
Interactive Join Query Inference with JIM

Angela Bonifati
University of Lille & INRIA

angela.bonifati@inria.fr

Radu Ciucanu
University of Lille & INRIA

radu.ciucanu@inria.fr

Sławek Staworko
University of Lille & INRIA

slawomir.staworko@inria.fr

ABSTRACT
Specifying join predicates may become a cumbersome task
in many situations e.g., when the relations to be joined
come from disparate data sources, when the values of the
attributes carry little or no knowledge of metadata, or sim-
ply when the user is unfamiliar with querying formalisms.
Such task is recurrent in many traditional data management
applications, such as data integration, constraint inference,
and database denormalization, but it is also becoming piv-
otal in novel crowdsourcing applications. We present Jim
(Join Inference Machine), a system for interactive join spec-
ification tasks, where the user infers an n-ary join predi-
cate by selecting tuples that are part of the join result via
Boolean membership queries. The user can label tuples as
positive or negative, while the system allows to identify and
gray out the uninformative tuples i.e., those that do not
add any information to the final learning goal. The tool
also guides the user to reach her join inference goal with a
minimal number of interactions.

1. INTRODUCTION
Query specification and, in particular, join specification

may become cumbersome tasks for non-expert users if they
are unfamiliar with language formalisms and thus unable to
manually write a join predicate. Nevertheless, join specifi-
cation may become feasible for non-expert users whenever
they can easily access data and metadata altogether. This
happens in traditional query specification paradigms, such
as query-by-example [6], that are typically centered around a
single database. When it comes to consider raw data coming
from different data sources, such paradigms are not applica-
ble any longer. The reason is twofold: (i) such data may not
carry pertinent metadata to be able to specify a join predi-
cate and (ii) value-based matching of tuples is unfeasible in
most cases, due to a massive number of tuples.

We present Jim (Join Inference Machine), a system that
assists unfamiliar users to specify their join queries via sim-
ple tuple labeling. More precisely, the user is interactively

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

presented with candidate tuples and is asked to label them
as positive or negative depending on whether or not she
would like the tuples as part of the join result. Jim is able
to infer arbitrary n-ary join queries via a minimal number of
user interactions and without assuming any prior knowledge
of the integrity constraints between the involved relations.
We also point out that Jim handles a varying number of
involved relations.

In [3], we have addressed the theoretical challenges of such
a scenario, proposed several strategies of presenting tuples
to the user, and shown their efficiency and scalability on
benchmark and synthetic datasets. We observe that the
user providing the examples in the experiments from [3] is
in fact a program that labels tuples w.r.t. a goal join query.
As a natural extension, we are interested in applying our
algorithms to realistic scenarios, where human users provide
positive and negative examples for join inference. The goal
of this demo is thus to allow real users to interact with Jim
to infer, via a minimal number of interactions, different join
queries that they could have in mind.

Since our goal is to minimize the number of interactions
with the user, Jim is of interest for novel database applica-
tions, such as joining datasets using crowdsourcing, where
minimizing the number of interactions entails lower finan-
cial costs. Crowdsourced joins have been mainly defined in
terms of entity resolution, where joining two datasets means
finding all pairs of tuples that refer to the same entity [4, 5].
Conversely, Jim can handle arbitrary n-ary join predicates,
thus targeting a quite different and more intricate goal for
the crowd i.e., inferring such join predicates from a set of
positive and negative labels.

As a further difference, the existing systems that allow
join processing with the crowd [4, 5] do not take into account
the labels already given by the user to adjust the order of
presenting new tuples for labeling. On the other hand, Jim
continuously interleaves the user’s feedback and the infer-
ence process. Indeed, after each interaction Jim prunes the
uninformative tuples (i.e., that do not contribute any new
information about the goal query) and asks the user to label
the most informative tuple according to a suitable strategy.

