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Abstract

This paper describes and motivates six principles for cdatfmnal cognitive neuroscience models: biolog-
ical realism, distributed representations, inhibitoryngetition, bidirectional activation propagation, error-

driven task learning, and Hebbian model learning. Althotlgtse principles are supported by a number of
cognitive, computational, and biological motivationss firototypical neural network model (a feedforward

backpropagation network) incorporates only two of thend an widely used model incorporates all of

them. This paper argues that these principles should bgrattsl into a coherent overall framework, and

discusses some potential synergies and conflicts in doing so
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A number of important principles have been developed formatational neural network models of cor-
tical learning and cognitive processing. However, reldiMittle work has been done to try to integrate
these principles into a coherent overall framework. Iraéigg these principles allows one to demonstrate
the consistency of different models, capitalize on symsrdgietween different principles, organize and con-
solidate existing findings, and generate novel insightstim nature of cognition. This paper describes and
motivates a provisional set of six principles (illustraiad=igure 1) that have proven individually useful in
a number of existing models. Despite their proven utilitygsinmodels incorporate only a small number
of these principles (e.g., the prototypical feedforwardipaopagation network uses only two). Thus, this
paper attempts to highlight the potential advantages afallpiof using a more inclusive set of principles.

Although a specific algorithm calledeabra has been developed to incorporate these principles (see
Box 1), the focus of this paper is on the history and importan€ the principles themselves, and the
ways in which these principles interact with each other. Asmaportant caveat, this discussion focuses
on biologically-based principles that are particularliew@nt for cognition, and does not include a number
of functional and cognitive-level principles that could@be enumerated.

The proposed set of principles can be considered an extenfithe GRAIN framework of McClelland
[1]. GRAIN stands for graded, random, adaptive, interactifnonlinear) network. This framework was
primarily motivated by (and applied to) issues surroundhmgydynamics of activation flow through a neural
network. By way of extension, the present framework emegdiearning mechanisms and the architectural
properties that support them. Two of the key principles inAHR interactivity and competition, are among
the six principles emphasized here. The other GRAIN priesiggraded, nonlinear activations, graded
activation propagation, and intrinsic variability) aresasied, but not emphasized in this framework because
of their nearly ubiquitous acceptance within neural nekwapdels (but see [2] for an interesting application
of these principles to controversies in cognitive develepth

The Principles

The six principles can be grouped into three categories. fiféieprinciple, biological realism, is in a
category by itself, providing a general overriding conistran the framework. The next three principles,
distributed representations, inhibitory competitiond doidirectional activation propagation (interactivity),
are concerned with the architecture of the network and timeigé behavior of the neuron-like processing
units within it. The final two principles, error-driven tadarning and Hebbian model learning, govern the
way that learning occurs in the network.

1. Biological Realism

Biological realism lies at the foundation of the entire epiise of computational modeling in cognitive
neuroscience. This approach seeks to understand holraire(and specifically the cortex in the present
case) gives rise to cognition, not how some abstraction oémain validity does so. Thus, wherever pos-
sible, computational models should be constrained andnréd by biological properties of the cortex.
Moreover, computational mechanisms that violate knowtobioal properties should not be relied upon.
This point has implications for error-driven learning, ascdissed below.

Although the issue of biological realism is easy to stateait be difficult to apply, because the known
biology often does not provide sufficient constraints. THuslogical realism often reduces to plausibility
arguments, which depend on things like how simple and Id@lntechanism in question is, and that it is
not inconsistent with known biology. Also, one can adopt avenging evidence approach, where multiple
constraints from biology, computation, and cognition @nge to support a given principle. This approach
is emphasized here.
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Figure 1: lllustration of the six core principles, and their instantiation ineural network. Biological realism (1)

is an overarching constraint. Distributed representations (2) havépheulinits active, while inhibitory competition
(3, implemented via inhibitory connectivity) ensures that relatively $eich units are active. Bidirectional activation
propagation (4, implemented by bidirectional connectivity) enables kaithin-up and top-down constraints to simul-
taneously shape the internal representation. Error-driven learnirghéfes representations according to differences
between expected outputs and actual ones (represented by the erréy)tefebbian learning (6) shapes representa-
tions according to the co-occurrence (correlation) statistics of itenteietvironment (represented by the product of
the sending and receiving unit activations).

