PG-KEeys: Keys for Property Graphs

Renzo Angles Angela Bonifati Stefania Dumbrava
Universidad de Talca, IMFD Chile Lyon 1 Univ., Liris CNRS & INRIA ENSIIE & Inst. Polytechnique de Paris
George Fletcher Keith W. Hare Jan Hidders
Eindhoven Univ. of Technology JCC Consulting Inc., Neo4;j Birkbeck, Univ. of London
Victor E. Lee Bei Li Leonid Libkin
TigerGraph Google LLC U. of Edinburgh, ENS-Paris/PSL, Neo4;j
Wim Martens Filip Murlak Josh Perryman

University of Bayreuth

Ognjen Savkovi¢
Free Univ. of Bozen-Bolzano

Stawek Staworko
U. Lille, INRIA LINKS, CRIStAL CNRS

ABSTRACT

We report on a community effort between industry and academia to
shape the future of property graph constraints. The standardization
for a property graph query language is currently underway through
the ISO Graph Query Language (GQL) project. Our position is that
this project should pay close attention to schemas and constraints,
and should focus next on key constraints.

The main purposes of keys are enforcing data integrity and
allowing the referencing and identifying of objects. Motivated by
use cases from our industry partners, we argue that key constraints
should be able to have different modes, which are combinations of
basic restriction that require the key to be exclusive, mandatory, and
singleton. Moreover, keys should be applicable to nodes, edges, and
properties since these all can represent valid real-life entities. Our
result is PG-KEys, a flexible and powerful framework for defining
key constraints, which fulfills the above goals.

PG-KEys is a design by the Linked Data Benchmark Council’s
Property Graph Schema Working Group, consisting of members
from industry, academia, and ISO GQL standards group, intend-
ing to bring the best of all worlds to property graph practitioners.
PG-KEys aims to guide the evolution of the standardization efforts
towards making systems more useful, powerful, and expressive.

CCS CONCEPTS

+ Information systems — Integrity checking; «+ Theory of
computation — Data modeling; Database constraints theory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457561

University of Warsaw

Michael Schmidt

Amazon Web Services

Interos Inc.

Juan Sequeda
data.world

Dominik Tomaszuk
Inst. of Comp. Sci., U. of Bialystok

KEYWORDS
property graphs; key constraints

ACM Reference Format:

Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith
W. Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip
Murlak, Josh Perryman, Ognjen Savkovi¢, Michael Schmidt, Juan Sequeda,
Stawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property
Graphs. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3457561

Brothers and sisters, I have none. But that man’s
father is my father’s son. Who is that man?
-A Classic Riddle about Identity

1 INTRODUCTION

Graphs are a flexible and agile data model for representing complex
network-structured data used in a wide range of application do-
mains, including social networks [64], biological networks [52, 60],
bioinformatics [58], cheminformatics [74], medical data [81], and
knowledge management [41, 82]. In the context of enterprise data
management, many current graph database systems (e.g., Amazon
Neptune [4], Neo4;j [70], TigerGraph [29]) support property graphs.
A property graph is a multigraph where nodes and edges can have
labels and properties (i.e., key-value pairs) [14].

The development of standards for property graphs is in process.
In September 2019, ISO/IEC JTC1 approved a project to standardize
a property graph database language GQL. The GQL project is as-
signed to ISO/IEC JTC1 SC32 WG3 Database Languages — the same
committee responsible for developing and enhancing the Database
Language SQL and of which four of this paper’s authors are mem-
bers. A standards effort for a new database model is a daunting
task: the SQL standard was first approved in 1986 and continues to
be enhanced and expanded today. In addition to standardizing the
language for queries, the following aspects also need to be consid-
ered: extensions to the data model, schema language, constraints,

https://doi.org/10.1145/3448016.3457561
https://doi.org/10.1145/3448016.3457561

among others. It is unrealistic to expect that all of these features
can be addressed by the ISO committee in a timely fashion. There-
fore the initial focus of the ISO committee is to standardize a graph
query language. This begs the question: what about standardization
efforts for property graph schema and constraints?

Standards for property graph schema and constraints are critical
to avoid interoperability risks. With the increased popularity of
graph databases and the strong industry uptake, vendors are imple-
menting their own versions of schema and constraints. By the time
the ISO committee starts to address schema and constraints, the
drift will be so large that it will be hard to reconcile approaches.

As a community of graph database industry practitioners and aca-
demics, we acknowledge the need for standardized property graph
schema and constraints. Our work in the Linked Data Benchmark
Council (LDBC) Property Graph Schema Working Group (PGSWG)
is focused on providing community recommendations to the ISO
committee. This paper presents the deliverable and recommenda-
tion of the working group around the notion of PG-KEys, namely
keys for property graphs. Intuitively, a key in a property graph data-
base is used to establish and identify unique nodes, edges, and
properties in the property graph.

