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We study the problem of bounded repairability of a given restriction tree language R into a target tree
language T'. More precisely, we say that R is bounded repairable with respect to 7' if there exists a bound
on the number of standard tree editing operations necessary to apply to any tree in R to obtain a tree in
T. We consider a number of possible specifications for tree languages: bottom-up tree automata (on curry
encoding of unranked trees) that capture the class of XML schemas and document type definitions (DTDs).
We also consider a special case when the restriction language R is universal (i.e., contains all trees over a
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We give an effective characterization of bounded repairability between pairs of tree languages represented
with automata. This characterization introduces two tools—synopsis trees and a coverage relation between
them—allowing one to reason about tree languages that undergo a bounded number of editing operations. We
then employ this characterization to provide upper bounds to the complexity of deciding bounded repairability
and show that these bounds are tight. In particular, when the input tree languages are specified with
arbitrary bottom-up automata, the problem is coNExp-complete. The problem remains coNExp-complete
even if we use deterministic nonrecursive DTDs to specify the input languages. The complexity of the
problem can be reduced if we assume that the alphabet, the set of node labels, is fixed: the problem becomes
PSpace-complete for nonrecursive DTDs and coNP-complete for deterministic nonrecursive DTDs. Finally,
when the restriction tree language R is universal, we show that the bounded repairability problem becomes
Exp-complete if the target language is specified by an arbitrary bottom-up tree automaton and becomes
tractable (P-complete, in fact) when a deterministic bottom-up automaton is used.
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1. INTRODUCTION

A basic problem in data management is to ensure that data is valid, namely that it
satisfies all integrity constraints associated with a schema [Bertossi 2011]. Validation
of data with respect to a schema is crucial in any database system: if data does not
satisfy the integrity constraints, then one cannot guarantee that the output produced
by the system is correct. Nevertheless, when data does not satisfy constraints, a natural
approach is to attempt a repair—that is, to modify the data minimally so that it becomes
valid [Arenas et al. 1999; Afrati and Kolaitis 2009]. We may want to perform this
transformation on the data, or we may be merely interested in knowing how difficult it
is to perform the transformation in case of need—that is, determining how far a given
collection of data is from satisfying the specification. For example, some applications
may retain input data even when this contains a few errors, where “few” could be
interpreted as a user-defined bound to the total number of errors or to the fraction of
errors over the size of the input [Grahne and Thomo 2004].

On relational data, this problem has been extensively studied under the notion
of constraint repair (e.g., see Arenas et al. [1999] and Afrati and Kolaitis 2009]): in
this case, the specifications are given by relational integrity constraints, such as keys
and foreign keys, and the problem asks to determine how much a database needs to
be modified to satisfy a given constraint. This approach has been investigated for a
variety of integrity constraints, starting with classical functional and inclusion depen-
dencies [Arenas et al. 1999] and continuing with more expressive constraints such as
tuple generating dependencies [Afrati and Kolaitis 2009]. In addition, several differ-
ent repair operators have been considered in the relational case, including insertions,
deletions, and modifications of tuples. Besides finding repairs of relations, this line of
research also focuses on querying inconsistent documents via their minimal repairs.

In the XML framework, malformed or nonconformant documents are more the rule
than the exception [Chen et al. 2005; Ofuonye et al. 2010]. Indeed, a recent study
[Grijzenhout and Marx 2013] shows that although most XML documents are well
formed (more than 85%), only 25% of them reference a downloaded schema. Even
worse, in this study, it is shown that less than 10% of XML documents satisfy their
downloaded schema. This means that most of the XML data on the Web can be read,
but only a small part of it can be processed automatically. In this scenario, it is natural
to look for automatic repairing XML data with respect to a target schema. The idea
is that an automatic repair process receives an invalid XML document and produces
the best sequence of edit operations that results in a document satisfying the target
schema. The edit operations should respect the nested structure of the XML document
and modify the document in a minimal way.

The notion of repair for XML data is defined in a natural way when considering docu-
ments as trees: in this case, a repair can be simply defined as the tree edit distance [Tai
1979] between the input tree and the repaired tree—that is, the number of atomic edit
operations that are needed to get from one tree to another. An atomic edit operation
here amounts to inserting, deleting, or modifying a single node in a tree [Bille 2005].
Edit distance can then be lifted to a measure of distance dist(¢, T') of a tree ¢ from a
specification 7T': this is nothing but the minimal distance of ¢ to any tree satisfying
T. In our setting, ¢ can be seen as an XML document and 7" as an XML Schema,
and hence dist(¢, T') measures how difficult it is to repair the data ¢ so as to satisfy
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T. Furthermore, dist(¢, T') can be computed efficiently when T is a regular language
(e.g., document type definition (DTD) or XML schema definition) specified by means of
an automaton [Wagner 1974; Aho and Peterson 1972].

In this article, we take the next step in repairing XML documents or trees: given
two regular specifications S and T over trees, we aim at calculating how difficult it is,
in the worst case, to transform an object satisfying S into an object satisfying 7. The
problem is motivated by considering S to be a source (i.e., a constraint that the input is
guaranteed to satisfy) and T to be a target (i.e., a constraint that needs to be enforced).
More precisely, we consider the worst case over all trees ¢ satisfying S of the minimum
number of edit operations needed to transform ¢ into some tree in T'—that is,

cost(S, T') = sup dist(¢, T') = sup min dist(, ¢').
teS teS teT

Of course, the preceding cost may be infinite. In this work, we isolate the pairs of
schemas S and T such that cost(S, T') is finite, and we give optimal procedures to
decide when this happens, namely when schema S is “almost contained” in schema 7.
Specifically, we say that S is bounded repairable into T' when cost(S, T') < co—that is,
when every document ¢ in S can be repaired to a document ¢’ in 7' by applying a finite,
uniformly bounded number of edits.

The notion of bounded repair is also motivated by the schema matching prob-
lem [Rahm and Bernstein 2001]: we would like to identify whether two schemas are
semantically related. In our setting, the semantic relation between two schemas is
considered at a very low level, namely each schema is seen as a set of documents and
not as a set of rules. Then the bounded repair problem states that a source schema S
is related to a schema 7' if any XML document satisfying S can be transformed with
a finite, uniformly bounded number of operations into a document satisfying 7'. Here,
it is important to notice that our repair operations are designed to only consider the
structural part of the data. Further research needs to be done to include in the analysis
the data itself, such as the constraints between attribute values in XML documents, as
this is an important aspect to take into account when reasoning on and transforming
XML documents.

The following examples give an account of some of the difficulties of telling whether
one schema is bounded repairable into another.

Example 1.1. Recall that languages of unranked trees can be specified by means
of DTDs—that is, by sets of rules of the form a« — L,, where L, is a regular language
describing the possible sequences of children of an a-labeled node. For the sake of
brevity, we will often omit from DTDs the rules of the form a — ¢, which denote the
fact that a-labeled nodes are leaves.

Consider the following DTDs:

S:r — dc* T:r - a*e
d - a*b* e — b*c*

The left-hand side schema S defines the language of all trees of the form r(d(a, ..., a,
b,...,b),c,...,c), whereas the right-hand side schema T defines the language of
all trees of the form r(a,...,a,e(,...,b,c,...,c)). We claim that S is repairable
into 7" with a uniformly bounded number of edit operations. Indeed, given a tree
rd,...,a,b,...,b),c,...,c) satisfying S, one can first delete the node labeled by d,
obtaining the tree r(a,...,a,b,...,b,c,...,c), and then insert a new e-labeled node
under the root, which adopts as children all nodes labeled by & or c; this results in a
treer(a,...,a,eb,...,b,c,...,c)) that satisfies T'.
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Example 1.2. Consider the following DTDs:

S:r —>a T :r - a
a — b* a — b'c
It is easy to see that S’ is bounded repairable into 7"': any tree r(a(b, ..., b)) in S’ can

be modified into a tree in 7" by inserting a new c-labeled node as a right sibling of the
nodes labeled by b. However, if we replace in both DTDs S” and 7" the rule r — «a
with the rule r — a*, we obtain a new pair of languages S” and 7" such that S”
is not bounded repairable into 7"”. This example suggests that bounded repairability
depends on some interplay between the rules of DTDs and, more generally, between
the specifications of the labelings of the nodes at different levels of the trees.

We will deal with the notion of bounded repairability for schemas that are more gen-
eral than DTDs, such as schemas that are given by regular tree languages [Schwentick
2007], and which capture the structural part of the W3C’s XML schema [Fallside and
Walmsley 2004]. We will formalize the edit distance between regular tree languages,
and from this we will define the bounded repair problem—that is, the problem of de-
ciding bounded repairability between two given tree languages S and 7'. Our main
result is that it is decidable whether or not S can be repaired into 7" with a uniformly
bounded number of edits.

For regular languages of words, the bounded repair problem was resolved in Benedikt
et al. [2013]. There, it was shown that the problem is coNP-complete when the lan-
guages are represented by deterministic finite state automata, and a characterization
of bounded repairability was given using a coverability relation between chains of con-
nected components of the automata. In the case of tree languages, the problem turns
out to be more complex, both in terms of complexity and in terms of proof techniques
that are required to solve it. We will provide a characterization of bounded repairabil-
ity that exploits a suitable notion of component of a stepwise tree automaton [Carme
et al. 2004], a form of automaton that turns out to be particularly convenient for ana-
lyzing repairs. An additional complication for the tree case is that we need to consider
structures of connected components of stepwise tree automata that take the form of
trees rather than chains. Our characterization of the bounded repairability of S into T
requires that every component structure of S can be “covered” by a component struc-
ture of T'. The notion of covering is subtle, and the proof that it captures bounded
repairability requires lifting the notion of edit from the level of the individual trees to
the level of the component trees associated with the automata for S and 7T'.

With an effective characterization at hand, we can decide the bounded repairability
problem, and with some additional optimizations, we can give tight complexity bounds.
It turns out that, differently from the string setting, the bounded repairability problem
is equally complex no matter whether the tree languages are given by nondeterministic
automata, deterministic automata, DTDs, or even nonrecursive DTDs. Indeed, for all of
these cases, the bounded repair problem is coNExp-complete. We then look for tractable
cases that are obtained by further restricting the tree specifications. For example,
we show that the bounded repairability problem becomes much simpler when the
source alphabet is fixed and the languages are given by deterministic DTDs, or when
the source language is assumed to be trivial, namely the set of all trees over a given
finite alphabet.

New material in this article. Preliminary versions of some of the results in this
work appeared in Puppis et al. [2012]. However, this article contains substantial new
material. We include a full proof of the main characterization result (Theorem 5.7).
The upper bounds to the number of repairs (Lemma 5.5 and Proposition 5.8) are also
new. As concerns the complexity of deciding bounded repairability, the article provides
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new complexity bounds that are moreover tight. In the previous work, it was shown
that the bounded repair problem for regular tree languages is decidable in I1}** and is
Exp-hard. Here, we show that the problem is actually coNExp-complete (Theorems 7.3
and 7.4). We finally include new examples and proofs of other claims that were omitted
in the previous work.

Organization. The article is organized as follows. In Section 2, we discuss some
related work. In Section 3, we give some preliminaries on trees and regular tree
languages, and in Section 4, we define the bounded repairability problem for tree
languages. In Section 5, we give the formal statement of our main result—that is,
a characterization of those pairs of schemas that are bounded repairable. Section 6
gives a detailed proof of the characterization. In Section 7, we analyze in detail the
complexity of the bounded repairability problem. In Section 8, we give another, simple
characterization of bounded repairability for the case where the source language is
universal, and we accordingly derive new complexity results. Finally, in Section 9, we
give our conclusions and future work.

2. RELATED WORK

Ever since their conception, computers required the input data to follow a set of strict
structural and semantic rules, and the failure to do so typically resulted in operations
producing unpredictable outputs, a well-known phenomenon of Garbage In, Garbage
Out [Babbage 1864]. While initially this phenomenon was attributed to situations of
erroneous manual data entry, with the ever-increasing number of applications exchang-
ing data, the phenomenon has gained a new meaning, describing potential problems
occurring when two applications attempt to communicate with incompatible proto-
cols [Lidwell et al. 2010]. Although our research aims at solving the problems of the
latter scenario, very early in the development of computer science we saw solutions to
the problems resulting from erroneous manual data entry. One prominent example is
the work on the error-correcting parser for context-free languages [Aho and Peterson
1972], where a malformed input string is repaired by applying a (minimal) number
of editing operations that make it conform to the given grammar. Korn et al. [2013]
consider a similar problem for XML, where a serialization of an XML document is not
well formed (e.g., mismatching opening and closing tags or misspelled tag names) and
is repaired to allow parsing into an XML tree. A slightly different variant of the prob-
lem is repairing well-formed XML with respect to a given schema in the form of a DTD
[Suzuki 2005; Staworko and Chomicki 2006] or XML schema [Staworko et al. 2008].
The validity of the XML document is restored using a minimal set of editing opera-
tions (insertion, deletion, and renaming of nodes). Adding a move operation that can
change the relative order of elements is challenging because of fundamental compu-
tational limitations [Cormode and Muthukrishnan 2007], and approximate measures
have been studied for this operation [Boobna and de Rougemont 2004]. Furthermore,
repairing XML documents with respect to analogues of classical relational constraints
(key and inclusion dependencies) has also been studied [Flesca et al. 2005]. HTML
documents often violate the syntactic rules of well formedness and the structural rules
imposed by the HTML standard; consequently, repairing them requires methods that
diligently combine the approaches of editing the textual serialization and editing the
tree representation of the input document [Chen et al. 2005; Ofuonye et al. 2010].
The problem that we study is, however, more general than repairing a single input
XML document with respect to a given schema, as we are interested in repairing any
input document drawn from a possibly infinite set of documents with a number of
operations that is independent on the size of the XML document. One could attempt
to approximate the bound on the number of required editing operations by randomly
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Fig. 1. Curry encodings of an unranked tree and a context.

generating the input document [Antonopoulos et al. 2013] and then computing their
edit distance to the target regular language. Because in our setting the input docu-
ment is drawn from a regular language and is repaired with respect to another regular
language, the problem is in fact a generalization of a well-known and thoroughly stud-
ied problem of containment of two schemas [Comon et al. 2007; Colazzo et al. 2013;
Martens et al. 2009]. Closely related is the problem of measuring similarity between
two schemas based on a notion of embeddings studied in Fan and Bohannon [2008].
Yet there are significant differences: on the one hand, our semantic characterization of
bounded reparability is stronger than the structural similarity determined with em-
beddings, but on the other hand, the framework of Fan and Bohannon [2008] introduces
an additional challenge: it requires the embeddings to be information preserving—that
is, for any query that can be evaluated on a document from the source schema, there
exists an equivalent query over the corresponding document from the target schema.

The preservation of information expressed with queries is the essence of data ex-
change source-to-target mappings and finding (target) solutions for a given source
document is a difficult problem in the context of XML [Arenas and Libkin 2008; Amano
et al. 2009]. In this setting, the problem of absolute consistency [Bojanczyk et al. 2011],
checking that a solution exists for any possible source instance, bears strong resem-
blance to the problem of reparability except it does not call for using editing operations,
and consequently it does not impose any limit on the number of editing operations but
merely inquires the possibility of always finding a solution. In fact, the authors pro-
pose a solution that uses a notion of a kind in a manner analogous to the connected
components used in our approach.

3. REGULAR LANGUAGES OF TREES

In this article, we work with finite unranked ordered trees whose nodes are labeled over
a finite alphabet . Formally, the set of finite unranked ordered trees over ¥ (hereafter,
simply trees) is inductively defined as follows: (1) every symbol a € ¥ is a tree, and (2) if
ac X, neN, and#,...,t, are trees, then a(ty, ..., t,) is a tree. A sequence of Z-trees
ty-...-t, s called a forest. As an example, the left-hand side of Figure 1 shows a tree
over the alphabet ~ = {r, a, b, ¢, d}. We denote by 75 the set of all trees over . A (tree)
language over X is any subset L of 7x.