Architectural Principles
2. Distributed Representations

The cortex is widely believed to use distributed repredema to encode information. A distributed
representation uses multiple active neuron-like proogssinits to encode information (as opposed to a
single unit, localist representation), and the same unit gaticipate in multiple representations. Each
unit in a distributed representation can be thought of asessmting a singléeature with information
being encoded by particular combinations of such featukgdectrophysiological recordings demonstrate
that distributed representations are widely used in théegqe.g., [3, 4, 5]). The functional benefits of
distributed representations include greater efficienalgustness, and accuracy, and the ability to represent
similarity relationships [6]. The efficiency of distributeaepresentations can be appreciated by analogy
with letters. Just as different combinations of a small nemiif letters can represent a large humber of
words, so can different combinations of a small set of udfge@sent a large amount of information. The
robustness of distributed representations comes fromeatiendancy of having each item represented by
many units. Distributed representations can more acdynagpresent graded values througtarse coding
where a value is encoded by the relative magnitudes of a nuaflieoadly tuned units. Finally, similarity
is represented by the shared units involved in the diseibbuepresentations of different items.
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3. Inhibitory Competition

Inhibitory competition is important because it selectsespntations for processing and for subsequent
refinement over learning. Inhibitory competition arisesewhmutual inhibition among a set of units (i.e.,
as mediated by inhibitory interneurons) prevents all butilaset of them from becoming active at a time.
Roughly 20% of the neurons in the cortex are inhibitory ingrrons [7], and it is clear that they control
the explosion of activation that would otherwise resultrrall the positive interconnectivity among cortical
pyramidal neurons (e.g., as happens in epilepsy). Infmbitompetition allows only the most strongly ex-
cited representations to prevail, with thislectionprocess identifying the most appropriate representations
for subsequent processing. Furthermore, most learnindhaméems (including those discussed later) are
affected by this selection process such that only the salaetfpresentations are refined over time through
learning, resulting in an effective differentiation andtdbution of representations [8, 9, 10, 11].

Aside from the selection and refinement of representatiansther benefit of inhibitory competition
comes from the idea that, given the general structure ofthiz@ment,sparsedistributed representations
(i.e., having relatively few units active at a time) are jafarly useful [12, 13]. For example, in visual
processing, a given object can be defined along a set of é&edimensions (e.g., shape, size, color, texture),
with a large number of different values along each dimengi@n, many different possible shapes, sizes,
colors, textures, etc). Assuming that the individual umta distributed representation encode these feature
values, a representation of a given object will only acévatsmall subset of units (i.e., the representations
will be sparse). To further substantiate this argumenth@isen & Field [14] showed that imposing a
bias for developing sparse distributed representationgesult in the development of realistic early visual
representations (oriented edge detectors) of naturablvstenes. More generally, it seems as though the
world can be usefully represented in terms of a large numbesaitegories with a large number of exemplars
per category (animals, furniture, trees, etc.). If we agasume that only a relatively few such exemplars
are processed at a given time, a bias favoring sparse repagis@s is appropriate.