Why Keys? Consider the following scenario to motivate the need
for keys in a property graph. An e-commerce company is in its dig-
ital transformation process and in order to be competitive, it needs
to offer customers new functionalities such as personalized rec-
ommendations based on their social network, new offers based on
purchasing habits, etc. To accomplish this goal, the company wants
to create an identity graph in order to achieve a 360 view of a cus-
tomer and subsequently apply graph algorithms for next generation
analytics. This identity graph is the result of integrating several data
sources including the company’s internal relational data (i.e., order
management system, customer relationship management system)
and acquired external data not necessarily in relational format (i.e.,
social media data and consumer behavior data in graph-oriented
format). Notice that some data sources, such as the relational ones,
might already have some constraints. Moreover, data can also be
injected through ETL pipelines, where the constraints are enforced.
However, even with cleaned data sources or input ETL pipelines,
their integration and migration into the graph database might still
bring global inconsistency. Thus, constraints should be persistent
within the graph database, where the integrated and migrated data
is stored, and should be seamlessly enforced on these data. There-
fore, when it comes to integrate data from graph and non-graph
data sources, the need of specifying constraints for the result of the
integration is quite evident, as shown in the following use cases.

Example 1.1 (Identity in the graph). An identity graph providing
a 360 view of customers must have a way to uniquely identify cus-
tomer nodes in the graph. The order management system contains
a unique identifier for a customer which is in the customer_id
column of the Customer table. The following is an example (using
a GQL-like syntax, quite similar with that of Cypher [36, 38]) of
two Customer nodes in the property graph where customerid is
the property that uniquely identifies a Customer node:

(:Customer {customerid:"C123", name:"Alice Smith"}),
(:Customer {customerid:"C456", name:"Jan" 3}).

Without an identity key, the resulting property graph could have
Customer nodes that appear to be the same when in reality they are
not. This would introduce data errors in the graph. With an identity
key, the integrity of the data is maintained, meaning that there
cannot be another Customer node with the same customerid.
The next source to incorporate is social media data containing
data about Twitter users and the posts they have liked. The fol-
lowing is an example of a user node in the property graph, where
username is a key that uniquely identifies a TwitterUser node:
(:TwitterUser {username:"asmith", firstname:"Alice",
lastname:"Smith", email:"asmith@d.org"3}) .
In order to merge Customer and TwitterUser nodes that corre-
spond to the same people, the company applies entity resolution
techniques. The merged entity contains (deduplicated) data from
both sources, for example:
(:Customer {customerid:"C123", name:"Alice Smith",
twitter:"asmith", email:"asmith@d.org"}) .
Note that not every Customer node would have corresponding
social media data, so the following node remains perfectly valid:
(:Customer {customerid:"C456", name:"Jan" }).
Here, both customerid and twitter are exclusive, meaning that
no two nodes should have identical values of either property. In
addition, customerid is required for each node, while twitter
is optional. Such semantics should ideally be encoded in the key
constraints to prevent ill-formed data from entering the graph.
If each Customer does not have a unique customerid, then the
associated social media information for a single customer may be
incorrectly merged into more than one customer:

(:Customer {customerid:"C456", name:"Alice Smith",

twitter:"asmith", email:"asmith@d.org"}),
(:Customer {customerid:"C456", name:"Jan",
twitter:"asmith", email:"asmithed.org" 3}).

Example 1.2 (Integrity in the graph). An Order is placed by a

Customer, as shown in the following graph pattern:
(:0rder)-[:placedBy]->(:Customer) .

Business users would want to ensure that (1) an Order must be
associated with a Customer and be exclusive to that Customer and
(2) a Customer can place zero or more Orders. These business rules
can be ensured through key constraints. It is not uncommon that
key constraints like this also imply such a participation constraint.

Without this key constraint for Order, the resulting property
graph could have Order nodes without an associated Customer,
thus introducing data errors in the graph. For example, if in the
process of replicating the order management system to a prop-
erty graph, the Order table has a customer_id column, which is a
foreign key referencing the Customer table, and the customer_id
column is nullable, this can lead to problems. Perhaps that value
is allowed to be changed later, or maybe it is a bug in the order
management system. If a row in the Order table has a NULL value
in the customer_id column, then the resulting property graph can
have an Order node without a corresponding Customer. This would
heavily affect analytics and recommendations and subsequently
create the need to invest more money and effort in data cleaning.

With the key constraints, these problems would be avoided. First,
the keys enforce the data integrity of the property graph. Second,
data quality issues can be identified proactively thus avoiding costly
data cleaning expenses later on. Therefore, business rules can be

modeled as key constraints, thereby maintaining property graphs
consistently and preventing data quality issues.

The above use cases showing the utility of PG-KEgys in data
integration and data migration pipelines are recurrent in graph
database applications, as witnessed by the industry members of the
PGSWG (namely Amazon, data.world, Google, Interos, Neo4j, and
TigerGraph). Furthermore, property graph databases such as Neo4;,
Tigergraph, etc., are transactional, therefore they can be used as a
database of record. For this reason, keys are crucial to reference and
identify a node, edge, or property in a graph, avoid duplicate nodes
and edges, provide a base for describing how one entity connects
to another, constrain the structure of the database, and enforce
identity and integrity of the nodes, edges, and properties in a graph,
among others.