It is useful to identify nodes of an unranked tree with sequences of positive natural
numbers. Given a tree ¢ of the form a(¢4, ..., %,), its domain is the subset of N* that is
formally defined as nodes(¢) = {¢} U {i - x | x € nodes(#;) A 1 <i < n}. Note that the root
of a tree is represented by ¢. Finally, for every node x € nodes(¢), we denote by #(x) the
label of x in ¢.

Given a tree ¢, we introduce two partial orders on the domain nodes(¢), which are

called ancestor order and post-order and are denoted by <2"° and < oSt respectively.
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The ancestor order <" is nothing but the prefix order on the sequences of positive

natural numbers that identify the nodes of t—that is, x <?"° y if and only if x is a

prefix of y. The post-order <f°St is the total ordering on the nodes of ¢ (i.e., sequences

of natural numbers) defined by x <P°' y if and only if y is a prefix of x or there exist
z,x',y eN*andi,jeNsuchthatx =z-i-x,y=2-j-y,andi < j.

DTDs. We manipulate regular languages of trees mainly by means of automaton-
based specifications, which will be formally defined in the next paragraphs. However,
we use less expressive specifications, such as XML document type definitions, to give
examples of simple tree languages.

An XML DTD is defined as a tuple D = (X, d, I), where X is a finite alphabet, d is
a function that maps symbols from X to regular expressions over X, and I C ¥ is the
set of initial symbols [Comon et al. 2007]. A tree ¢ satisfies the DTD D if t(¢) € I and,
for every x € nodes(¢), the word #(x - 1) - ... - #(x - n) belongs to the language defined by
the regular expression d(¢(x)), where n is the number of children of x in ¢. We denote
by .Z(D) the language of trees satisfying the DTD D. We will often omit the rules of
the form a — ¢, as well as the set of initial symbols from the definition of a DTD when
this set is understood from the context (e.g., when it consists of a single symbol ). As
an example, consider the following DTD:

D: r — ad d — bce*

a — a-+ ¢ b —a

One can easily check that the left-hand side tree of Figure 1 satisfies the preceding
DTD D.

It is known that DTDs define a proper subclass of regular tree languages [Martens
et al. 2006; Martens and Niehren 2007]. Quite interestingly, most of our complexity
lower bounds for the bounded repair problem hold even for languages defined by DTDs
(see Section 7 for more details).

We will also consider languages defined by nonrecursive deterministic DTDs, which
are often used in practice and have been studied extensively in Segoufin and Vianu
[2002] and Segoufin and Sirangelo [2007]. Let us define the dependency graph of a
DTD D = (X,d, I) as the directed graph whose nodes are the letters in ¥ and whose
edges connect any letter a to a letter b whenever b occurs in the language specified by
the regular expression d(a). A DTD D is called nonrecursive if its dependency graph
is acyclic. A DTD D is called deterministic if each regular expression d(a) is one-
unambiguous (namely, it can be equally seen as a deterministic finite state automaton)
[Briiggemann-Klein and Wood 1998] and the set of initial symbols is a singleton.

Curry encoding. To ease the definitions of the automaton model and the reasoning on
tree repairs, we introduce here the notion of curry encoding, also known as extension
encoding, of a tree [Carme et al. 2004; Martens and Niehren 2007]. According to this
encoding, any unranked tree over ¥ is seen as a binary tree with leaves labeled over X
and internal nodes labeled by a distinguished symbol @. Formally, the curry encoding
is the function ext that injectively maps unranked trees to binary trees as follows:

ext(a) =a,

ext(a(ty, ..., t,)) =@ext(alty, ..., t,1), ext(t,))).
To ease readability, we use the symbol @ as a binary, infix, left-associative operator:
for instance, ext(a (¢, ..., %)) = a@ext ()@ ... @ext (t,). The left-hand side of Figure 1

illustrates the encoding of an unranked tree. The inverse ext ! of the encoding is defined
by providing the symbol @ with the semantics of the extension operator on unranked
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trees and by evaluating the expression in a bottom-up fashion—that is, ext }(a) = a
and ext 1 (e @#@...@¢,) = alext L (#y), ..., ext L (t,)).

We observe that there is a one-to-one correspondence between the nodes of an un-
ranked tree and the leaves of the curried encoding. In particular, the root node of an
unranked tree corresponds to the left-most leaf of its curry encoding. Moreover, the
yield of a curried tree (i.e., the sequence of leaves taken from left to right) corresponds
to the standard left-to-right preorder traversal of the corresponding unranked tree.
Another observation follows from the semantics of the extension operator: the inner
nodes of a curried tree, labeled with @, correspond to the edges of the unranked tree.

Hereafter, we will identify unranked trees with their curry encodings. In particular,
by a slight abuse of notation, we will denote by 75 the set of all curry encodings of trees
over X, and by nodes(¢) the domain of the curry encoding of a tree ¢.

Contexts. We now fix another special symbol e ¢ = that will be used as a placeholder
for contexts. Formally, a (curried) context over ¥ is the curry encoding of a tree over
the alphabet X U {e}, with a single node labeled by e (note that in the curry encoding,
the symbol ¢ must occur in a leaf). We denote by Cx the set of all contexts over . The
empty context is the context e having exactly one node. The right-hand side of Figure 1
illustrates the encoding of a context. A context C is horizontal if the placeholder e is the
left-most leaf of C. We point out that a horizontal context has the form @t @...@¢,
and represents the forest—that is, a sequence of trees—(ext (&), ..., ext 1 (¢,)). Note
that the empty context is horizontal.

For a context C and a tree ¢, we denote by C o ¢ the tree obtained from the substitution
of e by ¢ in C. Similarly, the composition C; o Cy of two contexts C; and Cs is obtained
from the substitution of the placeholder in C; by Cs (this results again in a context
in Cx). The composition of two horizontal contexts is also horizontal and corresponds
to concatenation of the corresponding forests of unranked trees. Note, however, the
difference in the order of context composition and the order of forest concatenation:
if C = e@t@...@¢t, and C' = «@¢;@...@¢ , then C o C' = e@1;@... @1 @1©@...@1,,

which represents the forest (ext™ (¢)), ..., ext ' (), ext™* (#), ..., ext™ 1 (£,).

Stepwise tree automata. We use stepwise tree automata to specify regular tree lan-
guages. These are essentially bottom-up tree automata running on the curry encodings
of trees [Carme et al. 2004; Martens and Niehren 2007; Comon et al. 2007]. Formally,
a stepwise automaton is a tuple A = (X2, @, §, 89, F'), where

(1) X is a finite set of labels,

(2) Qis a finite set of states,

(3) §:Qx @ — 291is a transition function,

(4) 8 : ¥ — 29is an assignment of initial states to labels, and
(5) F C Qis a set of final states.

We say that the automaton A is deterministic if § (respectively, §) can be described as
a partial function from ¥ (respectively, @ x @) to @. It is often convenient to represent
3o and § as a set of rules. For instance, we write a — ¢ to indicate that g € §yp(a) and
q1@qe — ¢ to indicate that g € 5(q1, q2).

A run of a stepwise automaton A = (X, @, 89,5, F') on a tree t € 7y is a function
o : nodes(t) — @ such that (1) for every leaf node x, p(x) € 8y(¢(x)), and (2) for every
inner node x, p(x) € 8(p(x-1), p(x-2)) (recall that we represent ¢ with its curry encoding).
A run p is accepting if p(¢) € F. The language recognized by A, denoted by .£(A), is the
set of all trees ¢ € 7y on which .4 has an accepting run.
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Fig. 2. Runs of two stepwise tree automata over curried trees.

Example 3.1. The following will serve as our running example. Consider two DTDs:

D:r — ad D:r —- dc*
a — a+ ¢ d — aa
d — bce* a—a-+b
b - a

The following two stepwise automata capture (modulo the curry encoding) the lan-
guages defined by the previous DTDs (the underlined states are final, and each rule
with g5 translates to two rules with gf and g{):

S:r—py, p@p — pi T:r—gq 9@ — gf
a — pg pi@p‘f—)p_g d—>qg q{@q8—>q_{
d— pj pi@p; — pf « > ¢ i@ > gf
b— py  pi@p} - pf b—q) qi@q} — qf
c — q pf@pﬁ—)p‘f c — q; qg@qfaqi‘

Py@pf —> p} a5 @qg — qf
Figure 2 presents the (accepting) runs of the automata S and 7 on some curried trees.

Stepwise automata capture exactly the class of regular (unranked) tree languages
[Carme et al. 2004], and they are more succinct than other models of automata [Martens
and Niehren 2007]. Even though other equivalent models of automata, such as un-
ranked tree automata, are more frequently used in practice, these can be converted
into stepwise tree automata in polynomial time. This means that algorithms for an-
alyzing stepwise automata provide the same complexity bounds for unranked tree
automata—in particular, all of our complexity results apply to both stepwise tree au-
tomata and unranked tree automata. The main advantage of using stepwise automata
in our proofs is due to their ability to capture in a uniform way the “cyclic behavior” of
a regular tree language (as we will see in Section 5, this cyclic behavior is defined in
terms of strongly connected components of automata).

In the sequel, we will assume that our stepwise tree automata are trimmed, namely
they contain only states that appear in valid accepting runs. Formally, a stepwise tree
automaton A = (X, @, 8, 8o, F) is trimmed if for every state g € @, there exist ¢t € 75
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Fig. 3. Edit operations on unranked trees.

and an accepting run p of A on ¢ such that p(x) = g for some x € nodes(¢). Every
stepwise tree automaton can be trimmed in linear time [Comon et al. 2007]. Given
that all problems considered in this article are at least P-hard, the assumption that all
stepwise tree automata are trimmed is without loss of generality.

As is usual for word automata, we extend the transition function § of a stepwise
automaton to trees in 7y and to contexts in Cx. More precisely, we define the function
8* : Ty — 29 such that ¢ € §*(¢) if and only if there exists a run p of A on ¢ and p(¢) = q.
Similarly, we define the function 6 : @ x Cx — 2€ such that ¢’ € §}(¢, C) if and only if
there exists a run p of A; = (X U{e}, @, 59 U{(e,q)}, 8, @) on C and p(e) = q’ (intuitively,
we simulate some computation of A on C under the assumption that the placeholder
is assigned state q). In particular, we have §}(q, o) = {q}. By an abuse of notation, we
will denote §* and 3§} simply by 3.

4. THE BOUNDED REPAIR PROBLEM FOR TREES

We repair trees by using the standard set of edit operations over nodes [Tai 1979; Bille
2005]. We briefly recall the definitions of the standard edit operations on unranked
trees, which are extensions of the edit operations over words. The first operation,
called deletion, removes a distinguished (nonroot) node x from a tree ¢ and promotes
the subtrees x as children of its parent. The second operation, called insertion, adds
a new node x in an unranked tree ¢, with a possible adoption of a list of consecutive
children of the parent of x whose original position immediately follows the position of
x. Figure 3 provides an example of these two operations.

The last operation, called relabeling, modifies the label of a node x to a new label in X.
These three operations are the standard edit operations used to define the edit distance
between trees (see Bille [2005] for a survey). We denote by dist(¢, #') the minimum
number of edits operations that are needed for transforming ¢ into ¢’ given two unranked
trees ¢ and t'. Note that the operation of relabeling a node in an unranked tree, which
is sometimes used as a standard edit operation, is subsumed by the insertion and
deletion of nodes. Therefore, allowing or not the use of the operation of relabeling
has an impact on the edit distance between two trees. However, the bounded repair
problem is equivalent following that the relabeling is allowed or simulated by insertion
and deletion operations.

We identify a close correspondence between the two basic edit operations on unranked
trees and two operations on the corresponding curry encodings. Because the operations
on unranked trees involve changing the parent of a sequence of consecutive subtrees
(forests), the operations on curry encodings involve moving corresponding horizontal
contexts.

Deleting an inner node x in an unranked tree (Figure 4) corresponds to deleting the
corresponding leaf node x in the curry encoding, identifying the horizontal context C
that represents the sequence of children of the deleted node, and replacing the parent
@ of C by C. Note that the context C is uniquely defined in the curry encoding and
always has a parent @ because we apply the deletion operation to an inner node in the
unranked tree.
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Fig. 4. Deleting a node in the curry encoding.
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Fig. 5. Inserting a node in the curry encoding.

Conversely, inserting a node y in an unranked tree (Figure 5) corresponds to identi-
fying a context C representing the forest of the adopted children, placing a new @ node
in place of C while attaching C as the right child of the new node @, and substituting
the placeholder of C by the new node y. Here the context C is also uniquely defined by
the sequence of consecutive children adopted by the inserted node.

We are interested in studying the bounded repairability problem. This problem was
studied for strings by Benedikt et al. [2013], so we extend their setting from strings
to trees. We consider two finite alphabets ¥ and A and regular languages S € ¥* and
T C A*, called the source and target languages, respectively. Furthermore, we define a
repair strategy as any function from trees in S to trees in 7' for any tree languages S
and T'.

We are now ready to introduce the problem in which we are mainly interested.

Definition 4.1. Given two regular tree languages S and 7', let

cost(S, T) =% sup min dist(, ¢')
tes t'eT

be the worst-case cost of repairing S into 7—note that this can be equally defined as
the minimum of max,.g dist(¢, f(¢)) over all repair strategies f from S to 7.

If cost(S, T') is finite, then we say that S is bounded repairable into T', and we write
cost(S, T') < oo for short. Intuitively, this is equivalent to saying that there is a repair
strategy [ transforming any tree ¢t € S into a tree f(¢) € T and having dist(z, f(¢))
uniformly bounded by a constant.

The bounded repair problem amounts to deciding, given two regular tree languages S
and T—specified by means of stepwise tree automata or DTDs—whether S is bounded
repairable into T'.
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Fig. 6. Example of how to repair an unranked tree satisfying D into one satisfying D'.

Example 3.1 (continued). Consider the two DTDs D and D’ that we introduced in
our running example. For the tree languages specified by D and D), one can check that
Z(D) is bounded repairable into £(D’). Figure 6 shows how to repair a tree satisfying
D into one satisfying D’ with five edits: first, one removes the d-labeled node under the
root and its b-labeled child; then, one adds a new d-labeled node above the two branches
starting with a; and finally, one adds b-labeled leaves under the r daa branches. In fact,
similar strategies with edit cost at most five can be used to repair any tree ¢t € .£(D)
into a tree ¢’ € Z(D'). In particular, this shows that cost(.Z(D), £(D’)) < oco.

It is easy to verify that the bounded repairability relation cost(S,T') < oo satisfies
the following key properties, which shall be used later:

(1) Subset-subsumption—that is, S € T implies cost(S, T') < oo;

(2) Transitivity—that is, cost(S, T') < oo and cost(T', U) < oo imply cost(S, U) < oo;

(3) Union-compatibility—that is, cost(S, T') < oo and cost(S’, ') < oo imply cost(S U
S, TUT') < cc.

The first property, subset-subsumption, is trivial to prove given that cost(S, T') = 0 if
and only if S € T'. For the transitivity property, one can easily check that function dist is
a metric over trees and then satisfies the triangle inequality (i.e., dist(¢, ¢') < dist(¢, ¢”) +
dist(¢”,¢') for any ¢, t',¢t" € Ty). This implies that dist(¢,#”) < cost(S, T') + cost(T', U)
given that dist(¢,¢') < cost(S,T) and dist(¢',¢") < cost(T,U) for any ¢t € S, ¢ € T,
and t” € U. Thus, we conclude that cost(S, U) is also bounded and the transitivity
property is proved. Finally, union-compatibility follows directly from the definition of
worst-case cost of repairing a source into a target language. Indeed, if cost(S, T') < oo
and cost(S’, T') < oo, then cost(SUS’, T' U T') < max{cost(S, T'), cost(S’, T')}, and we
conclude that cost(SU S’, T U T") is bounded as well.

