further constraints on property values, for example,
x WITHIN (x:Person) WHERE x.age > 30 .

With each such query 𝑞(𝑥), we associate a new query 𝑞notnull (𝑥)
which is the same as 𝑞 but with added IS NOT NULL conditions
for each property value used in the query. For example, the above
query would be transformed into

x WITHIN (x:Person) WHERE x.age >30 AND x.age IS NOT NULL .
Such a query rules out both kinds of nulls, be they due to unknown
value of age or to the absence of the property age altogether.

For each condition (Ki), for 𝑖 = 1, 2, 3, used in the definition
of satisfaction of PG-Keys in Section 4.1, we define a condition
(Ki)

null
which is the same as (Ki) except that 𝑝 (𝑥) is replaced

by 𝑝notnull (𝑥) and 𝑞(𝑥,𝑦) by 𝑞notnull (𝑥,𝑦). Notice that it is easier
to satisfy (K1)

null
and (K3)

null
than (K1) and (K3) respectively,

because only null-free objects must be looked at. More precisely,
all the IS NOT NULL conditions appear in the antecedent, and since
it is harder to satisfy the antecedent, it is thus easier to satisfy
the whole constraint. In fact, (Ki), for 𝑖 = 1, 3, holds (i.e., does not
evaluate to false) in 3VL if and only if the condition (Ki)

null
is true.

In other words, to check satisfaction of EXCLUSIVE and EXCLUSIVE
SINGLETON we can disregard nulls.

The situation with MANDATORY, i.e., (K2) is more involved, since
(K2)

null
captures our intuition of such constraints, but disagrees

with the 3VL semantics of (K2). To illustrate this, consider
FOR (x:Person) EXCLUSIVE MANDATORY y WITHIN

(x) -[:owns]->(y:Passport) WHERE y.expiry > $today .
Suppose that we have a single person in the database whose pass-
port expiry date is NULL. Condition (K2) defining MANDATORY con-
straints in this case evaluates to unknown, and thus in the SQL-
inspired approach the constraint is satisfied. Condition (K2)

null
,

on the other hand, is false. In the case of MANDATORY, this is the
desired behavior and indeed mandatory keys should avoid nulls,
similarly to primary keys in SQL that mandate NOT NULL for at-
tributes involved.

One way of resolving this is to assume that conditions involving
NULL evaluate to false rather than unknown. The idea in itself is
not new, it was present in old query languages such as Quel, and
was recently studied in connection with various proposals on using
2-valued logic in place of SQL’s 3VL, see [24, 25]. In such a logic,
the above MANDATORY condition would not hold for a person whose
passport expiry is NULL, thus fulfilling our intuition about these
constraints. At the same time, it does not affect other constraints.
In fact, under this 2-valued logic of nulls, condition (Ki) is true iff
(Ki)

null
is true, for 𝑖 = 1, 2, 3. We would thus advocate one of two

options for handling nulls in PG-Keys: either use a 2-valued logic as
explained here, or follow SQL’s 3VL but then introduce NOT NULL
declarations for properties used in MANDATORY constraints.

6.2 Regular Path Queries

In Section 3, we assumed that key constraints for property graphs
are defined using queries of the form 𝑞(𝑥), where 𝑥 is a tuple of
variables that bind to nodes, edges, and property values. We now
extend 𝑥 to variables that bind to paths, the latter being first-class
citizens in several graph query languages [6, 36]. In the research lit-
erature [7, 12] and in practical query languages, this is usually done
by incorporating regular path queries (RPQs) or a subset thereof.
(The term RPQ is fairly standard in the research literature, but has
diverse names in practical languages, e.g., property paths or path
patterns.)

As an example, let us assume that the isPartOf relation in Fig-
ure 2 is extended (as in LDBC Social Network Benchmark [5, 32]) to
a larger hierarchy of geographical entities, containing provinces and

continents. The following PG-Key expresses that every isPartOf
path from a city to a continent can be uniquely identified by the
city and the continent:

FOR p WITHIN p = (:City) -[:isPartOf *]->(: Continent)

IDENTIFIER x, z WITHIN

p = (x:City) -[:isPartOf *]->(z:Continent) .
The variable 𝑝 binds to a path in both the scope and the descriptor
of the constraint (we use a GQL-like syntax for path variables).