From an academic viewpoint, keys are interesting to study be-
cause they are the most basic and most-used type of database con-
straint, and as such play a fundamental role in reasoning over data
and queries for the sake of correctness and performance. For exam-
ple, the existence of keys influences the choice of data structures
and algorithms for indexing, and they can be crucial for determin-
ing if a certain query always has a unique and meaningful result.
So an effective and well-understood formalism for describing keys
is crucial for developing a body of knowledge that can help with
building correct and more efficient databases.

Property graph keys today. Given the popularity of property
graphs and the rise of numerous database vendors, one would
believe that incorporating keys in property graphs would be a
foregone conclusion. Unfortunately, we are at a stage where there
is already a significant drift between database vendors. From an
academic perspective, there has been broad research of keys in a
variety of data models, including graphs; however, the results are
disconnected from the needs of industry.

Industry. The online documentation of thirteen property graph data-
base systems (AgensGraph [3], Amazon Neptune [4], Azure Cosmos
[59], DataStax [27], JanusGraph [45], Memgraph [57], Neo4j [76],
Oracle Spatial and Property Graph [62], RedisGraph [47], Sparksee
[75], TigerGraph [77], TinkerPop [9] and Titan [78]) reveal the fol-
lowing. Some systems (DataStax, Oracle Spatial and Property Graph,
and TigerGraph) offer primary keys for nodes, which combine three
constraints on the property values: unique, mandatory, and single-
valued. Other systems take a more granular approach. AgensGraph,
Memgraph, Microsoft Azure Cosmos, Neo4j, and Sparksee support
a uniqueness constraint on nodes: the same property value may not
appear in more than one node of a given label or type. AgensGraph,
Memgraph, and Neo4j also support a mandatory constraint: every
node having a given label or type must have a value for the given
property. Both uniqueness and mandatory are supported in Oracle
relational database, which are then inherited in the derived Spatial
and Property Graph. Some systems offer some of these constraints
for edges, but no clear pattern emerges. In general, every edge has
an implied constraint, namely that it connects one source node and
one destination node. For TigerGraph, this is extended to say that
these two nodes form the primary key of an edge. This means there
may be only one edge of a given type between a given pair of nodes.
Other systems do not have this built-in constraint, embracing a
multigraph model. To our knowledge, none of these systems offer

user-specified edge cardinality. It is clear that there is no uniform
approach taken for keys in property graphs. This lack of uniformity
underlines the importance of a standardization effort motivated by
existing use cases and based on solid theoretical foundations.

Academia. The notion of “key” exists in most database systems,
although its definition and meaning depend on the underlying
database model. For example, a key in the relational model is a set
of attributes whose values are used to identify tuples inside a table
[2]; in object-oriented data models, object identity is achieved by
equipping each database object with a unique identifier [67] or by
using an arbitrary query [65]; in semi-structured models and XML,
a key can be specified in terms of path expressions [18]; in RDF,
every resource is either identified by an Internationalized Resource
Identifier (IRI) [48] or by using a term described by a vocabulary
[49]. Section 5 gives a closer review of these notions.

In the context of graph databases, we can also find different
approaches to key constraints in the research literature [8, 14]. A
prominent proposal for graph keys [33] relies on a graph model
that differs from the property graph model in that property values
are modeled as data value objects (i.e., special data nodes) and edges
do not have identity or property values. Keys there are a kind of
uniqueness constraint defined in terms of graph patterns (to specify
topological constraints and value bindings), and are interpreted
based on graph pattern matching. The focus of the paper is on
the entity-matching problem rather than on producing a widely
applicable recommendation for the design of keys, rooted in in-
dustrial property graph use-cases. Specifically, the authors analyze
the general complexity of the problem and evaluate two specific
algorithms for entity matching. The work has been extended to
graph functional dependencies [34], though for a model that is less
general than property graphs, as values are only allowed at the
nodes. The extension focuses on the satisfiability, implication and
validation problems for functional dependencies rather than on a
recommendation proposal for property graph databases.

A recent formalism [51] allows the definition of property-based
key constraints solely on nodes and discusses its possible imple-
mentation on top of Neo4;j using the Cypher language; that is, for a
label and a set of properties, all the properties must exist in all the
nodes with that label, and each combination of the values for these
properties is unique for each node. It is also observed that such
keys can be extended to nodes that carry multiple labels. The focus
of this work is on the implication problem and its axiomatic char-
acterization. Another extension of Neo4j constraints [68] studies
new notions such as “node property uniqueness” to make reference
to a set of properties whose values must be unique for a given set
of nodes, and “mandatory properties” for nodes and edges.

Although various aspects of key constraints for graph database
models have been touched upon in the past, a full-fledged formalism
as the one presented in this paper is missing. Moreover, it is clear
that there is no consensus among the vendors. The existence of this
working group is evidence that a consensus is needed.

Contributions. Motivated by the current situation in property
graph data management systems, and following the success of G-
CORE (6], the Property Graph Schema Working Group was formed
in 2019. This paper documents the consensus based on intensive and
constructive discussions held over 18 months between the industry

and academic members of the group. Our contributions are: (a) an
analysis of the requirements for property graph keys; (b) a proposal
for a modular, flexible, and expressive formalism called PG-KEys,
that defines a syntax and a semantics for specifying keys, satisfying
all design requirements; (c) a comparison of this formalism with
keys in existing database models and data models.