5. CHARACTERIZATION OF BOUNDED REPAIRABILITY

In this section, we give an effective characterization of the bounded repairability re-
lation between regular tree languages. Similarly to the string setting [Benedikt et al.
2013], this characterization is based on the notion of strongly connected component of
the transition graph of a stepwise automaton. In the string case, a suitable coverability
relation between chains of components is used to characterize bounded repairability.
Because here we work with trees, we need to generalize the notion of coverability to a
relation over the so-called synopsis trees—that is, full binary trees with nodes labeled
by strongly connected components.

5.1. Components of Stepwise Automata

Given a stepwise automaton A = (£, Q, 8, 8, F), the transition graph of A is the graph
G, =(Q E,UE,), where

E, = {(q1.9) € @ x Q|3q2. q € 8(q1, q2)},
E, = {(g2,9) € @ x Q| 3q1. q € §(q1,92)}.
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Fig. 7. Transition graphs (dashed and solid arrows represent horizontal and vertical edges, respectively).

We call the edges in E, vertical and the edges in Ej, horizontal. Note that an edge may
be both vertical and horizontal. As an example, Figure 7 depicts the transition graphs
of the automata S and 7 of Example 3.1 (dashed arrows represent horizontal edges,
solid arrows represent vertical edges).

Recall that a strongly connected component of a graph (or simply a component) is
a maximal set of nodes X such that every two nodes x,y in X are connected by a
direct path. By SCC(A), we denote the set of all strongly connected components in the
transition graph of A. In a way similar to the string setting, we associate with each
component X € SCC(A) the language .£(A | X) of contexts that are realizable within X:

ZL(A|X) ={CeCxs|Ip,qe X qedlp,C)).

For example, the contexts realizable within the component { p‘li} of the automaton of
our running example (see also Figure 7) are all of the following form:

Because editing operations on unranked trees correspond to operations involving hor-
izontal contexts in the curry encodings, we identify strongly connected components
of an automaton that yield only horizontal contexts. A proper manipulation of those
components translates to performing a fixed number of editing operations regardless
of the contexts such components define, which is the basis of characterizing bounded
repairability. Formally, a component X € SCC(A) is horizontal if and only if £ (A | X)
consists of horizontal contexts only. Similarly, we say that X is ¢trivial if and only if it
realizes the empty context only—that is, .Z(A | X) = {e}. Note that trivial components
are horizontal.

As an example, consider again the transition graphs of Figure 7. All components
except { p‘f}, {p{}, (g7}, and {q{} are trivial. The components { p‘li} and {q}} are nontriv-
ial horizontal, as they both realize the contexts e, e@c, (e@c)@c, and so forth. The
components {p{} and {g{} are nonhorizontal, as they both realize the contexts e, a @,
a@(a@e), and so forth.

5.2. Synopsis Trees

We now introduce a suitable structure that eases the characterization of bounded re-
pairability, which we call the synopsis tree. The structure is a generalization of the
chain of components that is used in Theorem 4.1 [Benedikt et al. 2013] to characterize
bounded repairability between string languages. Formally, a synopsis tree of an au-
tomaton A is any full binary tree whose nodes are labeled with elements of SCC(A).
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Fig. 8. Synopsis trees for stepwise tree automata S and 7.

The language [o] 4 of curried trees that is induced by a synopsis tree o of A is defined
recursively as follows:

[XI4 = {Coal|C e LA|X),ac X},
[X(o1,00)]4 = {Cot1@t)|C € L(A| X), t1 € [o1]l 4, t2 € [0l 4},

with X € SCC(A). Intuitively, all trees in the language [o] 4 are obtained by combining,
in a suitable order that is compatible with the structure of o, some contexts that are
realizable within the components of o. Figure 8 contains two synopsis trees ¢ and 7,
respectively, for the source automaton S and the target automaton 7 of Example 3.1.
An example of tree induced by the synopsis tree on the left is that of Figure 1.

Next we identify a family of synopsis trees that captures “closely enough” the lan-
guage recognized by an automaton.

Definition 5.1. A primitive synopsis tree of an automaton S = (X, @, 8, 8y, F) is a
synopsis tree o of S such that

(1) o respects the transition function of S, namely for all nodes x, x - 1, and x - 2 in o,
there exist some statesq € o0(x),q1 € o(x - 1),and g2 € o(x - 2) such thatq € 8(q1, g2);
and

(2) every internal node of o has label different from the labels of its children, namely
for all nodes x,x-1,and x-2in o, o(x - 1) # o(x) # o(x - 2).

PST(S) denotes the set of all primitive synopsis trees of S.

We observe that the second property stated in Definition 5.1 is equivalent to asking
that every component appears at most once in every path of a primitive synopsis tree.

As an example, the tree o depicted to the left of Figure 8 is a primitive synopsis
tree, and it corresponds to the run on the left-hand side of Figure 2 of the automaton
S of Example 3.1. On the other hand, the synopsis tree t depicted to the right is not
primitive.

The idea underlying the notion of primitive synopsis tree is to capture the “cyclic be-
havior” of the components of the source automaton. This cyclic behavior has to be taken
into account in the characterization of bounded repairability because it could generate
arbitrary large fragments of trees that cannot be edited with uniformly bounded cost.
Moreover, the use of primitive synopsis trees as a representation of the source language
Z£(S) is sound in the sense that #(S) is contained in the union of the languages induced
by primitive synopsis trees.
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Fig. 9. Decomposition of a curry tree into contexts.

LemmMA 5.2. For every stepwise tree automaton S, we have £(S) < |, cpsts) [o]s.

Before entering the details of the proof of Lemma 5.2, we illustrate the main ideas
on the example tree ¢ from Figure 1 accepted by the automaton S from Example 3.1.
We use the accepting run of S on ¢ (see Figure 2), particularly the transitions in it that
induce a change of component along both successors, to decompose ¢ into a binary tree
structure, where each node represents a context realizable by some component of S. We
present this decomposition in Figure 9, where for a better visualization we annotate
the states not on the nodes but on the edges above them (this requires adding a virtual
edge entering the root).

Proor or LEMMA 5.2. Fix a curried tree ¢ € .£(S) and an accepting run p of S on ¢.
We need to construct a primitive synopsis tree o such that ¢ € [o]s. Recall that a
synopsis tree is a tree whose nodes are labeled with strongly connected components
of S. To construct o, we first decompose ¢ into pieces: this will result in a tree-shaped
arrangement of contexts, which we refer to as the context decomposition of £. We then
show how to turn the context decomposition of ¢ into the desired primitive synopsis
tree.

Formally, we represent a context decomposition of t as a subset D of the nodes of ¢
satisfying the following conditions:

(1) D contains the root of ¢; and

(2) for every node x in D, either x is a leaf of ¢ or there is a descendant y of x in ¢ such
that (i) the states p(x) and p(y) belong to the same strongly connected component
of S, (i1) both successors y - 1 and y - 2 belong to D, and (iii) for every node z € D, if
z is a proper descendant of x, then z is a proper descendant of y as well.
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Note that the node-to-child relation of £ induces an analogous structure on any set D of
the preceding form. In particular, we can think of a context decomposition D as a full
binary tree. We further associate with each internal node x of D the context D(x) that
is obtained by selecting the portion of the tree ¢ that lies between x and the unique
node y such that y- 1 and y - 2 are children of x in D—the node that corresponds to y in
the resulting context is labeled with the placeholder o. The flattening [ D] of a context
decomposition D is the language of trees that is inductively defined as follows:

[D] = = if D has a single node,
[DI = {Co(t1@%y) | t1 € D11, t2 € [D2]} if D has more than one node,

where, in the second line, Cj is the context associated with the root of D and D; and
D, are the subtrees of D (D; and Dy can be seen as context decompositions of two
disjoints subtrees of ¢). It is easy to see that ¢ € [ D] for every context decomposition D
of ¢. We also associate with each decomposition D of ¢ an induced synopsis tree op by
replacing every context C labeling an internal node x of D with the strongly connected
component X of the state p(x) (note that C € £(S | X)).

Due to the similarity between the definition of the flattening [D] and the definition
of the language [oplls induced by the synopsis tree op, we have that [D] C [opls, from
which ¢ € [opl. However, given a generic context decomposition D, there is no guarantee
that op is a primitive synopsis tree—in particular, it may happen that two consecutive
nodes in op are labeled with the same component. To overcome this problem, next we
show how to construct a specific context decomposition D of ¢ that satisfies the following
additional property:

(8) If x is an internal node of D and ¥ - 1 and y - 2 are the two immediate successors of
x in D, then the component of p(x) is different from the components of p(y - 1) and
p(y - 2).

Clearly, the additional property suffices to conclude that op is a primitive synopsis tree
and to thus prove the lemma.

To construct a context decomposition D of ¢ that satisfies properties (1) through (3),
we follow maximal paths within the same component in the run p. More precisely, let x
be the root of ¢, and let X be the component of p(x). We distinguish two cases depending
on whether or not there is a leaf y of p whose state belongs to the component X. If
there is such a leaf y, then we define the context decomposition D of ¢ to be the set
containing only the two nodes x and y. In this case, the corresponding synopsis tree op
is clearly primitive. Otherwise, if all states associated with the leaves of p are outside
X, we choose any maximal path of p that starts in x and visits only states within the
component X. Let y be the last node of this path. Clearly, y is not a leaf, and both states
p(y-1) and p(y - 2) are outside X. By exploiting a simple inductive argument, we can
assume that the two subtrees of ¢ rooted at nodes y - 1 and y - 2 admit some context
decompositions D; and Dy satifsying (1) through (3). We can thus define our context
decomposition D of ¢ to be the set {x} U D; U Ds. It is routine to verify that D satisfies
properties (1) through (3) and induces a primitive synopsis tree op.

Summing up, we constructed from ¢ and p a suitable context decomposition D, and
from this we derived the existence of a primitive synopsis tree op such that ¢ € [D] C
[opls. This concludes the proof of the lemma. O

We also observe the following remark.
Remark 5.3. The height of a primitive synopsis tree of the source automaton S is

bounded by the number of components in Gs and hence by the number of states of S.
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Consequently, PST(S) is a finite set and can be represented in exponential space with
respect to the size of S.

To represent the target language and the possible edited trees, one needs a relaxed
version of primitive synopsis tree, called the basic synopsis tree, which enforces only
the first condition of Definition 5.1. Basic synopsis trees are the analogs of chains
of components over dag*(7) that were used in Theorem 4.1 [Benedikt et al. 2013] to
characterize bounded repairability between string languages.

Definition 5.4. A basic synopsis tree of an automaton 7 is a synopsis tree t of 7 that
respects the transition function of 7 (compare to first item of Definition 5.1). We denote
by BST(7) the set of all basic synopsis trees of 7.

For example, the tree t in Figure 8 is a basic synopsis tree that respects the transi-
tions of the run of the automaton 7 depicted in the right-hand side of Figure 2.

Differently from primitive synopsis trees, basic synopsis trees may contain repeated
occurrences of the same component. This implies that the set BST(7) of all basic
synopsis trees of 7 is potentially infinite. However, this set can be finitely presented
by means of a deterministic binary bottom-up tree automaton of size polynomial in the
size of 7.

The following lemma shows that the language induced by a basic synopsis tree of 7
is bounded repairable into the language Z(7).

LeEmmA 5.5. For every stepwise tree automaton T = (A, @, 8,8, F') and every t €
BST(7), we have

cost([zll7, Z(T)) < (4| +1)- 21,

where [tl7 is now seen as a language of unranked trees. In particular,
cost(lzl7, £(7)) < oc.

Proor. We begin by explaining the main ingredients of the proof. Any tree ¢ € [t]+
can be seen as a composition of contexts, precisely a context C, for each node x in 7,
with C, € Z(7 | t(x)). Every such context can be decorated by a partial run of 7 that
justifies the fact that the context belongs to the language £(7 | t(x)). These partial
runs can be used to construct a complete run of 7, but only after the insertion of a small
number of small pieces of runs, which provide the necessary connections between the
partial run of a context C, and the partial runs of the successor contexts C,.; and C,.,.
The existence of these pieces is guaranteed by the fact that the synopsis tree t respects
the transition function of 7 and by the definition of strongly connected component. We
now turn to a more detailed proof.

For every state g of 7, we define the automaton 77 = (A, @, §, 8o, {g}) that recognizes
trees via runs that end with state g at the root. We also define £, , = min{|C]| | q €
8(p, C)} for each pair of states p, g, with ¢ reachable from p in G7. We take the maximum
of all these values (i.e., £ = max, 4cq £, ), and we observe that ¢ < 2/9. We can associate
with each pair p, g € @ such that g is reachable from p a context C,,, of size at most
¢ such that q € 8(p, Cp,4). Next we exploit an induction on the size of a basic synopsis
tree 7 to prove that for all states g € 7(¢),

cost(lzl7, L(T%) < 4|t - ¢.

Note that to get from the preceding statement to the claim of the lemma, it is sufficient
to recall that 7 is trimmed, and hence any tree in -2 (77) can be repaired into -Z(7) by
simply inserting a context C, o, where ¢’ is some state from F.

To prove the statement in the base case 1 = X, we consider a generic tree ¢ € [X] 4,
and we observe that ¢ = C o a for some context C € .Z(7 | X) and some letter a € A.
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Clearly, there exist p’,q’ € X such that ¢’ € §(p’, C). Since 7 is trimmed, there exist
a symbol b € A and a state go € 8o(b) such that p’ is reachable from ¢y,. We define the
tree

' =Cyqo0CoCy yob
and observe that ¢ can be obtained from ¢ (= C o a) by replacing the leaf node a with
the tree Cy, y o b and by adding the context C, , at the top. Clearly, ' € -Z(79) and the
overall cost of transforming ¢ to ¢’ is at most 4¢.

Now, for the inductive step, suppose that t = X(11, 7o) and consider ¢ € [X(z1, t2)] 7.
By definition, we have ¢ = C o (¢; @#3) for some context C € Z(7 | X) and some trees
ty € [t11l7 and & € [t2ll7. Further, let p’,q’ € X be two states such that ¢’ € §(p’, C).
Since the synopsis tree t respects the transition function of 7, we know that there exist
p e X, p1 € ti(e), and ps € 19(¢) such that p € §(p1, p2). By inductive hypothesis, there
exists t; € Z(77) (respectively, &, € £(772)) such that dist(#, ¢;) < 4|71]- £ (respectively,
dist(¢1, t;) < 4|t1] - £). We can then define

' =Cyqo0CoCppyolt;@ty)

and claim that ¢’ € Z(()7%). Moreover, the preceding tree ¢’ can be obtained from the
original tree ¢t = C o (t; @ty) by first transforming the subtrees ¢ and # into ¢, and %),
respectively, then inserting the context C), ,, between #; @#, and C, and finally adding
the context Cy 4 at the top. Overall, this transformation costs at most 4|tq| - £ + 4|12 -
L+2¢ < 4|t|-¢. O

5.3. Coverings

In the previous section, we introduced the concepts of primitive and basic synopsis
trees, and we showed that they correspond roughly (i.e., up to boundedly many edits)
to trees accepted by the source and target automata, respectively. The remaining part
of the puzzle is to relate each primitive synopsis tree of the source automaton S to
some basic synopsis tree of the target automaton 7, so as to characterize bounded
repairability from Z(S) to (7). This is accomplished by the notion of covering between
synopsis trees.

