
Databases
Basics of Indexation and Query Optimization

S lawek Staworko

University of Lille

Database Architecture

Catalogue

Data

Parser
(Semantic Optimizer)

Query
Planner

Execution
Engine

Query

Results

Memory Hierarchy

CPU RAM

Main memory
I fast (∼20GB/s)

I expensive (∼$3/GB)

I volatile

Secondary memory

I slow (∼0.1GB/s HDD; ∼0.5GB/s SSD)

I cheap (∼$0.3/GB HDD; ∼$1/GB SSD)

I persistent

1. Data is stored in secondary memory
because of persistence considerations

2. Main performance bottleneck are
data transfers between main memory
and secondary memory

3. Complexity of database operations is
measured in I/O operations

Physical Data Organization

1 Database is a collection of files

I One file per table

I Files used to store the catalog with schema and statistical information

I Files used for auxiliary structures like indexes and logs

2 File is a collection of blocks

I Block is a unit of I/O access

I Block size is a power of 2, between 29 = 512B and 212 = 4KB

I Block size is the same for the whole database

3 Block is a collection of records

I Record contains data of a single table row

I Block contains records of the same type (the same table)

I Record may contain additional housekeeping data

Working Example: Schema

Parent

ID

First Name

Last Name
City

Student

ID

First Name
Height

Gender

DoB

Hobbies

ID Parent

Enrollment

Student ID

Course Subject

Grade

Course

Subject

Classroom

Prof ID

Prof

ID

Name

Office

CREATE TABLE Parent (
ID INT PRIMARY KEY,
First Name TEXT,
Last Name TEXT,
City TEXT

);

CREATE TABLE Prof (
ID INT PRIMARY KEY,
Name TEXT,
Office TEXT

);

CREATE TABLE Course (
Subject TEXT PRIMARY KEY,
Classroom TEXT,
Prof ID INT REFERENCES Prof(ID)

);

CREATE TABLE Enrollement (
Student ID INT

REFERENCES Student(ID),
Course Subject TEXT

REFERENCES Course(Subject),
Grade FLOAT,
PRIMARY KEY (Student ID, Course Subject)

);

CREATE TABLE Student (
ID INT PRIMARY KEY,
First Name TEXT,
Height INT,
Gender TEXT,
Hobbies TEXT,
DoB DATE,
Parent ID INT

REFERENCES Parent(ID)

);

Records

Type

Course

Length

27

Row ID

8672534

Deleted

NO

Pinned

YES

Field 1

SQL

Field 2

B2.461

Field 3

11

Record

I a continuous chunk of memory

I has a type (e.g., table name)

I meta-data (e.g., length)

I uniquely identified (known as row ID or object ID)

I various housekeeping information:
Deleted deleted records are not erased until a scheduled or manual clean up (VACUUM)
Pinned if there is a pointer to the record, it must not be moved (no dangling pointers)

Blocks

H
o

u
se

ke
ep

in
g

Block

I unit of I/O access for moving data between main and secondary storage

I contains a collection of records of the same type

I may contain directory especially when storing variable-length records

I additional housekeeping information (pinned, etc.)

I block size is fixed globally: a power of 2, typically between 512B (29) and 4KB (212)

Files

M
et

a
d

a
ta

File

I an abstract data structure

I a collection of records of the same type

I stored as a set of blocks (but may be materialized on the fly)

I may contain index structures to facilitate efficient access

Elementary operations

Access FindRecord(key) – finds the record(s) of a given key value

Manipulate InsertRecord, DeleteRecord, and UpdateRecord

Iterate BlockIterator – returns an iterator over all blocks used to store the file.

Iterator

I an object allowing access to all file’s blocks

I two method getNextBlock and hasNextBlock

Heap Files

Course

first:

last:

Heap file

I the simplest organization: a list of B blocks storing an unordered collection of records

I sequential search only: FindRecord requires B reads

Lookup query with Sequential Scan

SELECT *

FROM Student

WHERE First Name = ’Jean’;

Overall plan cost:
B

Operator Cost: B

File size: B blocks

Sequential Scan
First Name = ’Jean’

Student

Indexed Files

Index

I Structure allowing efficient lookups of records (or blocks containing relevant records)

I Defined with the index key i.e., the attribute(s) used for lookups

I May be part of the data file or stored in a separate file

Clustered vs Unclustered

I Data file may have multiple indexes

I The data in a file may be clustered according to one selected index

I All other indexes are called unclustered

SQL

I Automatically created for primary and secondary keys (PRIMARY KEY, UNIQUE)