The following example shows the usage of paths as key compo-
nents: the PG-Key

FOR (x:City) EXCLUSIVE x.name , p WITHIN

p = (x) -[:isPartOf *]->(: Country)

asserts that if two cities within a country have the same name, then
their paths to the country must differ (e.g., go via different states).

Both constraints use the transitive operator isPartOf*, which
matches to paths of arbitrary length in which each edge is labeled
isPartOf. Notice that such use of isPartOfmakes the constraints
robust against changes in the data. For instance, if the geographical
hierarchy would be extended in the data, e.g., by adding counties
or states, then the above mentioned constraints do not need to be
updated to reflect these changes in the data.

Transitive operators in key constraints also pose challenges,
however. One challenge is how they deal with cyclicity in the
data. This particular challenge also arises with the corresponding
operators in query languages, and is part of an ongoing discussion.
Essentially, the question is: which paths do we allow to match
against these expressions? Current systems are working with four
different variants: unrestricted, no repeated nodes (simple paths),
no repeated edges (trails), or shortest paths [6, 36].

The choice between these alternatives is not entirely trivial, be-
cause it may have a large influence on the complexity of evaluation.
In the unrestricted case, RPQs can be evaluated in polynomial time,
whereas deciding whether a pair of nodes in 𝑉 is in the result set
of an RPQ under simple path or trail semantics is NP-complete
in general. The latter becomes tractable for certain fixed regular
path expressions, leading to the classes 𝐶tract [10] and 𝑇tract [55]
highly frequent in real-world query logs [16, 17]. The class 𝑇tract
precisely identifies the set of regular expressions for which the
data complexity under trail semantics is tractable if P ≠ NP, and
the slightly smaller class 𝐶tract does the same for the simple path
semantics. An even more restricted class included in𝐶tract and con-
sisting of simple transitive expressions [56] leads to only use simple
subexpressions of the kind 𝑎∗ also very common in practice [16].
The query in the scope of the second constraint above falls in this
latter class.

It is currently not clear which of these semantics is preferable in
practice. Whereas the arbitrary path semantics has a lower evalua-
tion complexity [63], simple path and trail semantics avoid issues
with infinitely many results. Furthermore, arbitrary path seman-
tics may lead to some issues when used for evaluating the queries
within key constraints. For example, if a constraint required a path
to be unique, then this would mean that this path cannot have a cy-
cle, as cycles can be repeatedly traversed. Thus, simple path or trail
semantics might be preferable in this case, bringing up the question
of which semantics to use to evaluate key constraints, which is
an interesting direction of investigation for next-generation graph
databases implementing these constraints.

6.3 Complex Values

In our data model we allow complex property values, such as tuples,
sets, lists, or even arbitrary JSON structures, but so far we have
been treating them atomically. In order to support them fully, we
need to navigate inside their complex structure.

Suppose that university students can be identified by each of
their multiple official email addresses. Furthermore, assume that
the addresses are stored in an email property, organized into a
JSON tree structure, listing addresses together with their categories
(official/unofficial). To express that each official address is unique,
we can use for instance JSONPath [37] to iterate over the list and,
for each entry storing an official address, recover the actual value
of the address:

FOR x WITHIN (x:Person) -[:studyAt]->(: University)

EXCLUSIVE MANDATORY x.email[@.category=’official’].address .
Analogously to selecting simple values from a complex value, it

is also possible to use descriptors to collect multiple simple values
into one complex value. For instance, to express that an entity is
uniquely defined by an (unordered) collection of values, we can
deploy a descriptor that collects all these values into a set, and
define a key with this set as a component.

7 LOOKING AHEAD

The LDBC Property Graph Schema Working Group has reached an
important consensus and milestone by producing this recommen-
dation for the design of property graph key constraints.

Our recommendation must be framed in its broader context:
the design of the new GQL graph query language by the ISO/IEC
JTC1 SC32 WG3 committee. PG-Keys is informing the design of
GQL via the LDBC liaison, by having the main elements of this
proposal incorporated into its future standard. Furthermore, our
recommendation extends the expressivity of property graphs which
may help facilitate mapping to other data models.