Definition 5.6. Given two stepwise tree automata S and 7 and two synopsis trees o
of S and 7 of 7, we say that o is covered by t if and only if there is an injective mapping
A from nontrivial nodes of o to nontrivial nodes of r such that

(1) » maps components in a way that is compatible with the languages of contexts—
that is, Z2(S | o(x)) € Z(7T | T(Mx))) for every nontrivial node x of o;

(2) A preserves the post-order of nontrivial nodes—that is, x <" y if and only if

Alx) <f°St A(y) for any two nontrivial nodes x, y of o; and

(3) X preserves the ancestorship of nonhorizontal nodes—that is, x <2"° y if and only if
Ax) 8¢ A(y) for every nonhorizontal node x of o and every nontrivial node y of o.

We call the mapping A a covering from o to 7, and we denote it shortly by A : 0 < .

Figure 10 presents a covering of a primitive synopsis tree o of S by a basic synopsis
tree t of 7, where the square boxes represent the nontrivial nodes and have double
borders when the component is nonhorizontal.

We are now able to state the main characterization theorem of the article.

THEOREM 5.7. Given two stepwise automata S and T, the language £(S) is bounded
repairable into the language Z(7T) if and only if every primitive synopsis tree o of S is
covered by some basic synopsis tree t of T, namely

cost(S,7) < oo ifand only if V1 € PST(S). 30 € BST(7). 7 — 0.
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Fig. 10. Covering of a primitive synopsis tree by a basic synopsis tree.

The proof of the preceding result is given in Section 6. Here we briefly explain the
main ideas underlying the definition of covering. We begin by observing that a rea-
sonable strategy for repairing S into 7 with uniformly bounded cost applies the edit
operations only at the “junctions” of the contexts realized by the nontrivial components.
Indeed, since nontrivial components of S can realize arbitrary large repetitions of the
same context, we have that either these repetitions do not need any editing at all or
they need an arbitrary large amount of editing. This observation gives an intuitive ac-
count for the first condition of Definition 5.6, which enforces containment relationships
between languages of contexts realizable within nontrivial components.

As for the other two conditions, it is worth looking at the effect of an edit operation
on the curry encoding of an unranked tree ¢t € Z(S). Let us consider a node x in ¢
that is about to be deleted by the editing. There is a unique way to represent the
curry encoding of ¢ together with the distinguished node x as an expression of the form
Co({t'@(C' oa)), where a is the label of x and C’ is a horizontal context representing the
forest of subtrees under x. The result of the deletion of node x from ¢ is encoded by the
curried tree C o C’ o ¢’ (see Figure 4 for an example). Note that this operation does not
allow the deletion of the left-most leaf node in the curried tree (this would correspond to
deleting the root node in an unranked tree, an operation that is typically prohibited).
The operation of inserting a new node y in an unranked tree ¢ can be described in
a symmetric way via curry encodings and transpositions of horizontal contexts—that
is, given an unranked tree ¢ with curry encoding C o C’ o ¢/, where C’ is a horizontal
context, the curried tree C o (#@(C’ ca)) represents the unranked tree that results from
the insertion of a new a-labeled node y in ¢ having as children the forest represented
by C'.

We now observe that the transformations on curried trees that we just described
satisfy two crucial properties: (i) they preserve the post-order of the nodes, and (ii) they
preserve the ancestorship of nonhorizontal contexts (e.g., the context C of Figure 4) with
their descendants. These properties are precisely captured by the last two conditions
of Definition 5.6.

We conclude the section by mentioning a strengthening of the “if” direction of The-
orem 5.7, which gives an upper bound for the cost of an optimal repair strategy from
Z(8S) to L(T).

ProrosiTionN 5.8. For all automata S and T, if every primitive synopsis tree of S is
covered by some basic synopsis tree of T, then

cost(Z(S), Z(T)) € O(SCC(T)| - 219191,
where Q and @ are the set of states of S and T, respectively.
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6. PROOF OF THE MAIN CHARACTERIZATION
The following sections are devoted to proving the two directions of the characterization.

6.1. From Covering to Repair

We begin with the proof of the “if” direction of Theorem 5.7. For the rest of the section,
we fix two stepwise automata S = (2, @, 68,80, F) and 7 = (A, €, §', &, F') recognizing
the source and the target languages, respectively. We then assume that every primitive
synopsis tree of S is covered by some basic synopsis tree of 7, and we show how to
construct a repair strategy from .Z(S) to .£(7) with uniformly bounded cost. The proof
basically follows from a series of containments and bounded repairability relations
between languages, which can be summarized as follows:

26) € U, porio 1915 E U, gorp Il & £D.

Lemma 5.2 Lemma 5.5

where C denotes the bounded repairability relation. The intermediate bounded re-
pairability relation in the preceding chain is established by the following lemma.

LEmMA 6.1. For every synopsis tree o of S and every synopsis tree t of T, if o is covered
by T, then cost([rls, [ol7r) < 4lt| +4lo|.

The proof of the preceding lemma is quite technical and will take the entire section.

Before entering the details, we briefly discuss how the “if” direction of Theorem 5.7
follows from it. By Lemma 5.2, the source language .#(S) is contained in the union
of the languages [o]s induced by all primitive synopsis trees o € PST(S). By the
hypothesis, each of these synopsis trees is covered by some basic synopsis tree t of the
target automaton 7. Thus, by Lemma 6.1, each language [o]s can be repaired with
uniformly bounded cost into the language [t for some r € BST(7). By Lemma 5.5,
each language [t] 7 can in turn be repaired with uniformly bounded cost into the target
language .Z(7). The result now follows from the fact that there are only finitely many
primitive synopsis trees and the fact that bounded repairability is a transitive relation
that is moreover preserved by finite unions.

The rest of the section is devoted to the proof of Lemma 6.1. We begin by extending
slightly the definition of synopsis tree and by allowing the use of special nodes labeled
with ¢ that represents dummy trivial components. The semantics is extended in the
natural way by letting Z(A | ¢) = {e} (for any stepwise automaton .A). Because all
trivial components have the same associated language {e}, we shall often identify
trivial components of automata with the dummy component ¢.

For a technical reason (see the proof of Lemma 6.3 later), we also need to assume that
the alphabet ¥ of the source automaton S is contained in the alphabet A of the target
automaton 7. Note that this condition can be enforced without loss of generality—that
is, without changing the recognized languages.

The first ingredient of the proof shows how to “interpolate” two synopsis trees o and
7 by a third synopsis tree 6 of S in such a way that

—0 has the same labels (i.e., components) as o on the nontrivial nodes, and it covers o
via a bijection between nontrivial nodes of ¢ and nontrivial nodes of 0 that maps any
nontrivial node of o with label X € SCC(S) to a nontrivial node of 6 with the same
label X (we say that o is strongly covered by 6 and denote this by o < 6); and

——6 has the same domain (i.e., set of nodes) as 7, and it is covered by t via the identity
function between nontrivial nodes (we say that 0 is embedded into t and denote this
by 6 <= 7).

It is not difficult to show that such an interpolating synopsis tree 6 exists.
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LemmA 6.2. We have that
o1 implies 30. 0 0 =1.

In other words, if o is covered by t, then there is a synopsis tree 0 that strongly covers o
and that is embedded in .

Proor. Let A be a covering function from o to t and recall that A is injective. Let
range(1) denote the set of nodes of t of the form A(x) for some x € nodes(o). Moreover,
for every y e range(i), let A~1(y) denote the unique node x of o such that A(x) = y. The
synopsis tree 0§ has the same domain as r and the same labels as o—that is, for all
y € nodes(f) = nodes(z),

oA 1(y)) ify e range(nr),
0(y) = .
e otherwise.

Note that A can be seen as a bijection between the nontrivial nodes of o and the
nontrivial nodes of 6 (the latter are precisely the nodes of r that belong to range(1)). It
follows that o is strongly covered by 6 via the function 4 and that 6 is embedded into t
via the identity function. O

A first advantage of considering an interpolating synopsis tree 6 that is embedded
into 7 is that 6 and r have the same structure. As a consequence, we can claim that the
language induced by 6 is contained in (not just bounded repairable into) the language
induced by t.

LemMmA 6.3. If 6 is a synopsis tree of S, T is a synopsis tree of T, and 6 is embedded
into t, then [0ls < [r]7.

Proor. The proof is by structural induction on 6 (or, equally, 7). In the base case,
where 0 consists of a single node x, we consider the components 6(x) = Xand 7(x) =Y.
If X is a trivial component, then since the covering function from 6 to 7 is a bijection
between nontrivial nodes, we deduce that Y is also a trivial component, and hence
LS| X) = Z(T | Y) = {e}. Now, recall that we assumed that the source alphabet &
is contained in the target alphabet A. From this, it follows that [0]s = ¥ € A = [z]+.
Otherwise, if X is a nontrivial component, then from the fact that 6 is covered by 7, we
obtain (S | X) € .Z(7 | Y). As before, we conclude that [0]s < [z]+.

For the inductive step, we suppose that 6 = X(6;, 02) and t = Y (11, o). We consider
a generic tree t € [0]s. By definition, we can write ¢ = C o (f; @¢;) for some context
C € Z(S | X) and some trees t; € [01]s and & € [62]s. We know from the inductive
hypothesis that t; € [;]; for both i = 1 and i = 2. If X is a trivial component, then
C is necessarily the trivial context, which is also realizable within the component Y.
Otherwise, if X is a nontrivial component, then it must be mapped to the component Y
by the embedding function, and hence C € Z(7 | Y). In both cases, we conclude that
telzlr. O

Now recall from Section 4 that the bounded repairability relation is transitive and
it generalizes containment. In particular, the previous results reduce the statement
of Lemma 6.1 to the problem of proving that [o]s is bounded repairable into [0]s.
In proving the latter statement, we can take advantage of the fact that o is strongly
covered by 6. In particular, we observe that the strong coverability relation < is an
equivalence: it is indeed reflexive, symmetric, and transitive (the last two properties
follow from the fact that the function that witnesses strong coverability is a bijection
between nontrivial nodes that preserves components).

To derive bounded repairability from strong coverability, we associate with each syn-
opsis tree o of S a suitable normal form o* that can be used as a canonical representative
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of the equivalence class of ¢ induced by the strong coverability relation. We will then
prove that [o]s is bounded repairable into [0]s first by repairing [o]s into [oc*]s and
then by repairing [0*]ls (= [0*]s) into [0]s (recall that o and 6 strongly cover each
other, and hence o* = 6* by canonicity of the normal form). The repair strategy that
witnesses bounded repairability between [o]s and [o*]s (respectively, [6*]s and [0]s)
can be read off the sequence of generic editing operations that takes o to its normal
form o* (respectively, 6 to its normal form 6*).

In the sequel, we only manipulate synopsis trees of the source automaton S. For this
reason, we can omit the subscript S from notations like [o]s. Next we describe the
structure of a synopsis tree in normal form.

Definition 6.4. A synopsis tree o is in normal form if one of the following cases
holds:

(1) o = ¢, namely o consists of a single node labeled with a trivial component;

(2) 0 = Xl(a, ¢), where X is a nontrivial horizontal component and « is a synopsis tree
in normal form; and

(8) o = ela, X(B, ), where X is a nonhorizontal component and «, 8 are synopsis trees
in normal form.

We observe that the root of a synopsis tree in normal form is a horizontal (possibly
trivial) node and its left subtree is also in normal form. In particular, this means that all
components along the left-most branch of a synopsis tree in normal form are horizontal.

The following lemma shows that synopsis trees in normal form can be used as canon-
ical representatives of the equivalence classes induced by the strong coverability rela-
tion.

LeEmMA 6.5. If o and o’ are two synopsis trees in normal form that strongly cover each
other, then o and o' are isomorphic.

Proor. Let o and ¢’ be two synopsis trees in normal form, and let A be a bijection
between the nontrivial nodes of o and the nontrivial nodes of o’ that witnesses the fact
that o <» ¢’. In the following, we often identify, for the sake of simplicity, the nodes of
the synopsis trees o and o’ with their labels. The proof is by structural induction and
case analysis.

For the base case, suppose that ¢ = ¢. Since o contains only trivial nodes and X is
surjective over nontrivial nodes, o’ contains only trivial nodes as well. Since ¢’ is in
normal form, it follows that o’ = ¢.

For the inductive step, we distinguish two cases depending on whether o is of the
form X(o1, ¢), where Xis a nontrivial horizontal component, or of the form ¢(o1, X(o9, ¢)),
where X is a nonhorizontal component.

In the former case (i.e., 0 = X(o1, ¢)), we recall that the mapping A is a bijection
between nontrivial nodes that preserves the post-order. Because the root X of o is
nontrivial and is the maximal element with respect to the post-order relation, it must
be mapped by A to the root Y of 7. Moreover, since A preserves the labels of nontrivial
nodes, we have that Y = A(X) = X In particular, Y is a nontrivial horizontal component.
Since ¢’ is in normal form, it follows that its right subtree is ¢, and hence A maps the
nontrivial nodes of the left subtree o1 of o to the nontrivial nodes of the left subtree o
of ¢’. Finally, since both ¢, and o] are synopsis trees in normal form, we obtain from
the inductive hypothesis that o; = o7, and hence o = X(01,¢) =Y (07, ¢) =0'.

We consider the second case (i.e., 0 = &(o1, X(09, €))), where X is a nonhorizontal
component. For the sake of contradiction, suppose that the root Y of ¢’ is a nontrivial
component. Since Y is the last nontrivial node in the post-order traversal of ¢’ and A
preserves the post-order of nontrivial nodes, the pre-image A~}(Y) in ¢ would consist
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Fig. 11. [Editing operations on synopsis trees.

of the last nontrivial node in the post-order traversal of ¢’, from which A"1(Y) = X.
However, since X is a nonhorizontal component, this would be against the hypothesis
that ¢’ is in normal form (recall that the root of any synopsis tree in normal form is
always a horizontal component). Knowing that Y is a trivial node and ¢’ is in normal
form, we obtain Y = ¢, and hence ¢ is of the form ¢(o;, Z(0,, ¢)) for some nonhorizontal
component Z and two synopsis trees o; and oy, in normal form. Toward a conclusion,
observe that in the post-order traversal of o, the nontrivial nodes of o1 precede the
nontrivial nodes of o9, and the latter are followed by the nonhorizontal node X. Since
A is a bijection that preserves the post-order of nontrivial nodes and the ancestorship
relation with nonhorizontal nodes, we conclude that A(X) = Z and that the synopsis
trees o1 and o] (respectively, o2 and o) strongly cover each other. Using the inductive
hypothesis, we finally conclude that o = (o1, X(09, ¢)) = (o7, Z(og,¢)) =0'. O

Thanks to Lemma 6.5, we can define the normal formo* of a synopsis tree o as the
unique synopsis tree that is in normal form and that strongly covers o, provided that
this tree exists.

Our next goal is to prove that the normal form o* of o indeed exists, and that it can
be attained by a finite sequence of generic editing operations on synopsis trees. These
operations are called promotion, demotion, and reduction, and they are presented in
Figure 11. There, ¢ represents a trivial component, X represents an arbitrary com-
ponent, Hy, ..., H, represent horizontal (possibly trivial) components, and «, B, ..., Bk
represent arbitrary synopsis trees. Note that the figure describes the case where promo-
tion, demotion, and reduction operations are applied at the root of a synopsis tree—in
general, these operations can be applied to any subtree of a synopsis tree. We write
o —{&, o' whenever o’ can be obtained from o by applying a finite sequence of promotion,
demotion, and reduction operations. To give further intuition about these operations,
we remark an analogy between the operations of promotion, depicted in Figure 11, and
deletion, depicted in Figure 4 (a similar correspondence holds between the operations
of demotion and insertion of a new root). In this case, the root X of the synopsis tree
is acting as the context C of the curried tree, the subtree « is acting as the curried
subtree ¢’, and the subtree rooted at Hj is acting as the horizontal context C’.