I CREATE INDEX Index1 ON Student(Height);

I PostgreSQL uses B+-tree index as default (SQLite supports only B+-tree index)

I CREATE INDEX Index2 ON Prof USING hash(Office);

Binary Search Trees

ID

8
Name

Marion
DoB

1998-04-23

ID

4
Name

Marie
DoB

1998-10-03

1998-06-01

ID

1
Name

Jean
DoB

1999-04-13

ID

3
Name

Paul
DoB

2000-09-29

2000-01-01

ID

6
Name

Luc
DoB

2000-10-11

ID

5
Name

Paul
DoB

2001-01-07

2001-01-01

2001-06-01

1999-06-01

Balanced BST

I Care is exercised to ensure the lengths of the root-to-leaf paths are uniform

I Element lookup requires O(log n) time

B+-trees

41 68

18 55 85

5 12 21 32 45 51 59 65 70 78 87 92

0 0 0 0 0 2
4

2
7

2
8

2
9

3
5

3
8

3
9

4
0

4
0

4
1

4
4

4
6

4
7

4
8

4
9

5
2

5
3

5
7

5
8

5
9

6
1

6
2

6
3

6
4

6
5

6
6

6
8

6
9

1
0

0
1

0
0

1
0

0
1

0
0

B+-Tree is a generalization of balanced binary search trees

I Node is stored in a single block and can have up to K children (typically K ∼ 1000)

I Lookup requires time O(logK n)

Lookup query with Index Scan

SELECT *

FROM Student

WHERE First Name = ’Jean’;

Overall plan cost:
logK (B)

Operator
Cost: logK (B)

File size: B blocks

Index Scan
Student.First Name = ’Jean’

Student
B+-tree on First Name

Experiment 1: Lookup query

SELECT *

FROM Student

WHERE First Name = ’SF10000’;

CREATE INDEX my index ON Student(First Name);

uni-1.db uni-2.db uni-3.db

1. Student line count

2. Query run time

3. Indexing time

4. Query run time

Range queries with Index Scan

SELECT COUNT(*)

FROM Student

WHERE Height BETWEEN 160 AND 165;

Overall plan cost:
0.16 ∗ B ∗ log(B)

Selectivity ratio: 16%

Operator Cost:
0.16 ∗ B ∗ log(B)

File size: B blocks

Index Scan
160 <= Student.Height <= 165

Student
B+-Tree on Height

Experiment 2: Range query

SELECT COUNT(*)

FROM Student

WHERE Height BETWEEN 160 AND 165;

uni-1.db uni-2.db uni-3.db

1. Student line count

2. Query run time

3. Selectivity ratio

4. Indexing time

5. Query run time

Nested Loop Joins (with Scans)

SELECT Student.First Name, Parent.Last Name

FROM Student

JOIN Parent ON (Student.Parent ID = Parent.ID)

WHERE Student.DoB = ’1999/04/02’;

Nested Loop Join

for s in SCAN(Student, Dob=’1997/04/02’)
for p in SCAN(Parent, ID=s.Parent ID)
output (s.First Name,p.Last Name)

Estimating the execution cost

Relevant variables:

I What is the cost of executing each scan? . . . and how many times is each scan executed?

I How many tuples is each scan likely to return?

Experiment 3: Join queries

SELECT Student.First Name, Parent.Last Name

FROM Student

JOIN Parent ON (Student.Parent ID = Parent.ID)

WHERE Student.DoB = ’1999/04/02’;

uni-1.db uni-2.db uni-3.db

1. Student line count
2. Students with DoB = ’1999/04/02’

3. Parent line count
4. Query run time
5. INDEX Parent(ID)
6. Query run time
7. INDEX Student(DoB)
8. Query run time

Exercise 1

Analyze and optimize the following query

SELECT DISTINCT Student.ID, Student.First Name

FROM Student

JOIN Enrollment ON (Student.ID = Enrollment.Student ID)

JOIN Course ON (Enrollment.Course Subject = Course.Subject)

JOIN Prof ON (Course.Prof ID = Prof.ID)

WHERE Prof.Office = ’Office-42’;

Exercise 2

For the following query

SELECT Student.First Name, Parent.Last Name

FROM Student

JOIN Parent ON (Student.Parent ID = Parent.ID)

WHERE Student.DoB = ’1999/04/02’

AND Parent.City = ’Lille’;

Analyze and test independently the following two optimization strategies

I INDEX Student(DoB) and INDEX Parent(ID)

I INDEX Parent(City) and INDEX Student(Parent ID)

Which one is more efficient and why?