This paper is a call to action for industry and academia driving
the graph database industry. From a developer standpoint, PG-Keys
can influence the implementation of property graph keys in com-
mercial and non-commercial graph database systems as well as their
applications in many graph processing tasks. On the research side,
our framework triggers a number of open problems that can attract
the attention of the data management community. These problems
include the validation and maintenance complexity of PG-Keys for
specific query languages, the implication and inference problems,
as well as the use of static analysis for optimization purposes. Fur-
thermore, the handling of nulls in PG-Keys suggests alternatives to
SQL’s three-valued logic that need to be further explored.

Finally, the work of the PGSWG is not done.We are in the process
of establishing consensus with respect to the semantics of a schema
language and to extensions of the property graph data model to
support features such as meta-properties.

ACKNOWLEDGMENTS

R. Angles was supported by ANID, Millennium Science Initiative
Program, Code ICN17_002; L. Libkin by EPSRC grants N023056 and
S003800; W. Martens by DFG grants 369116833 and 431183758, and
F. Murlak by NCN grant 2018/30/E/ST6/00042.

REFERENCES

[1] ISO/IEC 19757. 2016. Information technology — Document Schema Definition

Languages (DSDL) — Part 3: Rule-based validation — Schematron. Standard. Inter-
national Organization for Standardization, Geneva, CH.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley.

[3] AgensGraph. 2020. AgensGraph. https://bitnine.net/agensgraph (visited: 2020-
11).

[4] Amazon. 2020. Amazon Neptune. https://aws.amazon.com/neptune/ (visited:
2020-11).

[5] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri Erling,
Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep-Lluís Larriba-Pey, and
Norbert Martínez-Bazan et al. 2020. The LDBC Social Network Benchmark. CoRR
abs/2001.02299 (2020).

[6] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,
Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for
Future Graph Query Languages. In SIGMOD Conference. ACM, 1421–1432.

[7] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,
and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph
Databases. Comput. Surveys 50, 5 (2017), 68:1–68:40.

[8] Renzo Angles and Claudio Gutiérrez. 2008. Survey of graph database models.
Comput. Surveys 40, 1 (2008), 1:1–1:39.

[9] Apache. 2020. TinkerPop. https://tinkerpop.apache.org/ (visited: 2020-11).
[10] Guillaume Bagan, Angela Bonifati, and Benoît Groz. 2020. A trichotomy for

regular simple path queries on graphs. J. Comput. Syst. Sci. 108 (2020), 29–48.
[11] Jie Bao, Deborah McGuinness, Elisa Kendall, and Peter Patel-Schneider. 2012.

OWL 2 Web Ontology Language Quick Reference Guide (Second Edition). W3C Rec-
ommendation. W3C. https://www.w3.org/TR/2012/REC-owl2-quick-reference-
20121211/.

[12] Angela Bonifati and Stefania Dumbrava. 2018. Graph Queries: From Theory to
Practice. SIGMOD Rec. 47, 4 (2018), 5–16.

[13] Angela Bonifati, Stefania Dumbrava, and Emilio Jesús Gallego Arias. 2018. Certi-
fied Graph View Maintenance with Regular Datalog. Theory Pract. Log. Program.

18, 3-4 (2018), 372–389.
[14] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018.

Querying Graphs. Morgan & Claypool Publishers.
[15] Angela Bonifati, Martin Hugh Goodfellow, Ioana Manolescu, and Domenica Sileo.

2013. Algebraic incremental maintenance of XML views. ACM Trans. Database

Syst. 38, 3 (2013), 14:1–14:45.
[16] Angela Bonifati, Wim Martens, and Thomas Timm. 2019. Navigating the Maze

of Wikidata Query Logs. In WWW. ACM, 127–138.
[17] Angela Bonifati, Wim Martens, and Thomas Timm. 2020. An analytical study of

large SPARQL query logs. VLDB J. 29, 2-3 (2020), 655–679.
[18] Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and

Wang Chiew Tan. 2002. Keys for XML. Computer Networks 39, 5 (2002), 473–487.
[19] Peter Buneman, Susan B. Davidson, Wenfei Fan, Carmem S. Hara, and

Wang Chiew Tan. 2003. Reasoning about keys for XML. Information Systems 28,
8 (2003), 1037–1063.