Notice that the editing operations on synopsis trees that we just described preserve
the post-order of nontrivial nodes and the ancestorship of nonhorizontal nodes. From
this, it follows that they also preserve the strong coverability relation. The following
lemma shows that the normal form of a synopsis tree exists and can be obtained via a
sequence of promotion, demotion, and reduction operations.

LEmMMA 6.6. For every synopsis tree o, there is o™ in normal form such that o —§, o*.
Moreover, the number of operations needed to transform o into o* is bounded by 2|0 |.
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Proor. The proof goes again by a structural induction on the synopsis tree o. Intu-
itively, we first normalize the left and right subtrees of o separately using induction.
Then we complete the normalization process by applying a suitable series of operations
on the basis of the component at the root of ¢: if this component is nonhorizontal, then
we apply a promotion followed by a demotion; if it is horizontal and nontrivial, then
we only apply a promotion operation; and if it is trivial, then we apply a promotion
followed by a reduction operation.

We can assume without loss of generality that all leaves in the synopsis tree o are
trivial and hence are labeled by ¢ (indeed, we can append ¢-labeled nodes to every leaf
of o without changing its equivalence class). This assumption reduces the base case to
the situation where the synopsis tree o consists of a single ¢-labeled node. In this case,
the synopsis tree is already in normal form, and hence the lemma is trivially satisfied
by letting 6* = ¢ =o0.

For the inductive step, we assume that o = X(«a, B). First, we transform the subtrees
a, B of o into their corresponding normal forms «*, f* (this can be done since, by
inductive hypothesis, « —¢, o and g —¢, B*). We consider the intermediate synopsis
tree that we just obtained:

o' = X(a*, ).

Since the right subtree * is in normal form, its left-most branch consists of horizontal
components only. We can thus write

o' = X(a*, Hi(... Hy(e, Bp). ..., B1)

for some horizontal (possibly trivial) components Hji, ..., H; and some synopsis trees
B1, ..., Br. We can then perform a promotion operation at the root of ¢’ and obtain the
synopsis tree

o = X(H(...Hya*, B, ..., B1),e).

Using a simple induction on { = £%,...,1 and the fact that the subtrees
H;(... Hy(e, Br), ..., B1) of B* are in normal form, one can easily verify that the sub-
trees H;(... Hy(a*, Bp), ..., B1) of o’ are also in normal form. In particular, this shows

that the left subtree of ¢” is in normal form.
We now distinguish a few cases depending on whether the component Xis horizontal,
trivial, or nonhorizontal:

(1) If the component X is horizontal and nontrivial, then ¢” is already in normal form
and we can simply let 6" = o*.

(2) If the component X is trivial, then we “lift” the left subtree of o” via a reduction
operation. This results in a synopsis tree * = Hi(... Hy(a*, B), ..., 1) in normal
form.

(3) If the component X is nonhorizontal, then we apply a demotion operation to o” so
as to obtain the synopsis tree

0" = ele, X(CH1 (... Hp(a™, B), ..., B1), &).

We observe that both subtrees ¢ and Hi(... Hx(a™, Bg), ..., B1) are in normal form.
Moreover, since X is nonhorizontal, we know that o* is also in normal form.

It remains to prove the upper bound on the minimum number #,,(c) of operations on
synopsis trees that are required to transform o into o*. From previous constructions,
we can easily verify that

#op(U) = #op(a) + #op(ﬁ) + 2,
and hence #4,(0) < 2|o|. O
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For the last ingredient of the proof, we show that if o —¢, o’, then the two languages
[c] and [o'] are repairable one into the other by means of a sequence of editing
operations of uniformly bounded length. In other words, a single promotion, demotion,
or reduction operation to a synopsis tree o corresponds to a small amount of edits that
are applicable to any generic tree in the language [o]. The proof of this result is via
a simple analysis of the transformations on unranked trees that are induced by the
operations of promotion, demotion, and reduction.

Lemma 6.7. If o’ is a synopsis tree obtained from another synopsis tree o via
a single promotion, demotion, or reduction operation, then cost([o], [oc'l) < 2 and
cost([o'], [o]) < 2. In particular, it follows by induction that cost([o], [o*]) < 4|o| and
cost([o*], [o]) < 4|o|.

Proor. It is sufficient to prove that cost([o], [o']) < 2, as the symmetric bound
cost([o'], [o]) < 2 follows from the fact that standard editing operations on trees can
be reverted. In the sequel, we assume that all synopsis trees are related to a stepwise
automaton S. We apply a case distinction based on the type of operation that transforms
o into o

(1) Consider a promotion operation, which takes a synopsis tree of the form
o = X(a, Hi(...Hy(e, Br), ..., B1)) and transforms it into the synopsis tree o’ =
X(Hq(... Hy(a, Bg), ..., B1), ). Consider also a generic tree ¢ € [o]. This can be writ-
ten as

t =Co(s@(C10(...Cro(a@sy)...@s1)))

for some C € (S | X),s € [al, C; € Z(S | Hy), s; € [B;], and a € X. For the sake of
brevity, define the horizontal context

C = Clo(...Cko(o@sk)...@sl)

in such a way that we can write ¢ = C o (s@(C o a)). After deleting the a-labeled
node from ¢, we obtain the tree ¢’ = C o (C 0 s), and after inserting a b-labeled node,
we obtain the tree

t" =Co((Cos)@b) = Co((Cro((...Cro(s@s;)...)@s,))@D),

which clearly belongs to [o'].

(2) Consider now a demotion operation, which takes a synopsis tree o and transforms
it into the synopsis tree o’ = ¢(¢, o). Let ¢ € [o], and let x be the left-most leaf in ¢
(note that this corresponds to the root of the unranked tree ext™1(¢)). We can write
t = C o a, where a is the label of the left-most leaf x of # and C is the horizontal
context obtained from ¢ by relabeling x with a placeholder. By applying an insertion
operation to ¢, we obtain the tree t’ = b@(C o a), which clearly belongs to [o'].

(3) We finally consider a reduction operation, which transforms a synopsis tree o =
¢(a, ) into the synopsis tree ¢’ = «. We can write any generic tree ¢ € [o] as
t = s@a, where s € [« and a € X. In this case, it suffices to perform one deletion
to obtain the tree ¢ = s, which clearly belongs to [o'].

We observe that the repair strategies defined previously can be lifted to trees under any
given context C. More precisely, if a tree ¢ € [o] is transformed with editing operations
into a tree ¢ € [o'], then the tree C o ¢ can be edited into C o ¢’ using the analogous
strategy. This observation is important because the operations of promotion, demotion,
and reduction may be applied at arbitrary nodes of synopsis trees.

To conclude the proof, we remark that, thanks to Lemma 6.6, the normal form
o* of any synopsis tree o can be obtained by applying a sequence of promotions,
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demotions, and reductions of length at most 2|o|. A simple induction finally implies
that cost([o], [o*]) < 4|o| and cost([o*], [o]) < 4|c|. O

We have all of the ingredients now to prove Lemma 6.1.

Proor oF LEMMA 6.1. Let 0 be the intermediate synopsis tree such that o < 0 = =,
whose existence is shown in Lemma 6.2. Recall that Lemma 6.3 implies [0]s C [z]7. As
|0| = |7], it is sufficient to show that cost([o]s, [0]s) < 4|o|+4|0|. This last claim can be
proved using Lemma 6.7, which implies cost([o]s, [0*]s) < 4|o| and cost([6*]s, [0]s) <
40|, and the fact that o < 6, which implies o* = 6*. O

We conclude the section by proving Proposition 5.8, which essentially gives an upper
bound for the cost of an optimal repair strategy from £(S) to £(7). To prove this
proposition, we need to analyze the minimum size of a basic synopsis tree of 7 that
covers a given primitive synopsis tree of S.

LEmMmA 6.8. Given a primitive synopsis tree o of S, if o is covered by some basic
synopsis tree of T, then it is covered by one such tree t € BST(T) that has size at most
(40| + 1) - |SCC(T)|, where |o| is the number of nodes of o and |SCC(T)| is the number
of components of T.

Proor. Let o € PST(S) and r € BST(7) such that o < 7, and let A be the injective
function from nontrivial nodes of o to nontrivial nodes of t that witnesses o < 7. We
begin by identifying those nodes of t that belong to the range of L. Formally, we say
that a node y of 7 is used if y € A(x) for some nontrivial node x of 0. Next, we show how
to restrict T to a subset of its nodes having size at most (4|o| + 1) - |SCC(7)| and such
that the induced subgraph is a basic synopsis tree of 7 that also covers o.

We first define the set V' that only contains the following nodes:

(1) the root of 7,
(2) the used nodes of 7, and
(3) the nodes of © whose both subtrees contain some used nodes of .

We claim that the subgraph of t induced by V is a tree with at most two children on
each node (note that some internal nodes in the induced subgraph V may contain only
one child). Consider two nodes y1, y2 in V. Let y be the least common ancestor of y; and
y2 in 7. As both subtrees of y in 7 contain used nodes—indeed, they contain y; and ys,
respectively—the node y also belongs to V. This shows that V is closed under the least
common ancestor, and hence t restricted to V is a tree with out-degree at most 2.

We can also verify that the size of V is at most 2|0 | + 1. Indeed, the number of used
nodes in 7 is at most |o|, and so is the number of nodes whose both subtrees contain
used nodes.

Next we extend the set V minimally in such a way that the induced subgraph of 7 is
a basic synopsis tree (in particular, it is a binary tree). Formally, we let W be the set of
the following nodes:

(4) the nodesin V,

(5) the nodes of T with one subtree containing some used nodes and with a label different
from that of its parent, and

(6) the immediate successors in 7 of all previous nodes.

Clearly, the subgraph of r induced by W, denoted 1|, is a full binary tree, namely all
internal nodes have exactly two children. Essentially, this holds because we included
in W the immediate successors of a set of nodes.

It is also easy to see that t|w is a basic synopsis tree. Indeed, consider a node y € W
and its two successors y; and ys in the induced subgraph t|w. If both y; and y,; are
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immediate successors of y in 7, then, since t respects the transition function § of 7,
there exist some states q € t(y), q1 € t©(y1), and g2 € t(y2) such that ¢ € §(q1, q2).
Otherwise, if y; is not an immediate successor of y, then all nodes of ¢ between y and
the parent of y; must have the same label t(y) (otherwise, one of these nodes would
belong to W, thus contradicting the fact that y; is a successor of y in t|w). From this,
using similar arguments as in the previous case, we conclude that ¢ € §(q1, g2) for
some states g € 7(y), q1 € t(y1), and gs € 7(y2). The case where ys is not an immediate
successor of y in 7 is just symmetric. Overall, this proves that the induced subgraph
7|w respects the transition function of 7, and hence it is a basic synopsis tree.

To prove that t|w covers o, it suffices to recall that W contains all used nodes of
t—that is, A(x) € W for all nontrivial nodes of o, and hence the same function A that
witnessed o < t can be used to witness o — 1|w.

It remains to prove that |W| < (4|o| + 1) - |SCC(7)|. It is easy to see that every
node in W\V either has a descendant that is used or is the successor of a node with a
used descendant. This means that any subset of W\V containing only nodes that are
pairwise incomparable with respect to the ancestor relation has size at most twice the
number of used nodes, hence at most 2|0 |. Moreover, if we consider sets of nodes from
W\V totally ordered with respect to the ancestor relation, then we observe that such a
set has size at most |[SCC(7)|: indeed, every two nodes in this set that are consecutive in
7 must be labeled with different components. Putting it all together and recalling that
V| < 2|0]|+1, we conclude that |W| < 2|o|+1+2|0|-|SCC(T)| < (4]|o|+1)-|SCC(T)|. O

We are now ready to derive an upper bound for the cost of an optimal repair strategy
from £(S) to £(7) under the assumption that all primitive synopsis trees of S are
covered by basic synopsis trees of 7.

Proor or ProposiTiON 5.8. Let f be a function that maps every primitive synopsis tree
o of S to a basic synopsis tree t of 7 that covers o. Following the previous results, the
strategy for repairing Z(S) into Z(7) can be obtained from a series of transformations
between languages having the following costs:

cost(Z(S), U, cpstis) lols) = 0, (by Lemma 5.2)
cost([ols, [f (o)) < 4lo|+4|f (o). (by Lemma 6.1)
cost([F(o)ly, L(T)) < (4/f(o)| +1)-2/91, (by Lemma 5.5)

where @ is the set of states of 7. In particular,we get

cost(Z(S), £(T)) < nplgTzfs){4|o|+4| flo) + (4| fo)) + 1) - 21910,

As we pointed out previously, any primitive synopsis tree o of S is of bounded size,
precisely |o| < 2/9, where Q is the set of states of S. As concerns the minimum size of
a basic synopsis tree f(o) that covers o, by applying Lemma 6.8 we get that for every
o € PST(S), there is r € BST(7) such that 0 — 7 and

lT| < (4lo]+1)-|SCC(T).

In particular, we can assume, without loss of generality, that | f(o)| < (2/@+2+1DISCCTDI
Putting everything together, we obtain

cost(Z(S), L(T)) = O(SCC(T)|-2'9+19). 1

6.2. From Repair to Covering

In this section, we prove the “only if” direction of Theorem 5.7. We fix for the rest of the
section two stepwise automata S = (X, @, 8, 8o, F)and 7 = (A, @, §', &, F') recognizing
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the source and the target languages, respectively. We assume that £(S) is repairable
into Z(7) with uniformly bounded cost, and we prove that every primitive synopsis
tree of S is covered by some basic synopsis tree of 7.

The general idea is to associate with each primitive synopsis tree o of S a suitable
tree t, € .£(S), called the witness tree of o, such that from any optimal repair of ¢, into
Z(7T) one can extract a basic synopsis tree t of 7 that covers o. Intuitively, the witness
tree ¢, is obtained from the primitive synopsis tree o by replacing every nontrivial node
x with a sufficiently large number of repetitions of a special context in .Z(S | o(x)),
called the fingerprint context. The number of repetitions of each fingerprint context
will depend on the worst-case repair cost K = dist(_Z(S), -Z(7)). Using the definition of
witness tree ¢, and the assumption that #, can be repaired into some tree ¢, € .Z(7)with
at most K edits, one can then argue that ¢, contains at least one copy of the fingerprint
context associated with each nontrivial node x of o, and furthermore the arrangements
of these fingerprint contexts inside #, and inside ¢, are the same, both with respect
to the post-order relation and with respect to the ancestorship of the nonhorizontal
components. One finally looks at some run of 7 that accepts the tree ¢/ : this run,
together with the structure of the fingerprints inside ¢/, induces a basic synopsis tree t
of 7 and a coverability relation from o to 7. Next we illustrate the various definitions
and arguments in more detail. We divide up the proof into constructing the witness
tree ¢, and building the cover from its repair.

Constructing the witness tree. We begin by giving the following lemma, which defines
the so-called fingerprint context of a component of S. Basically, the lemma shows that
given a component X of S, one can find a context Cx that can be “pumped” inside the
language .Z(S | X) (i.e., Cxo...0Cx € Z(S | X)) and that characterizes the containment
of Z(S | X)in Z(T | Y) for every component Y of 7 (i.e.,, Z(S | X) € X(T | Y)if and
only if Cx € .£(7 | Y)). We say that a context C is cyclic for a component X if there is a
state ¢ € X such that g € §(q, C).

LEMMA 6.9. For all X € SCC(S), there is a cyclic context Cx € £(S | X) such that for
allY € SCC(T),

LS| X)CLAT|Y) ifandonlyif CxeZL(T|Y).

Proor. Let X be a component of S, and let Yy, ...,Y,, € SCC(7T) be all components
of 7. We construct the cyclic context Cx by exploiting an induction over the number m

of components of 7—that is, we prove that for every 0 <i < m, there is a cyclic context
C; € Z(S | X) such that

Vli<j<i. LS| X)c2(TY)) ifandonly if  C; € L(T |Y)). (%)

Clearly, the statement of the lemma follows from (x) when we let Cx = C,,.