Our contributions impact the following audiences: (1) industry
practitioners building graph databases, who can use our framework
as a guideline to incorporate keys in their systems, (2) graph data-
base standards committee members, who can build upon our rec-
ommendations for upcoming standardization features, and (3) aca-
demics, who are given a concrete model of keys for property graphs,
which they can use as a basis for further research.

2 DESIGN REQUIREMENTS FOR KEYS

In this section we elaborate on the design requirements for a suitable
notion of key for property graphs. We begin by discussing the
relevant functions that keys play in databases.

2.1 Purposes of Keys

A common reason for using keys is to constrain the database
contents and prevent data patterns that are nonsensical, contra-
dictory, or unnatural. For instance, a key can be used to prevent
a database from storing two copies of information for individuals
using the same SSN (Social Security Number). Also, in relational
tables that represent relationships between entities, keys are used
to express participation constraints that restrict the relationships to
many-to-many, one-to-many, and one-to-one kind, cf. Example 1.2.

Another purpose of keys is to allow one to reference database
objects. For example, foreign keys in relational databases allow
one record to reference another, by citing its primary key, a com-
mon mechanism for representing relationships between entities. In
property graphs, relationships are represented with edges rather
than foreign keys, and consequently, keys are not needed for intra-
database referencing. However, a reference mechanism is still re-
quired by external applications that access the database.

A special, but distinct, case of referencing is when keys are used
to identify real-life objects represented by database objects, and
vice versa. To this end, keys specify the identifying information for
each object. This use case is particularly relevant in various entity
resolution problems [23, 31], where it is essential that the identities
of objects can be compared through their identifying information
(cf. Example 1.1). Also, this use of keys is crucial in conceptual
data models and object-oriented database models [42, 43], which
typically introduce an abstract object identifier and a link to real-life
objects needs to be established.

All of the above uses of keys are relevant for property graphs
and motivate the following requirement.

RO Coverage. The proposed formalism must address the need to
constrain the database and to reference and identify objects.

2.2 Key Types

To properly address the various purposes of keys, we elaborate on
a repertoire of key types of varying power, but first we need to
outline the basic anatomy of keys and how they work.

/—> IDENTIFIER <—\

EXCLUSIVE EXCLUSIVE
MANDATORY SINGLETON

A\ EXCLUSIVE ~/A

Figure 1: Hierarchy for PG-KEys.

A key has a scope, which is the set of objects to which it applies,
and a descriptor, which specifies, for an object in the key scope,
how to obtain a key value. For instance, in relational databases, the
scope of a key is a table and the descriptor consists of a set of (key)
attributes: for an object represented by a single row of a table, the
key value consists of the values of key attributes in that row.

For object identification purposes, the key values need to be:

EXCLUSIVE, no two objects in the key scope can share a key value.
This ensures unambiguity of the reference given by the key.

MANDATORY, every object in the key scope must have a key value.
This ensures that every object in the key scope can be referenced
using the key, which provides a total reference scheme.

SINGLETON, every object in the key scope must have at most one
key value. This ensures that the key value is canonical, and in
particular, for any two objects in the scope that have key values,
the objects are identical if and only if their key values are the
same. So, the key value of an object is equivalent to its identity.

The conditions above are in fact fulfilled by virtually all existing
notions of keys, including keys in relational databases [2], keys in
ER diagrams [22], and keys in XML Schema [20, 53].

For the purposes of referencing objects and imposing constraints,
we additionally consider variants that drop either MANDATORY or
SINGLETON or both. Indeed, such variants are commonly employed
in existing database models and data modeling frameworks. For
instance, XML Schema proposes the <unique> identity constraint
that drops MANDATORY. Similarly, SQL provides a UNIQUE constraint
for relational databases (where SINGLETON is implied by 1NF).

For the presented purposes, we identify four natural key types,
which we illustrate with an example of a system that manages
information about a set of users:

e EXCLUSIVE MANDATORY SINGLETON, or IDENTIFIER for short,
e.g., login: every user is required to have precisely one, and no
two users can have the same login;

e EXCLUSIVE MANDATORY, e.g., email: every user must have at
least one email and no two users can use the same email;

e EXCLUSIVE SINGLETON, e.g., preferred email: every user may
have at most one preferred email for contacting them but again
no two users can have the same preferred email;

e EXCLUSIVE, e.g., alias: every user may have an arbitrary number
of aliases but no two users can have a common alias.

These four key types form a natural hierarchy, presented in Figure 1:
arrows lead from weaker to stronger types of keys.

2.3 Defining Scope and Descriptor

We next identify design requirements that focus on defining the
scope and the descriptor of keys. To illustrate them, we use a small
example of a property graph, presented in Figure 2, representing a

Social Network (SN) graph database inspired by the LDBC Social
Network Benchmark [5, 32]. Recall that a property graph is a di-
rected labeled multigraph whose nodes and edges have (possibly
multiple) labels and properties [7, 8, 14].

For a majority of keys, the scope and the descriptor are defined
by simple means of inspecting labels and property values only. For
instance, countries, represented by nodes with label Country, are
identifiable by their name, stored as the property name.