Moreover, Jim is also of interest for applications of schema
mapping inference, assuming a less expert user than existing
systems allowing interactive schema mapping specification
via data examples [1]. Indeed, in our case the annotations
correspond to simple membership queries [2] to be answered
even by a user who is not familiar with schema mappings
and our join queries can be eventually seen as simple GAV
mappings.



The rest of the paper is organized as follows. In Section 2
we present some of the key ingredients of our system via
a motivating example, while in Section 3 we describe our
demonstration scenario. Due to space restrictions, in this
paper we provide only a glimpse of the techniques employed
by Jim. However, we refer to our full research paper [3]
for more algorithmic details and also for more elements of
related work.

2. SYSTEM OVERVIEW
In this section we present a brief overview of Jim. For this

purpose we first introduce a motivating example. Then, we
describe the core of Jim i.e., the interactive scenario for join
query inference.

Motivating example
Consider a scenario where a user working for a travel agency
wants to build a list of flight&hotel packages. The user is
not acquainted with querying languages and can access the
information on flights and hotels in a denormalized table as
in Figure 1.

From To Airline City Discount
Paris Lille AF NYC AA (1)
Paris Lille AF Paris None (2)

+ Paris Lille AF Lille AF (3)
+ Lille NYC AA NYC AA (4)

Lille NYC AA Paris None (5)
Lille NYC AA Lille AF (6)
NYC Paris AA NYC AA (7)

– NYC Paris AA Paris None (8)
NYC Paris AA Lille AF (9)
Paris NYC AF NYC AA (10)
Paris NYC AF Paris None (11)
Paris NYC AF Lille AF (12)

Figure 1: A set of tuples.

We assume no knowledge of the schema and of the prove-
nance of the data. Due to this assumption, several queries
can be formulated that correspond to different ways of pair-
ing a flight and a hotel. For the sake of simplicity and clarity
of the illustration, we focus on two of them in the remain-
der: one that selects packages consisting of a flight and a
stay in a hotel and another one that additionally ensures
that the package is combined in a way allowing a discount.
These two queries roughly correspond to the following equi-
join predicates:

(Q1) To � City,

(Q2) To � City^Airline � Discount.

Since the user is unable to formally specify such queries with
a query language, she starts to look at the tuples and indi-
cates whether or not a given tuple is of interest to her. We
view this as labeling with � and � the tuples from Figure 1.
For instance, suppose the user wants the flight from Paris
to Lille operated by Air France (AF) and the hotel in Lille.
This corresponds to labeling by � the tuple (3) in Figure 1.

Observe that both queries Q1 and Q2 are consistent with
this labeling i.e., both queries select the tuple (3). Natu-
rally, the objective is to use the labeling of further tuples
to identify the goal query i.e., the query that the user has

in mind. Not all the tuples can however serve this purpose.
For instance, if the user labels next the tuple (4) with �,
both queries remain consistent. Intuitively, the labeling of
the tuple (4) does not contribute any new information about
the goal query and is therefore uninformative. Since the in-
put tables may be big, it may be unfeasible for the user to
label every tuple in the instance.

In this context, our next goal is to minimize the number of
tuples that the user needs to label in order to infer her goal
query. Consequently, we want to measure the quantity of
information that labeling a tuple could bring to the inference
process and present to the user only tuples that maximize
this measure. In particular, since uninformative tuples do
not contribute any new information, they are not presented
to the user.

In the example of the flight&hotel packages, a tuple whose
labeling can distinguish between Q1 and Q2 is, for instance,
the tuple (8) because Q1 selects it and Q2 does not. If the
user labels the tuple (8) with �, then the query Q2 is re-
turned; otherwise Q1 is returned. We also point out that
the use of only positive examples, tuples labeled with �, is
not sufficient to identify all possible queries. As an exam-
ple, query Q2 is contained in Q1, and therefore, Q1 satisfies
all positive examples that Q2 does. Consequently, the use
of negative examples, tuples with label �, is necessary to
distinguish between these two.