4. Bidirectional Activation Propagation (Interactivity)

Bidirectional activation propagation is a critical pripka for information flow through the network. Bidi-
rectional activation propagation (also calleteractivity or recurrencg is the communication of activation
simultaneously in both bottom-up and top-down directicrtss contrasts witlieedforwardactivation prop-
agation where information only goes in one direction (hotiop). To enable information to flow in both
directions simultaneously in a stable and effective mgnmexcessing must proceed in gradual, iterative
steps. Thus, a temporally-extendseitling process with many iterative steps is required for the networ
to achieve an appropriate representation of a given inpiténpa This is a central feature of GRAIN [1].
Bidirectional connectivity is ubiquitous in the cortexde.[15, 16, 17]). An important benefit of bidirec-
tional activation propagation is powerfobnstraint satisfactioprocessing [18, 19], where both lower-level
(e.g., perceptual) and higher-level (e.g., conceptuatistraints can be simultaneously brought to bear in
interpreting and processing inputs. The importance ofétivity for understanding cognitive processing
was demonstrated in the word superiority model of McClall&Rumelhart [9]. They showed that interac-
tivity could explain the counterintuitive finding that highlevel word processing can influence lower-level
letter perception. More recently, Vecera & O'Reilly [20]ashked that bidirectional constraint satisfaction
can model people’s ability to resolve ambiguous visual iafi favor of familiar versus novel objects [21].
They also showed that adding inhibitory competition to aeriactive network significantly speeded the
settling process, and greatly reduced the number of timesetwork settled into bad local minima.
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Learning Principles

Learning is essential for shaping the representations wiahaetworks according to the structure of the
environment. A key issue is what aspects of the environnhetitiacture should be learned, with the un-
derstanding that not everything can or should be repredeitige following two learning principles exploit
two complementary aspects of environmental structurek daesnands, and the extent to which different
things co-occur. The first is referred to &sk learningfor obvious reasons, and the second is referred to
asmodel learningbecause the objective is to develop an internal model of tkigament irrespective of
specific tasks. These two learning objectives can be adhieydawo different forms of implementational
mechanismsgrror-driven andHebbianlearning, respectively.

5. Error-driven Task Learning

Error-driven learning (also called supervised learnisgiriportant for shaping representations according
to task demands by learning to minimize the difference, @ite error) between a desired outcome and what
the network actually produced. This principle capturesidea that you learn what enables you to succeed
at the necessary tasks of life, without bothering to repreaspects of the environment that are not relevant
to these tasks. The widely used backpropagation learngayitim [22] directly minimizes error through
gradient descent, and has proven to be very powerful. Ahaask learning is clearly psychologically
relevant, and a majority of psychological models have ubexdform of learning, its biological plausibility
has been widely questioned because it requires the propagsterror signals in a manner inconsistent
with known neurobiological properties (e.g., [23, 24]).rfhermore, it has not been clear where the neces-
sary “teaching” signals could plausibly come from. Howevehas recently been shown that biologically
plausible bidirectional activation propagation (see gipte 4) can be used to perform essentially the same
error-driven learning as backpropagation [25], using ahg pumber of readily available teaching signals.
The resulting algorithm generalizes the recirculationodatym of Hinton & McClelland [26], and is thus
calledGeneRec

The basic idea behind GeneRec is that instead of propagatingrror signal, which is a difference
between two terms, one can propagate the two terms sepasateictivation signals, and then take their
difference locally at each unit. This works by having two gpésof activations for computing the two terms.
In the expectatiorphase, the bidirectionally-connected network settlegdas an input activation pattern
into a state that reflects the expected consequences olatesref that input pattern. Then, in tbatcome
phase, the network experiences actual consequence(sirelate(s). The difference between outcome and
expectation is the error signal, and the bidirectional emtimity propagates this error signal throughout
the network via local activation signals. Thus, interatfivenables units everywhere in the network to
receive (possibly indirectly via hidden layers) activatgignals from the layer(s) where the expectation and
outcome are represented. The remarkable thing is that th@@en signals in an interactive network are
naturally propagated (even through hidden layers) in justright way to enable the correct error gradient
to be simply and locally computed at each unit [25].