However, the information relevant to establishing the kind of a
node and its key value may be located outside of the node: accessing
it may require navigating through the graph. For instance, suppose
that we wish to express a key that asserts that forum moderators
can be distinguished through their first and last names alone. The
scope of such a key consists of Person nodes with an incoming
hasModerator edge. Similarly, consider a key stating that a city can
be identified with the combination of its name and its country: the
key descriptor needs to access a Country node reachable from the
City node with an outgoing isPartOf edge. Hence, the following.

R1 Key Scope. The proposed key formalism must support a rich
language that allows specification of relevant elements of the
property graph that represent real-world objects. In particular,
it must allow the selection of nodes, edges, and their properties.
This language cannot assume that a schema is present.

R2 Key Descriptor. Additionally, the proposed key formalism
must support an equally rich language to locate the graph
elements constituting the key value of an object in scope.

2.4 Object Identity

In R1, we state the need to consider nodes, edges, and properties
as the objects which one may wish to identify with a key. The
justification for nodes is straightforward, since they are typically
used to represent real-world objects. Edges represent relationships,
which may capture events and facts. For instance, in the SN graph
database, the studyAt edges represent the fact that an individual at-
tends university and, as such, we may wish to identify them. Finally,
it is also conceivable that a real-world object is not represented
directly in a graph database with a dedicated node or edge, but
rather by a property value. For instance, a mobile phone may be
represented by its IMEI number, stored as an attribute of the node
representing its owner. We point out, however, that property values
are literal values and, hence, do not have an identity of an abstract
data object, such as nodes and edges. Consequently, the treatment
of property values needs to adequately address this difference.

In the context of the relational model, keys are modeled as equal-
ity generating dependencies [2], where the generated equalities are
between domain values. However, they can also be understood as a
way of determining if two records represent the same real-world ob-
ject. Namely, any two records that agree on key attributes represent
the same real-world object and, therefore, should be equal. Keys for
property graphs can also be understood in this way as a mechanism
for determining the identity of the objects by nodes, edges, and
property values. This leads to the following requirements.

R3 Node Identity. Our formalism must allow determining the
identity of nodes in a graph database.

R4 Edge Identity. Our formalism must allow determining the
identity of edges in a graph database.

R5 Property Value Identity. Our formalism must also allow iden-
tification of property values of both nodes and edges. In par-
ticular, the formalism must allow the determination that two
properties must or must not have the same value.

Note the distinction between object identity and the ability of users
to observe and compare object identifiers (i.e., the concrete object
ID values used internally by a system implementation). Towards
maximal flexibility for system designers and implementors, we do
not require access to observable object identifiers in our formalism.

2.5 Pragmatic Concerns

Finally, we list requirements of a pragmatic nature. They are con-
cerned with ease of use and feasibility of implementation.

R6 Usability. The keys defined by the formalism must be under-
standable and intuitive for the intended users. Preferably the
formalism should be declarative.

R7 Validation. It should be relatively straightforward to validate
a key, i.e., check whether it holds in a given property graph. Its
complexity should be comparable to the complexity of execut-
ing a query in the available querying apparatus.

3 QUERYING PROPERTY GRAPHS

In this section, we discuss languages that can be used to specify the
scope and descriptor of key constraints for property graphs. To this
end, we first treat property graphs themselves. A property graph is a
directed labelled multigraph with the special characteristic that each
node or edge maintains a (possibly empty) set of properties, where
a property is a name-value pair. From a data modeling point of
view, a node represents an entity, an edge represents a relationship
between entities, a label represents a classification or type, and a
property represents an attribute of an entity or relationship.

The general structure of a property graph can be restricted to
satisfy specific requirements. In this paper we will assume the
following restrictions: each node/edge has an exclusive object iden-
tifier (oid); each node/edge has zero or more labels; each node/edge
has zero or more properties; the value of a property must be either
a simple value (e.g., a number, a string, a date) or a complex value
(e.g., a tuple, a set, a JSON structure); and two properties (inside a
single node/edge) cannot have the same name.

We now give a formal definition of property graphs. Assume
that £ is a countably infinite set, containing labels and property
names, and V is a countably infinite set of property values.

Definition 3.1 (Property Graph). A property graph is defined as a
tuple G = (N, E, p, A, r) where: N is a finite set of nodes; E is a finite
set of edges such that NNE = 0; p : E — (N XN) is a total function
mapping edges to ordered pairs of nodes; A : (NUE) — 2L isa
total function mapping nodes and edges to sets of labels (including
the empty set); 7 : (N UE) x L - V is a partial function mapping
nodes / edges and property names to property values.

Example 3.2. Consider the property graph in Figure 2. We have
N ={cta,cny,...,my,m1 };E = {poa,r1,...,s2}; p(po2) = (cta, cna),
.o p(r1) = (mg,mq); A(cty) = {City}, ..., A(m;) = {Message,
Post}, A(poz) = {isPartOf}, ..., A(s2) = {studyAt}; and n(ct2,
name) = Wassenaar, ..., 7(sz, classYear) = 2021.