[20] Peter Buneman, Wenfei Fan, Jérôme Siméon, and Scott Weinstein. 2001. Con-
straints for Semi-structured Data and XML. SIGMOD Rec. 30, 1 (2001), 47–45.

[21] R. G. G. Cattell and Douglas K. Barry. 2000. The Object Data Standard: ODMG 3.0.
Morgan Kaufmann.

[22] Peter P. Chen. 1976. The Entity-Relationship Model - Toward a Unified View of
Data. ACM Trans. Database Syst. 1, 1 (1976), 9–36.

[23] Vassilis Christophides, Vasilis Efthymiou, and Kostas Stefanidis. 2015. Entity
Resolution in the Web of Data. Morgan & Claypool Publishers.

[24] Marco Console, Paolo Guagliardo, and Leonid Libkin. 2018. Propositional and
Predicate Logics of Incomplete Information. In KR. AAAI Press, 592–601.

[25] Marco Console, Paolo Guagliardo, Leonid Libkin, and Etienne Toussaint. 2020.
Coping with Incomplete Data: Recent Advances. In PODS. ACM, 33–47.

[26] Julien Corman, Juan L. Reutter, and Ognjen Savkovic. 2018. Semantics and
Validation of Recursive SHACL. In International Semantic Web Conference (1)

(Lecture Notes in Computer Science, Vol. 11136). Springer, 318–336.
[27] DataStax. 2020. DataStax. https://datastax.com/ (visited: 2020-11).
[28] C. J. Date and H. Darwen. 1996. A Guide to the SQL Standard. Addison-Wesley.
[29] Alin Deutsch, Yu Xu,MingxiWu, and Victor E. Lee. 2020. Aggregation Support for

Modern Graph Analytics in TigerGraph. In SIGMOD Conference. ACM, 377–392.
[30] Guozhu Dong, Leonid Libkin, and Limsoon Wong. 2003. Incremental recomputa-

tion in local languages. Inf. Comput. 181, 2 (2003), 88–98.
[31] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.

Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19, 1 (2007),
1–16.

[32] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In SIGMOD Conference. ACM,
619–630.

[33] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for Graphs.
Proc. VLDB Endow. 8, 12 (2015), 1590–1601.

[34] Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. ACM Trans. Database

Syst. 44, 2 (2019), 5:1–5:40.
[35] Martin Fowler. 2003. UML Distilled: A Brief Guide to the Standard Object Modeling

Language (3 ed.). Addison-Wesley Longman Publishing Co., Inc., USA.
[36] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In SIGMOD Conference. ACM, 1433–1445.

[37] Stefan Gössner. 2007. JSONPath. https://goessner.net/articles/jsonpath/ (visited:
2021-02).

[38] Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Martin Schuster, Petra Selmer, and Hannes Voigt.
2019. Updating Graph Databases with Cypher. Proc. VLDB Endow. 12, 12 (2019),
2242–2253.

[39] Timothy Griffin and Leonid Libkin. 1995. Incremental Maintenance of Views
with Duplicates. In SIGMOD. ACM Press, 328–339.

[40] Ashish Gupta, Inderpal SinghMumick, and V. S. Subrahmanian. 1993. Maintaining
Views Incrementally. In SIGMOD. 157–166.

[41] Claudio Gutierrez and Juan F. Sequeda. 2020. Knowledge Graphs: A Tutorial
on the History of Knowledge Graph’s Main Ideas. In CIKM Conference. ACM,
3509–3510.

[42] Terry Halpin. 2015. Object-Role Modeling Fundamentals: A Practical Guide to Data

Modeling with ORM. Technics Publications.
[43] Terry A. Halpin. 2013. Modeling of Reference Schemes. In BMMDS/EMMSAD

(Lecture Notes in Business Information Processing, Vol. 147). Springer, 308–323.
[44] Sven Hartmann and Sebastian Link. 2009. Expressive, yet tractable XML keys. In

EDBT (ACM International Conference Proceeding Series, Vol. 360). ACM, 357–367.
[45] JanusGraph. 2020. JanusGraph. https://janusgraph.org/ (visited: 2020-11).
[46] Dimitris Kontokostas and Holger Knublauch. 2017. Shapes Constraint Language

(SHACL). W3C Recommendation. W3C. https://www.w3.org/TR/2017/REC-
shacl-20170720/.