Interactive scenario
Even though our demonstration scenario consists of several
types of interactions with the user, in this section we concen-
trate exclusively on the core of Jim, the interactive scenario
for join query inference, that is depicted in Figure 2.

Input : a set of tuples.

Is there any informative tuple left?

Choose informative
tuple t w.r.t.
strategy Υ.

Output : inferred join query.

Ask label for t.

Yes No

tuple t

label + or –

p
ro

p
a
g
a
te

la
b

el
fo

r
t

Figure 2: Interactive scenario.

During the interactive scenario, we present the user with
a tuple and she indicates whether the tuple is selected or
not by the join predicate that she has in mind by labeling



1. Labeling all tuples.
2. Interactively graying out
uninformative tuples.

3. Proposing top-k
informative tuples.

4. Proposing the most
informative tuple.

Figure 3: Four types of interactions with the user.

the tuple as a positive or negative example. This process is
repeated until a sufficient knowledge of the goal join predi-
cate has been accumulated i.e., there exists a unique (up to
instance-equivalence [3]) join predicate consistent with the
user’s labels. For instance, for the tuples in Figure 1, as-
suming that (3) is a positive example, and (7) and (8) are
negative examples, there is only one consistent join predicate
(i.e., the above Q2). This scenario is inspired by the well-
known framework of learning with membership queries [2].

Since the instance may be of big size, we do not want
to ask the user to label all tuples, but only a small part
of them. The goal of Jim is to minimize the number of
interactions with the user, hence an inherent problem that
it deals with is in which order to present the tuples to the
user. A first remark is that we should not present at all to
the user the tuples that are uninformative i.e., that do not
contribute to the inference process. For example, given the
tuples in Figure 1 and assuming that the user has labeled
the tuple (3) as a positive example, note that the tuple (4)
is uninformative.

Consequently, we want to ask the user to label only infor-
mative tuples. When the user labels an informative tuple,
Jim propagates this label and prunes the tuples that be-
come uninformative. For example, assume that Jim asked
the user to label the tuple (12). If the user labels it as a pos-
itive example, we are able to prune the tuples that become
uninformative: (3), (4), (7). Conversely, if the user labels
tuple (12) as a negative example, we are able to prune the
uninformative tuples: (1), (5), (9). Intuitively, the question
“Which is the next tuple to present to the user?” becomes
“Labeling which tuple allows us to prune as many tuples as
possible?”

Next, we briefly introduce the notion of strategy for inter-
actively presenting tuples to the user. Formally, a strategy
Υ is a function that, given a set of tuples and some la-
bels, returns an informative tuple. As we have pointed out
in [3], there exists a algorithm that computes the optimal
strategy of showing tuples to the user, but it requires ex-
ponential time, which unfortunately renders it unusable in
practice. As a consequence, we have proposed a number of

time-efficient strategies that attempt to minimize the num-
ber of interactions with the user.

More precisely, the strategies proposed in [3] and imple-
mented in Jim are essentially classified in two categories:
local and lookahead, and for comparison we have also in-
troduced the random strategy which chooses randomly an
informative tuple. They key difference between local and
lookahead strategies is that the local ones are rather simple
and based on some fixed orders, while the lookahead ones
take into account the quantity of information that labeling
an informative tuple could bring to the inference process,
by using a generalized notion of entropy. The construction
of all these strategies is quite technical and we refer to [3]
for more details and for comprehensive experiments show-
ing precisely in which cases different classes of strategies are
expected to perform better than the other ones.

3. DEMONSTRATION SCENARIO
The demonstration scenario consists of three parts. First,

we want to make the attendee aware of the fact that by using
an interactive approach, Jim saves a lot of effort in specifying
join queries. Next, we want to give to the attendee the
insight behind how the choice of a strategy influences the
behavior of Jim. Finally, the attendee will be able to use
Jim to specify joins not only between relational tables, but
also between sets of tagged pictures.