(cty :City u; :University

] [

s1 :studyAt

I3 :isLocatedIn

-

T R

P2 :Person

l name: Wassenaar

L name: The Hague University " classYear: 2020
J

(21 EIPErSEn] cty :City
firstname: Hayao

name: Wassenaar
lastname: Kurosawa

firstname: Akira
lastname: Miyazaki

3 H s, - studyAt birthday: 1988-06-24 3
~ | :isLocatedIn = .
o classYear: 2021 b :isLocatedIn o
2 cp :containerOf 9
o mb; :hasMember S
g s
- [\ B
Y m, :Message : Comment m; :Message :Post . - Y
| cny :Country] r :replyOf N o :containerOf fo :Forum ¢y :Country
contents: Indeed, ... > contents: Keys are... [€ o
L name: The Netherlands J lang: en lang: en title: Databases

Figure 2: An example of a property graph: a Social Network (SN) graph database. For ease of reference, we associate with every node and
edge an identifier and employ consistent typographic conventions. For instance, take the node u; representing the Hague University: u; is
its identifier, University is its only label, name is a property name, and The Hague University is its value.

For defining the scope and descriptor of key constraints, we
assume that we can use a language that allows us to map property
graphs G to tables T, where a table T is a set of bindings that
map variables to values. Concretely, we assume that we can write
statements such as:

q(x)
where x is a tuple of variables that bind to nodes, edges, and property
values. We will use these statements to describe the scope and
descriptor of keys. Informally, such a statement could be the query

“Return all bindings to (x,y, z) such that x is a person,
y the city that x is located in, and z is the name of y.”

On the data in Figure 2, this query would return the table

x y z
p1 ct; Wassenaar
p2 ct; Wassenaar

where the first and second row express that (x, y, z) can be bound
to (p1, ct1, Wassenaar) and (pg, ct;, Wassenaar), respectively.

Notice that our convention to let variables bind to nodes, edges,
and property values implies that (a) queries cannot output paths
and (b) queries can only output entire property values, treating
them as atomic. We will consider extensions of our formalism that
relax these conditions in Sections 6.2 and 6.3.

The language for specifying q(x) will be a parameter of PG-
KEys. This means that different database systems can use different
languages for specifying q(x) and still fully conform to PG-KEys.
We recommend using languages with a good expressiveness/com-
plexity balance, which will allow efficient implementations of key
validation, while providing sufficient expressive power.

In order to be able to present examples in the paper, however,
we will specify q(x) as queries in a language where the patterns
are expressed in a GQL-like syntax, similar to that of Cypher [36],
a popular graph query language. In this syntax the above query
would be written as

X, ¥y, y.name WITHIN

(x:Person)-[:islLocatedIn]->(y:City).
Here, the part preceding keyword WITHIN specifies the output of
the query, whereas the part following WITHIN specifies the pattern
to be matched in the property graph. Notice that our syntax does
not require giving an explicit name to every variable. For instance,

we just use y.name to refer to “the name of y”, which we called z
before. We will use this convention throughout the paper.

If there is exactly one output variable and this is the only variable
in the pattern, as for example in x WITHIN (x:Person), then we
allow the query to be specified by just the pattern (x:Person).

We will also assume that all variables in the query, including the
implicit ones, must be bound to existing objects in the property
graph. In Section 6.1, we discuss what happens when a reference to
an undefined property is allowed to occur. In that case, following the
practice of existing graph query languages, a null (or more precisely,
a non-applicable null) is returned. Existing query languages tend
to follow SQL’s three-valued approach to handling nulls, though
in Section 6.1 we suggest another approach that fits in better with
the semantics of undefined properties: namely, returning false for
results of comparisons using such properties.

4 A GUIDED TOUR OF PG-KEYS

In this section, we define PG-Keys formally and demonstrate how
they satisfy the design requirements identified in Section 2.

We begin with a basic example illustrating the general shape
of PG-KEyYs. Suppose that cities can be identified by their name
and the country they are in (if this information is known). More
precisely, this means that the combination of the name property of
a city node, with the country node to which it has an isPartOf
edge, identifies the city node. The corresponding PG-Key

FOR (x:City) EXCLUSIVE x.name, z WITHIN

(x)-[:isPart0f]->(z:Country)
involves two queries. The query (x:City) specifies the scope of the
PG-KEyY, which is the set of all possible targets; here, city nodes. The
query x.name, z WITHIN (x)-[:isPartOf]->(z:Country) is the descriptor
that selects a key value for each target; here, the city’s name and
the country it is part of. The keyword EXCLUSIVE indicates that the
PG-KEy asserts that the key value is exclusive to each target.

4.1 PG-Keys Formally

A PG-KEY is an expression of the form
FOR p(x)
EXCLUSIVE [MANDATORY | SINGLETON] |
where § = (y1,y2, . . ., yn) for some positive integer n, and p(x) and
q(x, §) are queries, called the scope and the descriptor, respectively.

IDENTIFIER q(x,7),

Note that the keyword WITHIN appearing in the basic example
belongs to our syntax for queries.

The keywords EXCLUSIVE, MANDATORY, and SINGLETON indicate
which assertions the PG-Key makes:

EXCLUSIVE — no two targets can have the same key value;
MANDATORY — for each target there is at least one key value;
SINGLETON — for each target there is at most one key value.