[47] Redis Labs. 2020. RedisGraph. https://redislabs.com/modules/redis-graph/ (vis-
ited: 2020-11).

[48] Markus Lanthaler, David Wood, and Richard Cyganiak. 2014. RDF

1.1 Concepts and Abstract Syntax. W3C Recommendation. W3C.
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

[49] Georg Lausen. 2007. Relational databases in RDF: Keys and foreign keys. In
Semantic Web, Ontologies and Databases. Springer, 43–56.

[50] Leonid Libkin, Wim Martens, and Domagoj Vrgoc. 2016. Querying Graphs with
Data. J. ACM 63, 2 (2016), 14:1–14:53.

[51] Sebastian Link. 2020. Neo4j Keys. In ER (Lecture Notes in Computer Science,

Vol. 12400). Springer, 19–33.
[52] Artem Lysenko, Irina A. Roznovat, Mansoor Saqi, Alexander Mazein, Christo-

pher J. Rawlings, and Charles Auffray. 2016. Representing and querying disease
networks using graph databases. BioData Min. 9 (2016), 23.

[53] Murray Maloney, David Beech, Sandy Gao, Noah Mendelsohn, Michael
Sperberg-McQueen, and Henry Thompson. 2012. W3C XML Schema Defi-

nition Language (XSD) 1.1 Part 1: Structures. W3C Recommendation. W3C.
https://www.w3.org/TR/2012/REC-xmlschema11-1-20120405/.

[54] Wim Martens, Frank Neven, Matthias Niewerth, and Thomas Schwentick. 2017.
BonXai: Combining the Simplicity of DTD with the Expressiveness of XML
Schema. ACM Trans. Database Syst. 42, 3 (2017), 15:1–15:42.

[55] Wim Martens, Matthias Niewerth, and Tina Trautner. 2020. A Trichotomy for
Regular Trail Queries. In STACS (LIPIcs, Vol. 154). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 7:1–7:16.

[56] Wim Martens and Tina Trautner. 2019. Dichotomies for Evaluating Simple
Regular Path Queries. ACM Trans. Database Syst. 44, 4 (2019), 16:1–16:46.

[57] MemGraph. 2020. MemGraph. https://memgraph.com/ (visited: 2020-11).
[58] Antonio Messina, Antonino Fiannaca, Laura La Paglia, Massimo La Rosa, and

Alfonso Urso. 2018. BioGraph: a web application and a graph database for
querying and analyzing bioinformatics resources. BMC systems biology 12, 5
(2018), 98.

[59] Microsoft. 2020. Azure Cosmos. https://azure.microsoft.com/ (visited: 2020-11).
[60] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002.

Network motifs: simple building blocks of complex networks. Science 298, 5594
(2002), 824–827.

[61] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2019. Maintenance of
datalog materialisations revisited. Artif. Intell. 269 (2019), 76–136.

[62] Oracle. 2020. Oracle Spatial and Graph. https://www.oracle.com/database/
technologies/spatialandgraph.html (visited: 2020-11).

[63] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. 2020. Regular Path Query
Evaluation on Streaming Graphs. In SIGMOD Conference. ACM, 1415–1430.

[64] Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu. 2017. Do We Need
Specialized Graph Databases?: Benchmarking Real-Time Social Networking Ap-
plications. In GRADES@SIGMOD/PODS. ACM, 12:1–12:7.

https://bitnine.net/agensgraph
https://aws.amazon.com/neptune/
https://tinkerpop.apache.org/
https://datastax.com/
https://goessner.net/articles/jsonpath/
https://janusgraph.org/
https://redislabs.com/modules/redis-graph/
https://memgraph.com/
https://azure.microsoft.com/
https://www.oracle.com/database/technologies/spatialandgraph.html
https://www.oracle.com/database/technologies/spatialandgraph.html

[65] M. P. Papazoglou, S. Spaccapietra, and Z. Tari. 2000. Identifying Objects by