The base case i = 0 holds vacuously for C; = e, so we focus on the inductive step.
Suppose that we defined a context C; that satisfies (x) for some index 0 < i < m. To
construct a context C;, 1 that satisfies (x), we need to distinguish two cases, depending
on whether .Z(S | X) € .£(7 | Y;41) or not.

If (S| X) € Z(T | Yiy1), then we define C;;; = C; and observe that (x) holds
trivially for i 4+ 1.

Otherwise, if Z(S | X) ¢ Z(T | Yi41), we let C be a context in £(S | X\L(T | Yii1).
Since C; is cyclic and C € Z(S | X), there exist some states p,q,r € X such that
r €@, C;) and g € 8(p, C). Let C' and C” be some other contexts in .Z(S | X) such that
r € 8(q,C’") and p € 8(r, C”) (such contexts exist since p, g, r are states within the same
strongly connected component of S). We then define

Cii1 = CioC'oCoC”.
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Fig. 12. Construction of the witness tree.

We claim that C;; is a cyclic context in .Z(S | X). Indeed, we have the following runs
in the source automaton S:
c" c c’ C;
r—p—>gq—7r—r
It is also easy to see that C; 1 & Z(7 | Y;11). Indeed, if C; 1 € £(7 | Y;11), then there
would exist some states p’, ¢’ € Y; 1 such that ¢’ € §'(p’, C), which would contradict the
fact that C ¢ Z(7 | Y;,1).

We have just constructed a cyclic context C; 1 € Z(S | X) such that £ (S | X) € Z(7T |
Yiy1)ifand onlyifC; 1 € £(7 | Y;11). To conclude the proof, we recall from the inductive
hypothesis that for all 1 < j < i, Z(S | X) ¢ (T | 'Y;) implies that C; ¢ L(T | Y)),
and hence since C;;; contains an occurrence of C;, C;y1 & (7 | Y;). Symmetrically,
Z(S | X) € 2(7TY;)implies that C;1 = C; € Z(7 | Y;). All together, this shows that
foralll<j<i+1, S| X)cXT|Y;ifandonlyif C;y1 € Z(T|Y;). O

For the rest of this section, we fix for each component X of S a context Cx that satisfies
Lemma 6.9, which we call the fingerprint context. We also fix an arbitrary primitive
synopsis tree o of S.

Next we construct the so-called witness tree ¢, by exploiting a structural induction
on the primitive synopsis tree o. In doing so, we will guarantee that there exists a run
of S on ¢, that assigns to the root of #, some state that belongs to the same component
that labels the root of o, namely §(z,) No(e) # @. We omit the construction for the base
case, where o is a singleton, as it can be easily derived from what follows.We assume
that Xis the component at the root of o and that o7 and o9 are the (nonempty) left and
right subtrees of 0. Suppose that ¢,, and ¢,, are the recursively defined witness trees
for o1 and o9. Moreover, choose arbitrarily some g; (respectively, g2) in the nonempty
set 8(t,,) N o1(e) (respectively, 8(¢,) N o2(¢e)). The witness tree ¢, for o is obtained from
the following series of transformations (we suggest that the reader refers to Figure 12
for a graphical representation):

(1) The first transformation merges the trees ¢,, and ¢,, into a single tree that induces
a run of S ending in the component X. We know from the definition of primitive
synopsis tree that o respects the transition function of S. In particular, this means
that there exist some states ¢’ € X, q] € o01(¢), and g, € oa(¢) such that ¢’ € 6(q;., q;).
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Moreover, since q; and q; (respectively, g2 and g;) belong to the same component
at the root of o7 (respectively, o2), there exist some contexts C; € (S | o1(¢)) and
Ce € Z(S | o2(e)) such that q; € 8(q1,C1) and g € 8(gz, Co). This allows us to
construct the tree

(C10t,)@(Cq 0t,,)

that induces a run of S ending in state ¢’ within the component X.

(2) The second transformation extends the tree obtained in the previous step in such a
way that one can later append repetitions of the fingerprint context Cx. This is done
by identifying a “recurrent” state q such that ¢ € §(q, Cx) (this state exists since Cx
is cyclic) and then connecting it to the state ¢’ via a suitable context C € Z(S | X)
such that g € 8(¢’, C) (note that ¢ and ¢’ belong to the same component X). The
resulting tree is of the following form:

C o ((Cyrot,)@(Cy0ty,)).

To avoid that an editing of the witness tree ¢, could modify the ancestorship of
Cx with the nodes of the two subtrees ¢,, and ¢,,, we further assume that if Xis a
nonhorizontal component, then the context C that is used for connecting g to ¢’ is of
the form th_ o C’, where K = dist(.Z(S), Z(7)), C',Cnn. € Z(S | X), Cpy. is some
cyclic nonhorizontal context, and th' is the K-fold repetition of Cy, . (recall that the
ancestorship of nonhorizontal contexts is preserved by the editing operations).

(3) The last transformation adds a sufficiently large repetition of the fingerprint con-
text Cx. For this, we define H = m - (2K + 1), where K = dist(.Z(S), Z(7)) and m
is the number of components of 7. We then attach to the tree so far constructed
the H-fold repetition C )IZ of the fingerprint context Cy, finally obtaining the desired
witness tree:

t, = Cg o C o ((Cyot,) @ (Cqoty)).

We observe that, thanks to the preceding constructions, the automaton S admits a run
on t, that ends in state ¢ € X. This shows that the invariant §(¢,) N X # & is satisfied.
We also remark that it may happen that §(¢,)NF = @, and hence ¢, ¢ .Z(S). Technically
speaking, this could violate the claim that one can repair ¢, into .£(7) with at most
K edits. However, from the assumption that S is trimmed, it follows that there is a
context Cr such that 8(¢g, Cr) N F' # @, and hence one can always prolong ¢, to obtain a
tree inside the language .Z(S). From now on, we assume for the sake of simplicity that
t, € Z(S).

Building the covering from a repaired witness tree. We now turn toward extracting
a covering of o from a repair of ¢,. We fix, once and for all, the tree ¢, in the target
language .Z(7) that is obtained by repairing ¢, with at most K edits.

We recall that the witness tree ¢, contains H = m- (2K + 1) copies of the fingerprint
context Cyx, for each node x in o, where X = o(x). As a consequence, the repaired tree ¢/
must contain an m-fold repetition C¥ of each fingerprint context Cx. In the following,
we will look at the occurrences of these fingerprint contexts inside the repaired tree ¢,
and compare their post-order and ancestor relationships with those for the analogous
occurrences in t,. We need some preliminary definitions.

Given a context C and a node x of a tree ¢, we say that C occurs at node x if there exist
a context C’ and a tree ¢’ such that (i) £ can be written as C’' o C o¢” and (ii) x is the node
from where the subtree C o¢” of t hangs. We denote an occurrence of a context C at a
node x of a tree ¢ by the pair (C, x). Furthermore, we say that two occurrences (C, x) and
(C’, x') of two contexts inside the same tree ¢ are nonoverlapping (respectively, in post-

order relation, ancestor relation) if {x} - nodes(C) N {x'} - nodes(C’) = @ (respectively,

. ost .
ifx <P x/ ifx <8¢ x').
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The following lemma shows that the occurrences of the contexts C¥ inside #, are in
the same post-order relation as some corresponding occurrences inside ¢/, and similarly
for the ancestor relation when X is a nonhorizontal component.

LeEmMA 6.10. One can find a mapping f from the nontrivial nodes x of the primitive
synopsis tree o to the nodes f(x) of the repaired witness tree t, such that

—the context C%, where X = o(x), occurs at node f(x) in t, for all nontrivial nodes x
of o;

—all occurrences (C, f(x)), with X = o(x) and x nontrivial node of o, are pairwise
nonoverlapping;

—x P yif and only if f(x) <2°St f(y) for all nontrivial nodes x,y of o; and
—x 2" yif and only if f(x) <E"° f(y) for all nontrivial nodes x,y of o, with o(x) the
nonhorizontal component.

Proor. We begin by establishing a property that concerns the occurrences of contexts
in a tree that has been edited. Intuitively, the following claim implies that if ¢’ is a tree
obtained from ¢ by applying at most K edit operations and ¢ contains an occurrence of
the 2K + 1-fold repetition of a context C, then ¢” contains at least one occurrence of the
same context C.

CramM 1. Let t be a curried tree, and let t” be the curried tree obtained from t after a
deletion or an insertion of a single node. If t contains at least n nonoverlapping occur-
rences of the same context C, then t” contains at least n — 2 nonoverlapping occurrences

of C.

Proor. We prove the claim for the deletion operation only, as the arguments for the
case of an insertion are similar. Let x be the node that is deleted from ¢. As mentioned
in Section 5.3, there is a unique way to represent the deletion of x using composition
of trees and contexts, namely we can write

t = C"o(t"@C oa)),

where a is the label of node x and C’ is the horizontal context that represents the forest
of subtrees under x. The result of the deletion of node x gives the curried tree

= C" o (C/ o t///).

Note that the deletion operation, performed on curry encodings, removes exactly two
nodes: the a-labeled leaf that corresponds to x and the @-labeled node y that connects ¢”
to C’oa. All other nodes are preserved (but possibly rearranged) by this transformation.
In particular, this means that if (C, z) is an occurrence of the context C in ¢ that does not
overlap with the a-labeled node x nor with the @-labeled node y, then C occurs in either
C”,C’,ort"”. This shows that C occurs at least once in ¢”. In general, suppose that there
are n nonoverlapping occurrences of C in ¢. Since the deletion operation affects only
two nodes, x and y, we have that, in the worst-case, all but two of these occurrences of
C can be found in ¢, and hence ¢” contains at least n — 2 occurrences of C. Finally, it is
easy to see that the deletion operation preserves the property of occurrences of being
nonoverlapping. O

We continue now with the proof of Lemma 6.10. We consider a nontrivial node x of the
primitive synopsis tree o and let X = o(x) be the associated component. By definition
of t,, we know that the context Cg occurs in ¢,. We also recall that H = m- (2K + 1).
In particular, £, contains (2K + 1) occurrences of the context C%. As #/ is obtained from

t, by applying at most K edit operations to it, we know from the preceding claim that
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the context C'y occurs at least once in ¢,. We denote by f(x) some node of ¢, where Cy
occurs. We have just proved the first part of the lemma.

For second part, let x and y be two distinct nontrivial nodes of o, and let X = o(x) and
Y = o(y). Furthermore, let f(x) and f(y) be the nodes in ¢, where the contexts C and
C% occurs. Note that the occurrences of these two contexts in #, are nonoverlapping.
Since deletion and insertion operations preserve the property of context occurrences of
being nonoverlapping, we have that (C%, f(x)) and (C¥}, f(y)) are also nonoverlapping
occurrences in ¢ .

post

Now suppose that x < y. Let x” and y’ be the nodes in ¢, that carry the corre-

sponding occurrences of the contexts Cg and C{,{ , respectively. It is routine to check,

by exploiting the recursive definition of ¢,, that x’ -42 ost y’. In addition, we know that

edit operations preserve the post-order relationships between nodes. As discussed pre-
viously, at least one occurrence of C% (respectively, C7') inside C)Ig (respectively, C{i] )
is not affected by the edit operations that transform ¢, into ¢,. This means that the
corresponding occurrences (C%, f(x)) and (C, f(y)) in ¢/ are in the same post-order

relationship as x and y, namely f(x) <5OSt f(y). The converse implication follows from

the fact that <2°' is a total order (hence, it is sufficient to swap the roles of x and y
above).

We finally check the last condition. Suppose that X = o(x) is a nonhorizontal com-
ponent and that x <2 y. As before, let x" and y’ be the nodes in ¢, that carry the
occurrences of C)I;I and C{,{ , respectively. Thanks to the construction of #,, we have
x’ <2"° y'. Moreover, recall that during the construction of ¢,, we inserted K copies
of the nonhorizontal context C,;, immediately below C g (and thus above Cf? ). This
implies that the path in ¢, that connects the node x’ to its descendant y’ visits at least
K right edges. If we now look at the unranked tree ext (¢,) encoded by ¢,, we observe
that there is a bijection between the right edges in ¢, and the vertical edges in ext™1(%,),
and this bijection preserves the ancestor order. This means that the two portions of
the unranked tree ext™1(¢,) that are encoded by C)Ig and C{;I , namely eXt_l(Cf{ ) and
ext’l(C{,I ), are separated by at least K vertical edges. Finally, each deletion or insertion

operation performed on ext™!(z,) can only bring two nodes closer by one level at a time.
This means that after at most K edit operations, the resulting curried tree ¢, contains
the occurrence of C¥ at node f(x) is still above the occurrence of C{ at node f(y). We
have just proved that x <2"° y implies f(x) <Z”° f(y). The converse implication follows

by symmetric arguments. O

It now remains to show how to extract a basic synopsis tree t that covers o from the
tree /. Recall that ¢/ € Z(7), and let p be an accepting run of 7 on ¢, . Further, let [
be the mapping from nontrivial nodes of ¢ to nodes of ¢/, as defined in Lemma 6.10.
Consider a nontrivial node x of o, and let X be its label. We know that the context
C% occurs at node f(x) in ¢,. Let y be the node of the fingerprint context Cx that is
labeled with the placeholder symbol e. Clearly, Cx occurs in its m-fold iteration C%
at positions ¢, y, y - y,...,y™ L. Analogous (nonoverlapping) occurrences exist in ¢/,
namely at positions y, o = f(%), ye1 = f(&%) - ¥, ye2 = f@&) -y ¥, .., Yem1 = f)-y™
For convenience, let y, ,, = f(x) - y™.

Next we consider the states that occur at the m + 1 nodes y,.0, ¥x.1, .-, Yx.m Of the
run p on ¢, . By the pigeonhole principle, we know that two among these states, say
p(yxi) and p(y, ;) for some 0 < i < j < m, belong to the same component Y of 7. In
fact, from the definition of strongly connected component, we can even assume that
J =1+ 1, from which we immediately obtain Cx € Z(7 | Y). It is now time to exploit
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the property of the fingerprint context Cx, which is shown in Lemma 6.9. In particular,
from the fact that Cx € (7 | Y), we derive that (S | X) C Z(T | Y).

We have just shown that it is possible to find a mapping from any nontrivial node x
of o to anode y, (= y,;) in ¢, such that Z(S|X) € .Z(7 |Y), where X=0(x) and Y is
the component of the state p(y,). Thanks to Lemma 6.10, we can also claim that for all
nontrivial nodes x, x" in o,

—x # x’' implies that y, # y.,
—x <2 & if and only if y, <P° y,, and

—x <2« if and only if y, 3" y,, provided that the component o (x) is nonhorizontal.

Toward a conclusion, we now define the basic synopsis tree t that covers . The domain
of 7 coincides with the domain of ¢, (i.e., nodes(r) = nodes(t,)). The labeling function
of T maps every trivial node x of t to the trivial component ¢ and every nontrivial node
x to the component that contains the state p(y,) associated with the corresponding
node y, in ¢, . It is easy to see that r satisfies the properties of a basic synopsis tree (in
particular, it respects the transitions of 7 because its labeling is essentially the lifting
of avalid run p of 7). It remains to define the mapping A that witnesses the coverability
of o by t: for this, we simply let A(x) = y, for every nontrivial node x of 0. The fact that
A satisfies Definition 5.6 follows easily from the properties described by the preceding
three items (i.e., the fact that 1 is injective follows from the first item). This proves that
every primitive synopsis tree of S is covered by a basic synopsis tree of 7.