More precisely, the assertions can be formulated as follows:

(K1) for all 01 and o3 such that p(01) and p(o02), for all 7 such that
q(o01,7) and q(o02, 7), it holds that 01 = 0g;

(K2) for all o such that p(0), there exists 7 such that g(o, 7);

(K3) for all o such that p(o0), for all 7; and 7, such that q(o, 71) and
q(o,72), it holds that 71 = 7».

A graph G satisfies: an EXCLUSIVE constraint if condition (K1)

holds, an EXCLUSIVE MANDATORY constraint if (K1) and (K2) hold,

an EXCLUSIVE SINGLETON constraint if (K1) and (K3) hold, and

an IDENTIFIER constraint if (K1), (K2), and (K3) hold. That is,

IDENTIFIER is a shorthand for EXCLUSIVE MANDATORY SINGLETON.

PG-KEys clearly satisfies design requirements R1-R5 of Section 2:

there is full support for specifying the scope (R1) and descriptor

of a key (R2); and, key constraints can be defined for nodes (R3),

edges (R4), and property values (R5).

In the following Sections 4.2-4.4, we give a guided tour highlight-
ing how design requirement R6 (Usability) is also satisfied, through
the intuitive declarative way in which PG-KEys are specified. We
further address design requirement RO (Full coverage): PG-KEys
allows us to constrain the graph database, reference objects within
the database, and identify objects in the database. Indeed, our pre-
sentation follows the modular structure of the PG-Keys formalism,
showcasing the support provided for finely controlling the scope
and descriptor (which can be complex queries over object proper-
ties and graph topology) and for the four key types identified in
Section 2. Last but not least, the discussion of validation of PG-KEYs
in Section 4.5 addresses design requirement R7 (Validation).

4.2 Keys on Nodes

Keys Defined Using Properties. Suppose that we are in the process
of building our SN graph, and not all country nodes have name
property values yet. However, the name property should be unique
for each country, for countries that already have a name. More
precisely, if it exists, the name property of a country node should
identify the country node. This is a uniqueness (or exclusivity)
constraint, allowing us to reference countries:
FOR (x:Country) EXCLUSIVE x.name.

In other words, given any two nodes n; and ny labeled Country,
if they have the same value for the property name, then it must be
the case that n; = ny.

As the data becomes more complete, suppose that we further
require that each country must have a name. In this case, reference
constraints and identification constraints are equivalent, because
our data model does not include multi-valued properties:

FOR (x:Country) EXCLUSIVE MANDATORY x.name,
FOR (x:Country) IDENTIFIER x.name.

Keys Defined Using Properties and Topology. To further illustrate
the distinction between EXCLUSIVE MANDATORY and IDENTIFIER,

we return to the example with which we opened this section, where
cities are identified by their name and the country they are part of
(if this information is known). This is an example of a uniqueness
constraint allowing us to reference cities, i.e., given any two nodes
np and ny labeled City, if they have the same value for the property
name and both have an isPartOf edge to a common node n3 labeled
Country, then it must be the case that ny = ny. If we further require
that cities must have names and must be part of a country, then it
would be natural to specify the constraint
FOR (x:City) EXCLUSIVE MANDATORY x.name, z WITHIN
(x)-[:isPart0f]l->(z:Country)

allowing to reference cities and impose the required constraints
on the graph topology. If we further require that cities are part of
exactly one country, we would specify the identification constraint:

FOR (x:City) IDENTIFIER x.name, z WITHIN
(x)-[:isPart0f]->(z:Country) .

Keys Defined Using Topology. As an example of a constraint defined
purely in terms of graph topology, consider forums which can be
identified by the posts that they contain, i.e., knowing a post, the
forum that contains it is uniquely identified. This is a uniqueness
constraint, allowing us to reference forums:
FOR (x:Forum) EXCLUSIVE z WITHIN
(x)-[:container0f]->(z:Post) .
In other words, given any two nodes n; and ny labeled Forum, if
they both have a containerOf edge to the same Post, then it must
be the case that n; = ny. If we further require that forums must
have posts, we specify an EXCLUSIVE MANDATORY constraint on the
database. Further, it is not expected that forums must each have
exactly one post (since these would be rather lonely forums), hence
it doesn’t make sense that posts are identifiers for forums. We can
express that each post is contained in exactly one forum as
FOR (z:Post) MANDATORY SINGLETON x WITHIN
(x:Forum)-[:container0f]->(z),
but this is a participation constraint rather than a key constraint,
and is not part of PG-KEys.

Keys With Complex Scope. So far, we have defined constraints on
nodes based on a fairly simple scope, namely, by only considering
the label of the node. As a final example illustrating the need for
more complex scope, consider the constraint that a forum which
has members (1) must have a moderator and (2) is identified by the
moderator. In PG-Keys, we have
FOR x WITHIN (x:Forum)-[:hasMember]->(:Person)
IDENTIFIER p WITHIN (x)-[:hasModerator]->(p:Person).
In other words, a forum with members must have exactly one
moderator and, furthermore, given any two such forum nodes ny
and ny, if they both have a hasModerator edge to the same Person,
then it must be the case that ny = ny.