Why using a strategy?
To illustrate why it is important to employ an “intelligent”
strategy of proposing tuples to the user, we progressively
present four types of interactions, as shown in Figure 3:

1. We let the attendee choose the tuples that she wants to
label as positive and negative examples, in any order
she prefers.

2. We still let the attendee label tuples in any order, but
after each given label we interactively gray out the
tuples that become uninformative.

3. We compute the top-k informative tuples and we ask
the attendee to label only them.



Figure 4: Showing the benefit of using a strategy.

4. We apply the interactive inference process described in
the previous section i.e., we interactively propose the
most informative tuple until we infer the goal query.

For each of (1), (2), and (3), after inferring the join query,
we also show graphically to the attendee (as in Figure 4)
how many interactions she would have done if she had used
a strategy of proposing informative tuples to her. More-
over, we always show in our interface basic statistics about
the progress of learning: the total number (and the relative
percentage) of tuples that have been explicitly labeled by
the user or deemed as uninformative, etc.

Although the core of Jim is made of interactions of type
(4), we consider that it is also important to show the other
types in the demonstration and the reasons are twofold.
First, we want to show that Jim requires very few labeled
tuples to infer the goal query. Moreover, we want to show
that the amount of user effort in specifying her join query is
minimal, in the sense that she only has to answer “Yes/No”
to a tuple proposed by Jim. This feature clearly saves the
user’s time compared to the case when the user has to look
at all the tuples and decide which one to label.

Comparing different strategies
In this part of the demonstration we focus only on the in-
teractive inference process described in the previous section
and on interactions of type (4), also depicted in the fourth
screenshot of Figure 3. The goal here is to make the attendee
understand the cases when local or lookahead strategies are
better fitted. More concretely, we let the attendee infer with
our system more or less complex join queries on different
instances and after each inference we show how many inter-
actions she did compared to the number of interactions that
she would have done using the other strategies. The graphi-
cal presentation is done in the same spirit as in Figure 4 for
the previous part. The attendee must observe that for more
complex instances and join queries a lookahead strategy per-
forms better than a local one while for simpler instances and
queries a local strategy is better.

Joining sets of pictures
In this last part of the demonstration we show that our sys-
tem is able to infer joins not only between relational tables,
but also between different types of tagged media. An ex-
ample of preloaded database consists of the cards used in

Figure 5: Interactively joining sets of pictures.

the game Set1, which vary in four features: number (one,
two, or three), symbol (diamond, squiggle, oval), shading
(solid, striped, or open), and color (red, green, or purple).
As already explained for the interactive inference process,
we repeatedly show the most informative pair of pictures
to the attendee that she labels as positive or negative un-
til we infer her join query (as in Figure 5). In this part of
the scenario, the attendee can train the system to infer a n-
ary join predicate of the form: “select the pairs of pictures
having the same color and the same shading.” We point
out that this feature of Jim of joining sets of pictures using
a minimal number of simple interactions is of interest for
crowdsourcing applications where this kind of task is quite
common and crucial. Moreover, note that Jim handles arbi-
trary n-ary join queries (such as the binary one mentioned
above), a feature that goes beyond the usual definition of
crowdsourced joins.

4. REFERENCES
[1] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.

EIRENE: Interactive design and refinement of schema
mappings via data examples. PVLDB, 4(12):1414–1417,
2011.

[2] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1988.

[3] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive
inference of join queries. In EDBT, pages 451–462,
2014.

[4] A. Marcus, E. Wu, D. R. Karger, S. Madden, and R. C.
Miller. Human-powered sorts and joins. PVLDB,
5(1):13–24, 2011.

[5] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins.
In SIGMOD Conference, pages 229–240, 2013.

[6] M. M. Zloof. Query by example. In AFIPS National
Computer Conference, pages 431–438, 1975.

1http://www.setgame.com/set