7. COMPLEXITY ANALYSIS

In this section, we investigate the complexity of deciding whether a regular tree lan-
guage S is bounded repairable into a regular tree language T', and we assume that S
and T are represented by automata S and 7, respectively. One can propose a straight-
forward decision procedure following the characterization of bounded repairability with
synopsis trees (Theorem 5.7): for every primitive synopsis tree of S, it suffices to guess
a covering basic synopsis tree of 7. We also recall from Remark 5.3 that the size of
a primitive synopsis tree of S is bounded by a function exponential in the number of
strongly connected components of S. Hence, by Lemma 6.8, an analogous bound holds
for the size of basis synopsis trees of 7. It is also easy to see that testing the covering
of a primitive synopsis tree by a basic synopsis tree can be performed efficiently in the
size of the synopsis trees. These observations show that deciding bounded repairability
for languages represented by tree automata is in EXpSpACE.

We show, however, that a more efficient procedure exists: rather than inspecting indi-
vidual elements of PST(S) and verifying that they are covered by elements of BST(7),
it checks inclusion of the sets of normalized synopsis trees. More precisely, we first
relabel synopsis trees in BST(7) with compatible connected components of S, and as
a result, we deal with synopsis trees labeled with elements of SCC(S). Next, we de-
fine a serialization of a synopsis tree, a string representation of the synopsis tree,
and show that serialization of a synopsis tree is the same as the serialization of the
normal form of the synopsis tree. Naturally, this reduces bounded repairability to the
inclusion of serializations of PST(S) and BST(7), respectively. Testing this inclusion is
not trivial, because although both sets PST(S) and BST(7) can be captured with tree
automata, the serializations versions are string languages that need not be regular.
We show, however, that serializations of flattened versions of PST(S) and BST(7) can
be captured with context-free grammars and, moreover, that the context-free grammar
for PST(S) is nonrecursive. We then use existing results on testing inclusion of non-
recursive context-free grammar in another (possibly) recursive context-free grammar
and obtain a coNExp upper bound. Finally, we show that the coNExp upper bound is
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tight even if we restrict the tree languages provided as input to those definable with
deterministic nonrecursive DTDs.

7.1. Upper Bound

We show that the complexity of testing bounded repairability between two regular
tree languages represented with tree automata is in coNExp. For the remainder of
this section, we fix automata S and 7 that recognize the source tree language and the
target tree language, respectively.

We begin by recalling the notion of embedding from Section 6.1. Given a synopsis
tree 0 of S and a synopsis tree T of 7, we say that 0 is embedded into v, denoted 6 = t,
if 6 and t have the same domain (i.e., nodes(¢) = nodes(t)), and that 0 is covered by
7 via the identity function (.e., Z(S | 6(x)) € Z(7 | t(x)) for all nodes x). We define
the set

Embgs(t) = {0 synopsis tree of S : § = t}

of all synopsis trees of S that are embedded into 7, and we extend the notation to any
set S of synopsis trees by letting Embs(S) = |, g Embs(z).

Now we introduce a variant of the notion of serialization for synopsis trees, and we
show that this can be used as an alternative representation of the normal form that
we introduced in Section 6. Such a serialization takes a synopsis tree § and produces a
well-nested word 6 over the alphabet tags(S) that consists of opening tags of the form
(X) and closing tags of the form (/X), with X € SCC(S). It is important to remark that
the serialization # does not represent the specific tree 6, but rather the class of synopsis
trees that have the same normal form as 0. Formally, we define the serialization 6 of a
synopsis tree 0 of S recursively as follows:

01 - 0y if & = X(61, 02) and X is a trivial component,

~

0 = Oy -0y-(X)-(/X) if6 = X(6y, 63) and X is a nontrivial horizontal component,
(X)-01-05-(/X) if6 = X(61, 62) and X is a nonhorizontal component.

Note that the trivial components disappear in the serialization § of aAsynopsis tree 0.
As usual, we extend serializations to sets of synopsis trees by letting U = {4 : 6 € U}.

It is easy to see that serializations are unaffected by the editing operations on syn-
opsis trees that are used to attain the normal form.

LemmA 7.1. Given two synopsis trees 6 and ¢ of S such that 0 —, ¢, we have 6 =2z.
In particular, we have § = 6*, where 6* is the normal form of 6.

Proor. By induction, it suffices to show that applying a single editing operation
does not change the serialization. A quick inspection of the definitions of the editing
operations of promotion, demotion, and reduction (see Figure 11) shows that the claim
holds trivially. O

The preceding lemma, together with the results proven in Section 6.1, implies the
following.

COROLLAR¥ 72. The language Z(S) is bounded repairable into the language £ (T) if
and only if U C V, where U = PST(S) and V = Embg(BST(7)).

Proor. To prove the left-to-right implication, suppose that Z(S) is bounded re-
pairable into .2 (7), and consider a primitive synopsis tree o € U. We know from Theo-
rem 5.7 that o is covered by some basic synopsis tree t of 7. Moreover, by Lemma 6.2,
there exists a synopsis tree 6 of S that “interpolates” o and t, namely such that o is
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strongly covered by 6 (denoted o <» 0) and 6 embedded into t (denoted 6 <= 7). In
particular, we have that 0 belongs to the set V = Embg(t). Moreover, since o < 0,
we know from Lemma 6.5 that the normal forms of ¢ and 6 coincide, and hence by
Lemma 7.1 we have 6 = 6. We conclude that & belongs to V. A A
The proof of the converse direction is symmetric, namely we assume that U C V, we
consider a primitive synopsis tree o of S, and we prove that o is covered by some basic
synopsis tree of 7. Indeed, since 0 € U and U € V, we have 6 € V. This means that
there exist a synopsis tree 6 of S and a basic synopsis tree T of 7 such that 6 <= 7 and
6 = 6. In particular, Lemma 7.1 implies that 6 and o have the same normal form, and
hence they strongly cover each other, from which ¢ < 6 < . We conclude that o is
covered by 7, and hence by Theorem 5.7, Z(S) is bounded repairable into £ (7). O

We conclude the section by showing how to effectively test the inclusion from Corol-
lgry 72, For this, we introduce some context-free grammars that capture the languages
U and V, where U = PST(S) and V = Embs(BST(7)). We can define these grammars
on the basis of the components of S and 7 and the transitions of S and 7 lifted to
these components. More precisely, the grammar Gg that defines the language U uses
nonterminals X, Xj, Xp, ... that correspond to components of S and rules of the forms

X = (X) (/X)
X=X X if X is a trivial component,
X=X X5 (X)(/X) if X is a nontrivial horizontal component,

X=X X1 X (/X if X is a nonhorizontal component,

where Xj # X # Xp, g € 8(g1, q2) for some g € X, g1 € X, g2 € X, and § is the transition
function of S. .

The grammar Ggs 7 that defines the language V wuses the same nonterminals
X, X1, X5 € SCC(S) and the same rules as earlier, but instead of enforcing X # X # Xo
and q € §(q1,q2) for some q € X, q1 € Xj, g2 € X, it requires that there exist some
components Y, Y7, Yy of the target automaton 7 such that (i) (S | X) € Z(7 | Y),
(i) Z(S | X1) € AT | Yy), (i) Z(S | Xo) € ZL(T | Ys), and (iv) ¢ € y(q1, q2) for some
qe€Y,q1 €Y1,and gs € Yo, where y is the transition function of 7.

Although testing the inclusion of two generic context-free languages is known to be
undecidable [Hopcroft and Ullman 1979], here we can exploit the fact that the grammar
Gs is nonrecursive to decide the inclusion Z(Gs) € Z(Gs.7). Indeed, a nonrecursive
grammar defines a finite language of words whose lengths are uniformly bounded
by an exponent in the size of the grammar. Consequently, a nondeterministic Turing
machine can guess a word w of length exponential in the size of Gs and decide the
noncontainment .#(Gs) ¢ -Z(Gs 1) by checking that w € £(Gs) and w ¢ L (Gs 7). It
is also known that the membership problem of context-free languages can be solved in
polynomial time [Younger 1967; Earley 1970]. The only subtlety here is that although
the grammars Gs and Gs 7 are of polynomial size with respect to S and 7, this reduction
takes exponential time in the size of S and 7: indeed, the the definition of Gs 7 requires
checking some containment relationships between the languages recognized by the
components of S and 7. The latter problem, however, is Exp-complete [Seidl 1990] and
hence dominated by the time that is required to guess the word w. We can thus claim
the following complexity upper bound to the bounded repair problem.

THEOREM 7.3. The bounded repair problem between languages represented by stepwise
tree automata is in CONEXxP.
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7.2. Lower Bound

Here we show that the complexity bound established in Theorem 7.3 is tight. More pre-
cisely, we prove a matching coNExp lower bound for the bounded repair problem, which
remarkably holds even for tree languages represented by nonrecursive deterministic
DTDs.

We recall the results in Champavere et al. [2009], particularly Proposition 4 and
Theorem 5, which show that any deterministic DTD can be transformed, in polyno-
mial time, into an equivalent deterministic stepwise automaton. This means that the
complexity lower bound for the bounded repair problem of languages represented by
(nonrecursive) deterministic DTDs can be immediately transferred to languages rep-
resented by deterministic stepwise automata.

We also recall the folklore PSpAcE upper bound for the containment problem of non-
deterministic DTDs: given two DTDs D and D', one can decide whether the language
defined by D is contained in the language defined by D’ by first removing the useless
rules and then checking that for all letters a in the alphabet of D, the regular language
associated with ¢ in D is contained in the regular language associated with a in D'.
This upper bound result is tight due to the PSpace-hardness of containment of regular
expressions [Stockmeyer and Meyer 1973]. We finally observe that the complexity of
the containment problem lowers to P as soon as deterministic DTDs are considered.
Interestingly, the situation is completely different for the complexity of the bounded
repair problem.

TuEOREM 7.4. The bounded repair problem between languages represented by nonre-
cursive deterministic DTDs is cONExp-hard.

Proor. The proof is by a reduction from the problem of tiling a square grid of
exponential size [Boas 1997]. An instance of the latter problem is given by a tuple
I=(n,S,H, V,s,,st),where nis a natural number encoded in unary and representing
the width 2" of the square grid, S is a finite set of tiles, H,V C S x S are the set
of vertical and horizontal constraints, and s, and st are the tiles that should mark
the lower left and upper right corners. A tiling is a function f mapping pairs (i, j) €
{1,...,2"}x{1,...,2" totiles f(i, j) € S. We say that a tiling f satisfies the constraints
of I if the following conditions are satisfied:

(1) f(1,1) =s, and £(2",2") = s,
(2) (fG,j—1), fG, j)eHforalll <i<2'andalll < j<2" and
B) (fG—=1,)), fG,j)eVioralll <i<2'andalll<j<2"

The exponential tiling problem is the problem of deciding whether there exists a tiling
f that satisfies all constraints in a given instance I. This problem is known to be
NExp-complete [Boas 1997].

Now we fix an instance I = (n, S, H, V, s, s7) of the exponential tiling problem, and
we construct some regular languages S, T of unranked trees such that S is bounded
repairable into 7' if and only if there is no tiling satisfying the constraints of I. The basic
idea is to let the source language S contain encodings of the possible tilings and the
target language T' contain modified encodings that expose violations of some constraint
of I. The intended relation between S and T can be phrased as follows: if every tree in
S can be transformed into a tree in 7" with a small (i.e., uniformly bounded) amount
of edits, then every tiling of the exponential grid violates some constraint in I and vice
versa. To forbid a repair strategy to modify the encoded tiling with a bounded amount
of edits, we will allow some redundancy in our encodings. For convenience, we first
describe the languages S and T as if they were given by means of stepwise automata
of polynomial size with respect to the instance I. Toward the end of the proof, we will
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Fig. 13. Redundant encoding of a tiling by an unranked tree.

show how to modify the constructions to get languages representable by nonrecursive
deterministic DTDs of polynomial size.

Source language. We begin by describing the trees in the language S. For the sake
of the brevity, we let N = 2" be the width of the grid to be tiled and consider a generic
tiling £ :{1,..., N} x{1,..., N} = S. A tree that encodes the tiling f is labeled over an
alphabet consisting of tiles in S, separator symbols [and], and a dummy symbol #. Each
cell (Z, j) in the grid is encoded by a series of consecutive leaves that spell out a word
of the form [[...[f(, j) fG, J) ... f(, j)]...]l, where each symbol f(i, j) occurs at least
once and the square brackets are not necessarily well parenthesized. The repetitions of
the symbols f(i, j) are used to ensure robustness to any repair strategy of bounded cost.
From now on, such repetitions will be simply represented by a superscript +. The above
word encoding a cell (i, j) is called a cell block. Cell blocks are then juxtaposed to form
the frontier of a tree, following the left-to-right bottom-to-top order of the corresponding
cells in the grid:

FAADT I AN T QDL RN L AV, DT AN, N T

row 1 row 2 row N

Finally, #-labeled internal nodes are introduced to guarantee that the frontier is well
formed, namely it contains exactly N rows, each one consisting of N cell blocks. This can
be done by enforcing the existence of 2n + 1 levels above the frontier and by requiring
that each internal node at level ¢ = 0...2n — 1 has exactly two children, and each
internal node at level 2n has a cell block as childhood Figure 13).

The source language S is defined as the set of all tree-shaped encodings of tilings
f that satisfy the first constraint of I, namely those tilings f such that f(1,1) = s,
and f(N, N) = st. The language S is clearly regular. Furthermore, it is not difficult to
construct a stepwise automaton S that recognizes S and has size polynomial in n and
|S|, and hence also in |I| (we omit the formal definition of such an automaton).

Target language. We now turn to the target language 7', which intuitively contains
encodings of S modified in a suitable way so as to expose violations of horizontal or
vertical constraints, which can then be checked by an automaton of small size.

We begin by analyzing the simpler case of a tiling f that violates a horizontal con-
straint, say between two tiles f(,j — 1) and f(i, j). Observe that in the frontier of
every tree of S that encodes f, the violating tiles are represented by two consecutive
cell blocks of the form [* f(Z, j — 1)* 1T and [* f(Z, j)* 1. It is then convenient to expose
the violation at the least common ancestor of these two cell blocks, which must occur
at some level ¢ € {n, ..., 2n — 1}. For example, this can be done by relabeling the least
common ancestor with the pair (£, j — 1), f(, j)) (¢ H). In this case, the modified en-
coding looks like the unranked tree in Figure 14 (for the sake of clarity, we highlighted
the cell blocks corresponding to the tiles that violate the horizontal constraint).
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Fig. 14. Exposure of a violation of a horizontal constraint.
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Fig. 15. Factor of a frontier delimited by vertically adjacent tiles.

We denote by Ty the language of all trees that can be obtained by relabeling a node
of some tree in S as described earlier. We observe that the language Ty is regular, and
furthermore, one can construct a stepwise automaton that recognizes Ty and has size
polynomial in |I].

We now deal with the case of a tiling ¢ that violates a vertical constraint, say between
tiles f(@ — 1, j) and f(i, j). The basic idea here is to “hide” under a new subtree the
factor of the frontier that starts with the corresponding occurrence of the cell block
[t f(@ —1, /)T ]" and ends just before the occurrence of the cell block [* f(Z, j)" ]I*. Note
that this factor contains exactly N cell blocks, so it can be hidden under a complete
binary tree of height n, such as the one depicted in Figure 15.

Similarly, the remaining part of the frontier consists of N — 1 sequences, each one
containing N cell blocks, so this shape can be enforced using an almost complete binary
tree of height 2n, where exactly one node at level n (e.g., the right-most one) is a leaf.
Putting all together, the modified encoding for the tiling f has the shape depicted
in Figure 16 (as before, we highlighted the cell-blocks corresponding to the tiles that
violate the vertical constraint).