4.3 Keys on Edges

Keys Defined Using Topology. For our first edge key constraint,
consider that there is only one isPartOf edge from a given country
to a given continent, i.e., the identity of an isPartOf edge from
a country to a continent is determined by the country and the
continent. More formally, this actually means that there is at most
one isPartOf edge from a given country to a given continent,
which is a uniqueness constraint:

FOR y WITHIN (:Country)-[y:isPartOf]->(:Continent)
EXCLUSIVE x, z WITHIN (x:Country)-[yl->(z:Continent) .
In other words, given any two edges e; and ey labeled isPartOf, if
they have the same source node ng labeled Country and the same
target node n; labeled Continent, then it must hold that e; = e;.

Keys Defined Using Properties and Topology. Suppose that people
can study at the same university in different years, but for a given
year, the studyAt edge between a person and a university is unique.
Rephrased, this means that, in a given year, the information that
a person studies at a given university is stored only once. More
precisely, if you have a studyAt edge from a person to a univer-
sity with the property classYear, then this edge is identified by
the person, the university, and the value of classYear. This is a
uniqueness constraint, which we can express in PG-KEys as

FOR y WITHIN (:Person)-[y:studyAt]->(:University)

EXCLUSIVE x, y.classYear, z WITHIN

(x:Person)-[yl->(z:University) .
In other words, given any two edges e; and e, labeled studyAt
with property classYear, if they have the same source node ng
labeled Person, the same target node n; labeled University, and
have the same value for the property classYear, then it must be
the case that e; = es.

As another example, suppose that studyAt edges must have a
classYear property (and always be from person nodes to university
nodes). As our properties are single-valued and edges have a single
source and a single target, we have an identification constraint:

FOR y WITHIN ()-[y:studyAtI->()

IDENTIFIER x, y.classYear, z WITHIN

(x:Person)-[yl->(z:University) .
Note that this is not the same as:

FOR y WITHIN (:Person)-[y:studyAt]->(:University)

IDENTIFIER x, y.classYear, z WITHIN (x)-[yl->(z),
which has the scope limited to those studyAt edges that are from
Person to University.

As a final example, suppose that our edge constraint only holds
for study years after 1970. We can express this as

FOR y WITHIN ()-[y:studyAt]->() WHERE y.classYear > 1970
IDENTIFIER x, y.classYear, z WITHIN
(x:Person)-[yl->(z:University) .

4.4 Keys on Properties

We close our tour of the functionality of PG-Keys with an illustra-
tion of a constraint on properties. Consider that study semesters
belong to a particular year, e.g., the first semester of 2019. That
is, the classYear property of a studyAt edge is identified by the
semester property of the edge (if it is known):

FOR y.classYear WITHIN ()-[Ly:studyAtl->()

EXCLUSIVE y.semester.
In other words, for any classYear property values v; and vy of
studyAt edges e; and ey, if e; and ez have the same value for
property semester, then it must be the case that v; = vy.

4.5 Validation of PG-KEYs

The crucial task related to PG-KEeys is validation; that is, determining
if a given property graph satisfies a given PG-Key. Validation of
PG-KEYs can be recast as query evaluation. Indeed, recall that the

satisfaction of a PG-KEY is expressed in terms of conditions (K1),
(K2), and (K3). Each of these conditions can be reformulated as
emptiness of a query built from the scope and the descriptor of the
PG-KEY. We explain this with an example from Section 4.2:
FOR (x:City) IDENTIFIER y, x.name WITHIN
(x)-[:isPart0f]->(y:Country).

The query for (K1) is obtained by combining two copies of the
scope with different scope variables and two copies of the descriptor
with the same descriptor variable:

MATCH (x1:City), (x1)-[:isPart0f]->(y:Country),

(x2:City), (x2)-[:isPart0f]->(y:Country)
WHERE x1 <> x2 AND x1.name IS NOT NULL AND
x2.name IS NOT NULL AND x1.name = x2.name

RETURN x1, x2.

Because the property name is also a component of the key, we
additionally check that it is set and that x1.name = x2.name. The
resulting query finds pairs of different targets that share a key value.
Hence, (K1) holds exactly when the query returns no answers.

For (K2), we select targets in the scope for which the descriptor
cannot be matched:

MATCH (x:City)

WHERE NOT EXISTS(x.name) OR

NOT (x)-[:isPart0f]->(y:Country)

RETURN x .

Notice that matching the descriptor also involves checking that the
property name is set. Again, (K2) holds exactly when this query
returns no answers.

For (K3), the query selects targets for which two different key
values exist. It is built from one copy of the scope and two copies
of the descriptor with different descriptor variables:

MATCH (x:City), (x)-[:isPartOf]->(yl1:Country),

(x)-[:isPart0f]->(y2:Country)

WHERE y1 <> y2

RETURN x .

Note that we do not need to check that there is only one value of
the property name, because our data model does not include multi-
valued properties. Like in both previous cases, (K3) holds exactly
when the constructed query returns no answers.

Clearly, such rewritings into queries can be directly obtained for
any PG-Key. This additionally addresses the design requirement
R6 identified in Section 2, allowing to express the semantics of
PG-KEYs in the very familiar terms of query semantics. Moreover,
while additional mechanisms would be needed to handle aspects
like batching or incremental validation, implementations of PG-
KEys can leverage existing facilities fo