Declarative Queries. 255–277.
[66] Jan Paredaens. 2012. What about Constraints in RDF? In Conceptual Modelling

and Its Theoretical Foundations. Springer, 7–18.
[67] Norman W. Paton and Peter M. D. Gray. 1988. Identification of Database Objects

by Key. InOODBS (Lecture Notes in Computer Science, Vol. 334). Springer, 280–285.
[68] Jaroslav Pokorný, Michal Valenta, and Jiří Kovačič. 2017. Integrity constraints in

graph databases. Procedia Computer Science 109 (2017), 975–981.
[69] Xiaolei Qian and Gio Wiederhold. 1991. Incremental Recomputation of Active

Relational Expressions. IEEE Trans. Knowl. Data Eng. 3, 3 (1991), 337–341.
[70] Ian Robinson, Jim Webber, and Emil Eifrem. 2013. Graph databases. O’Reilly

Media.
[71] Guus Schreiber and Mike Dean. 2004. OWL Web Ontology Language Refer-

ence. W3C Recommendation. W3C. https://www.w3.org/TR/2004/REC-owl-ref-
20040210/.

[72] Sławek Staworko, Iovka Boneva, José Emilio Labra Gayo, Samuel Hym, Eric G.
Prud’hommeaux, and Harold R. Solbrig. 2015. Complexity and Expressiveness of
ShEx for RDF. In ICDT (LIPIcs, Vol. 31). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 195–211.

[73] Radu Stoica, George Fletcher, and Juan F. Sequeda. 2019. On Directly Mapping
Relational Databases to Property Graphs. In AMW.

[74] Neil Swainston, Riza Batista-Navarro, Pablo Carbonell, Paul D. Dobson, Mark
Dunstan, Adrian J. Jervis, Maria Vinaixa, Alan R. Williams, Sophia Ananiadou,
Jean-Loup Faulon, Pedro Mendes, Douglas B. Kell, Nigel S. Scrutton, and Rainer
Breitling. 2017. biochem4j: Integrated and extensible biochemical knowledge
through graph databases. PLOS ONE 12, 7 (07 2017), 1–14.

[75] Sparsity Technologies. 2020. Sparksee. https://sparsity-technologies.com/
#sparksee (visited: 2020-11).

[76] Neo Technology. 2020. Neo4j. https://neo4j.com/ (visited: 2020-11).
[77] TigerGraph. 2020. TigerGraph. https://www.tigergraph.com/ (visited: 2020-11).
[78] Titan. 2020. Titan. https://titan.thinkaurelius.com/ (visited: 2020-11).
[79] Dominik Tomaszuk. 2017. RDF validation: A brief survey. In International Con-

ference: Beyond Databases, Architectures and Structures. Springer, 344–355.
[80] Dominik Tomaszuk and David Hyland-Wood. 2020. RDF 1.1: Knowledge rep-

resentation and data integration language for the Web. Symmetry 12, 1 (2020),
84.

[81] Yuhang Xia and Chenglin Sun. 2018. Property Graph Database Modeling and
Application of Electronic Medical Record. In IMCCC Conference. IEEE, 963–967.

[82] Zuopeng Justin Zhang. 2017. Graph databases for knowledge management. IT
Professional 19, 6 (2017), 26–32.

https://sparsity-technologies.com/#sparksee
https://sparsity-technologies.com/#sparksee
https://neo4j.com/
https://www.tigergraph.com/
https://titan.thinkaurelius.com/

	Abstract
	1 Introduction
	2 Design Requirements for Keys
	2.1 Purposes of Keys
	2.2 Key Types
	2.3 Defining Scope and Descriptor
	2.4 Object Identity
	2.5 Pragmatic Concerns

	3 Querying Property Graphs
	4 A Guided Tour of PG-Keys
	4.1 PG-Keys Formally
	4.2 Keys on Nodes
	4.3 Keys on Edges
	4.4 Keys on Properties
	4.5 Validation of PG-Keys

	5 Relationship to Other Paradigms
	5.1 Conceptual Data Models
	5.2 Relationships to Relational Keys
	5.3 XML Keys
	5.4 Keys in Semantic Web Stack

	6 Extensions of PG-KEYS
	6.1 NULL Values
	6.2 Regular Path Queries
	6.3 Complex Values

	7 Looking ahead
	Acknowledgments
	References