Accordingly, we define the language Ty of all unranked trees of the preceding form
for all possible choices of 1 <i < Nand 1 < j < N such that (fG —1, j), fG,j) ¢ V.
Note that the latter condition can be checked by a small automaton that compares the
highlighted cell blocks in the figure. In particular, the language T'y is recognized by a
stepwise automaton of size polynomial in ||.

We can finally construct the target language T' as the union of Ty and Ty, and recall
that this is also recognized by an automaton of polynomial size in |I|.

Reduction. Now we need to argue that S is bounded repairable into 7' if and only
if every tiling of the exponential grid violates some constraint of I. We begin with the
easier direction, which assumes that every tiling violates some constraint of . Consider
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Fig. 16. Exposure of a violation of a vertical constraint.

a generic tree ¢ € S that encodes a tiling f, and let ¢ € T be the modified encoding
that exposes a violation of a horizontal or vertical constraint, as described earlier. We
observe that the frontiers of ¢ and ¢’ spell out the same sequence of cell blocks. In
particular, ¢ can be obtained from ¢ by deleting all internal nodes and by inserting new
internal nodes. Since the number of internal nodes in ¢ and ¢ is uniformly bounded by
a constant (roughly ©(22%)), we know that S is bounded repairable into T'.

As for the other direction, suppose that there is a tiling f that satisfies all constraints
of I. We fix an arbitrarily large number K and prove that some tree ¢ € S requires at
least K edits to be transformed into a tree of T'. The tree ¢ is nothing but the encoding
of the tiling f, where each symbol in a cell block is repeated K times; more precisely,
t is the unranked tree of Figure 13 where every superscript + is replaced with K.
We observe that every transformation of ¢ consisting of less than K edits preserves
at least one occurrence of each symbol in the frontier, and it also preserves the post-
order relationships between these occurrences. Furthermore, note that occurrences of
symbols [and] ensure that every transformation do not change or mix the order of the
cell block. This means that every such transformation produces a tree whose frontier
contains a subsequence that encodes the same tiling f as t. Consider now a generic
tree ¢ € T. We observe that the frontier of # contains exactly N? cell blocks, so it
encodes a tiling f’ of the exponential grid. Moreover, by definition of 7', the tiling f”
must violate some constraint of I. We thus conclude that f and f’ must be different
tilings, and hence ¢’ cannot be obtained as an editing of ¢ with cost less than K. The
preceding argument holds for any arbitrarily large number K, so this proves that S is
not bounded repairable into T'.

From automata to DTDs. It remains to show how to modify the languages S and 7' in
such a way that they can be succinctly described by nonrecursive deterministic DTDs.
The general idea is to annotate the internal nodes of the trees in S and 7' with enough
information so as to ease a deterministic top-down processing. First of all, we need to
annotate the internal nodes of all trees of S and T with their levels: this is possible
thanks to the fact that the considered trees have height at most 3n + 2. In addition, we
mark the left-most and right-most paths of the trees of S with special labels, say 1 and
2, respectively (the marking at the root is irrelevant): this makes it possible to check,
by means of a DTD, that the first and last cell blocks are of the form [*s] 1" and [*sT]*.
As for the trees in T', the crux is to ease the certification of a violation of a horizontal
or vertical constraint. To do so, we can promote the information about the violating
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tiles up to the root. More precisely, on the trees depicted in Figure 14 and Figure 16,
we consider the access path to the first highlighted cell block and annotate all internal
nodes along this path with the corresponding tile; in a similar way, we add a second
annotation for the access path to the second highlighted cell block. For example, the
parent of the cell block [* f(i, /) ]* of the tree of Figure 16 will be labeled with the
tuple (#,2n, fG — 1, j), @, j)), where 2n is the level of that node, and f( — 1, j) and
f (@i, j) indicate the tiles corresponding to the first and second highlighted cell blocks.

The additional information on the labeling of the trees of S and 7" makes it easy to
describe these languages by means of nonrecursive deterministic DTDs of size polyno-
mial in |I|. Finally, because only internal nodes are affected by the new annotation, the
same arguments for the proof of the reduction can be used here. O

Combining Theorems 7.3 and 7.4, we obtain that the bounded repair problem for
tree languages represented by all standard specifications [Martens et al. 2006]—that
is, stepwise tree automata, deterministic stepwise tree automata, XML schema, DTDs,
nonrecursive deterministic DTDs—is coNExp-complete.

7.3. Simpler Instances

To find subcases of the bounded repair problem with a lower complexity, we consider a
specialization of the problem where the alphabet ¥ of the source language is fixed. We
show that in this case, the problem is PSpack-complete for languages represented by
nondeterministic DTDs and coNP-complete for languages represented by deterministic
DTDs.

Let us first discuss the complexity upper bounds. Suppose that D is a DTD defining
a source language over the fixed alphabet . A close inspection to the translation from
DTDs to stepwise automata [Champavere et al. 2009] discloses the following crucial
property (see the Appendix for the proof).

LeEmMA 7.5. Given a nondeterministic (respectively, deterministic) DTD D that defines
a source language S over an alphabet %, one can compute in polynomial time a non-
deterministic (respectively, deterministic) stepwise automaton S = (X, @, 8, 8, F') that
recognizes S and whose state space can be partitioned into k < 2|X| subsets @1, ..., @
such that

—every component of S is contained in some set @;, and
—for all states q1,q2,q € @, if g € §(q1,q2) and q2 and q are in different components,
then go € Q; and q € Q; for some 1 <i < j <k

For example, the automaton S described in Example 3.1 is a deterministic stepwise
automaton whose state space can be partitioned into nine sets that satisfy the first
part of the claim: @i = {pf}, @ = (p}}, @ = (P}, Qu = (P}), @ = (P}, @6 = (D),
Q7 = {p{}, Qs = (), P}}, Qo = (Ph).

Lemma 7.5 implies that any path in the transition graph of S (i.e., see the left-hand
side graph of Figure 7) traverses at most 2|Z| — 1 vertical edges that connect pairs of
states in different components. As a consequence, any primitive synopsis tree of S has
size at most |@|?*!—that is, polynomial in the size of S when X is fixed.

Putting together Lemma 7.5, Corollary 7.2, and Theorem 5.7, one obtains a PSPaCE
(respectively, coNP) algorithm that decides whether cost(S, T') < oo, where S and T' are
languages defined by nondeterministic (respectively, deterministic) DTDs and S is over
a fixed alphabet . The algorithm has the same structure of the algorithm sketched
before Theorem 7.3. Namely, it translates the input DTDs into equivalent stepwise
automata S and 7, then it translates S and 7 into the grammars Gs and Gs 7, and
finally it checks whether .Z(Gs) € Z(Gs 7). As stated previously, the last step of the
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algorithm can be done in coNP by universally guessing a word w of polynomial size
from .#(Gs) and checking whether w € Z(Gs 7) in polynomial time. Note that the
translation of S and 7 into Gs and Gs 7 takes polynomial space for nondeterministic
DTDs and polynomial time for deterministic DTDs. The blow-up of the complexity
for the former is because one has to check language containment between regular
languages, which can be done with polynomial space.

ProposiTiON 7.6. The bounded repair problem between a source language represented
by a nondeterministic (respectively, deterministic) DTD over a fixed alphabet and a
target language represented by a nondeterministic (respectively, deterministic) DTD
over an arbitrary alphabet is in PSPACE (respectively, in coNP).

Finally, we show that even strong restrictions, including fixing both alphabets, can-
not get us below PSPACE in the nondeterministic case. Indeed, one can easily reduce
the containment problem between regular expressions to a bounded repair problem
between languages defined by nonrecursive nondeterministic DTDs, thus showing that the
latter problem is PSpace-hard. To see this, consider two regular expressions E; and Es.
Let # be a fresh symbol, and let Ei‘ and Eg be the expressions obtained from E; and Es,
respectively, by substituting every occurrence of a symbol ¢ with the expression a* #.
Let r be another fresh letter reserved for the roots of the trees. Clearly, the language
defined by E; is contained in the language defined by Es if and only if the DTD r — Ef
is bounded repairable into the DTD r — Eg (one direction is trivial and the other
is easily shown by contraposition). As the latter DTDs are nonrecursive (they define
trees of height two), this shows that the bounded repair problem between nonrecursive
nondeterministic DTDs is PSprace-hard, and this holds even when the alphabets are
fixed.

We can also provide a coNP lower bound for the analogous problem when the lan-
guages are represented by nonrecursive deterministic DTDs over fixed alphabets. This
lower bound follows easily from a reduction from the validity problem for propositional
formulas in disjunctive form. A similar reduction was given in Benedikt et al. [2013]
for languages of words recognized by deterministic finite automata. The additional
complication here is that we have to fix the source and the target alphabets; however,
the reduction is still possible by encoding the valuation of each variable with a block of
nodes labeled over a binary alphabet.

ProposiTion 7.7. The bounded repair problem between languages represented by
nonrecursive nondeterministic (respectively, deterministic) DTDs with both source and
target alphabets fixed is PSpAcE-hard (respectively, cONP-hard).

8. THE UNIVERSAL CASE

In this section, we consider the so-called universal case of the bounded repairability
problem, namely a variant of the problem where the source language is assumed
universal (i.e., equal to 75) and the target language is represented by a stepwise
automaton 7.

We recall the assumption that any stepwise automaton 7 is trimmed (i.e., every state
of 7 appears in some accepting run of A on some input tree). Under this assumption, we
say that an automaton 7 is complete over % if for every tree ¢t € 7 there is a (possibly
nonaccepting) run of 7 on ¢.

Here we also make use of deterministic visibly pushdown transducers [Raskin and
Servais 2008; Alur and Madhusudan 2009] as suitable devices that transform un-
ranked trees in a streaming fashion. These devices receive the serialized version of an
unranked tree and output the serialized version of another unranked tree. By a slight
abuse of notation, we identify unranked trees with their serializations.
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The following result gives equivalent conditions for bounded repairability in the
universal case.

ProposiTioN 8.1. Given an alphabet ¥ and an automaton T = (A, @, 8, 8, F), the
following conditions are equivalent:

—T5 is bounded repairable into £(T),
—7T is complete over %, and
—there exist k € N and a deterministic visibly pushdown transducer that receives any un-

ranked tree t over ¥ and outputs an unranked tree t' such that dist(¢,¢') < k and
ext(t’) e L(T).

Proor. Here we only prove that the second item implies the third one (the other
two directions are explained in the Appendix). Suppose that 7 = (A, @, 6, 8o, F) is
a (trimmed) stepwise automaton that is complete over X. It is not difficult to show
that from the fact that 7 is complete over X, it follows that 75 is bounded repairable
into .Z(7). The interesting result is that when we identify unranked trees with their
serializations, the repair strategy of 75 into .Z(7) can be implemented by a determinis-
tic visibly pushdown transducer. More specifically, the deterministic visibly pushdown
transducer outputs, at the very first step and independently of the input, a fixed prefix
of a serialized unranked tree (this represents a portion of the repaired tree); then it
copies the input ¢ as a continuation of the prefix formerly constructed, mimicking at
the same time the computation of the stepwise automaton 7 on ext(¢); and finally, the
transducer terminates by outputting a suitable suffix in such a way that the corre-
sponding repaired tree belongs to the language ext 1(.Z(7)). The difficult part of this
proofis to show that there is a single prefix that, no matter how it is prolonged, can be
completed into a serialized tree that belongs to the language ext™1(Z(7)). Namely, to
complete the proof, we need to show the following claim.

Cramm 2. There are a symbol a € %, a state p € @, and a sequence of unranked
trees uy, ..., u, over X such that for every unranked tree t over %, there is a sequence of
unranked trees vy, ..., v, over X satisfying p € d(ext(a(uy, ..., uy, t, v1, ..., V).

We prove the claim by contraposition. Suppose that (x) for every symbol ¢ € X,
every state p € @, and every sequence u, ..., u, of trees, there exists a tree ¢ such
that for every sequence of trees vy, ..., vy, p & s(ext(a(uy, ..., uy, t, vy, ..., vy)). We fix
an arbitrary symbol a € ¥ and an enumeration p, ..., py of all states in @. Then,
by applying the hypothesis (x) to the symbol a, to each state p € {p1,..., py}, and to
increasing sequences of trees uy, ..., u,, we construct a tree ¢’ over X on which 7 has no
valid run (this would imply that 7 is not complete over X). First, welet p = p;andn =0,
and we obtain from (x) that there is a tree # such that p; ¢ §(ext(a(ty, v, ..., vy))) for
all sequences of trees vy, ..., v,. Similarly, if we let p = ps, n =1, and u; = ¢, we know
from (x) that there is a tree t2 such that py ¢ s(ext(a(ty, to, v1, ..., vy))) for all sequences of
trees vy, ..., vy. By applying a simple inductive argument, we can construct a sequence
of trees #1, ..., ¢y such that for every index 1 <i < N, p; ¢ 8(ext(a(ty, ..., tn))). Since
p1,..., py are all and only the states of 7, we derive that 7 has no valid run on
ext(a(ty, ..., tn)). This shows that 7 is not complete over . O

From the preceding characterization, one can derive a polynomial-time algorithm
that decides whether 75 is bounded repairable into .Z(7) when 7 is given by a
deterministic stepwise automaton. For this, it is sufficient to turn 7 into a trimmed
deterministic automaton 7' = (X, €, &', §;, F’') over X and then check that (i) for every
symbol a € X, §)(a) # @ and (ii) for every pair of states q1,q2 € @, §'(q1,q2) # @. When
the target language is represented by a nondeterministic stepwise automaton 7, the
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complexity increases to Exp: one can simply determinize 7 and then use the decision
procedure for the deterministic case.

As one could expect, the above complexity bounds (i.e., P for deterministic stepwise
automata and Exp for nondeterministic stepwise automata) are tight. The hardness
proofs can be derived from reductions of the emptiness and universality problems,
respectively, on the corresponding classes of automata (see the Appendix).

ProrosiTion 8.2. The bounded repair problem in the universal case when the tar-
get language is represented by a nondeterministic (respectively, deterministic) stepwise
automaton is Exp-complete (respectively, P-complete).

9. CONCLUSIONS

In this article, we have investigated the bounded repairability problem for regular tree
languages. We have provided an effective characterization of bounded repairability and
characterized the complexity of testing whether a given source language S is bounded
repairable with respect to a given target language T'. The characterization can be used
with several different formalisms for representing the tree languages: tree automata,
XML schemas, and DTDs, as well as their nonrecursive and deterministic restrictions.
Although generally the problem is coNExp-complete, its complexity is considerably
reduced for DTDs over fixed alphabets. In the latter case, the problem becomes coNP-
complete or PSpace-complete, depending on whether the DTDs are deterministic or not.
Finally, we have also considered the variant of the problem when the source language
is set to be universal. In this case, we have shown that the problems is Exp-complete
in general and becomes tractable (P-complete, in fact) when a deterministic bottom-up
automaton is used.

Several directions for future work can be envisioned. Bounded repairability is essen-
tially a generalization of inclusion between tree languages modulo a bounded number
of editing operations. One could attempt to further generalize it by allowing several
editing operations that are bounded by a ratio of the size of the input tree. In Benedikt
et al. [2014], it is shown how such a generalized notion of repairability can be computed
for regular string languages. It would be interesting to see if the employed methods
can be adapted to the setting of regular tree languages. Another direction is bounded
repairability in the streaming setting: not only the pair of source and target languages
need to be bounded repairable but also the repair must be executable by a transducer,
namely a machine with a possibly infinite state space that makes one pass over the
serialization of the input tree while producing a serialization of the output tree. Propo-
sition 8.1 shows that in the unrestricted case, visibly pushdown transducers are ex-
pressive enough to implement bounded-cost streaming repairs whenever these exist. In
the general case, however, visibly pushdown transducers may be too limiting [Bourhis
et al. 2013].

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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