The GeneRec analysis also showed that Boltzmann machingngaand its deterministic versions
[19, 27, 28, 29] can be seen as variants of this more biollgiptausible version of the backpropaga-
tion algorithm. This means that all of the existing apprecto error-driven learning using activation-based
signals converge on essentially the same basic mechaniagkingrit more plausible that this is the way the
brain does error driven learning. Furthermore, the formyofaptic modification necessary to implement
this algorithm is consistent with (though not directly daied by) known properties of biological synap-
tic modification mechanisms. Finally, there are many sauinehe natural environment for the necessary
outcome phase signals in the form of actual environmentaionues that can be compared with internal ex-
pectations to provide error signals [30, 25]. Thus, one da¢seed to have an explicit “teacher” to perform
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error-driven learning. Taken together, these developmerake it difficult to continue to object to the use
of error-driven learning on the grounds that it is not biatadly plausible.

6. Hebbian Model Learning

Model learning (also called self-organizing or unsupesdisearning) is important for forming internal
representations of the general (statistical) structurdh@fenvironment, without respect to particular tasks.
Many versions of this general idea exist, defined by what@spaf environmental structure are deemed
important to represent, but it is generally agreed that sbimg like correlational structure is important.
Hebbian learning mechanisms represent this correlatistnatture, encoding the extent to which different
things co-occur in the environment [31]. Biologically, Hedn learning requires that the synaptic strength
change as a function of the co-activation of the sending aoeiving neurons. NMDA-mediated long-term
potentiation (LTP) has this Hebbian property (e.g., [32]hus, Hebbian learning is almost universally
regarded as being biologically plausible. At a functioreddl, the co-occurrence of items suggests that
there might be a causal relationship between them. Furthresrnao-occurring items can be more efficiently
represented together within a common representationattete. Mathematical analyses have shown that
Hebbian learning performs something like principal comgus analysis [33], which extracts the principal
dimensions of covariance within the environment. An indéregy demonstration of the power of this kind
of Hebbian model learning was recently provided in the fofna enodel that performs principal compo-
nents analysis on the co-occurrence statistics of wordsiwiarge texts, yielding surprisingly powerful
representations of word meaning [34].

I nteractions Among the Principles

The preceding discussion provided specific and compellinguations for each of the individual prin-
ciples. In this section, three examples of interactionaégyies and conflicts) among the six principles will
be discussed. The first example comes from the GRAIN frameward deals with the consequences of
interactivity and noise. The second explores the intavastbetween distributed representations and com-
petition, which can be at odds with each other. The last egplthe interactions between error-driven and
Hebbian learning.

Interactivity and Noise

The GRAIN framework has been used to explore the implicatioihsome of the principles on the acti-
vation dynamics of a network [1]. For example, althoughriatévity (bidirectional activation propagation)
is important for accounting for a range of different behazigphenomena, it can also be problematic for
others. Specifically, interactivity interfered with theilétp of a network to exhibit independent contributions
from context and stimulus strength in a stimulus identifarasituation [35, 36]. McClelland showed that
the use of intrinsic variability (noise) can resolve thisftict, resulting in a model that captures a wider
range of phenomena, including standard interactive phenar(e.g., top-down effects) and the independent
contributions of context and stimuli [1].

This example illustrates a theme that emerges repeatediy atiempting to integrate different princi-
ples (see Box 1 for another example): often, subsets ofiptexdo not work as well as a more complete
set of principles. Thus, instead of abandoning a principlg.( interactivity) when it appears to introduce
a problem, one should consider how other principles mighadepted that would resolve the problem.
The advantage of the integrative approach is that the meguttodel then accounts for a much wider range
of phenomena, and may provide important new insights inonditure of the originally problematic phe-
nomenon. For example, the GRAIN model can explain the cmmditunder which you wouldot expect to
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find an independent contribution of stimulus and context (4¢for details and empirical validation).

Distributed Representations and Competition

Perhaps one of the most important challenges in integratiegix principles comes in combining dis-
tributed representations and competition, which tend tckvad cross purposes. Distributed representations
require multiple active units that cooperatively repreasemething, whereas competition causes fewer units
to be active, and it can inhibit cooperativity. A reasonaidenpromise between these two principles is the
sparse distributed representation as discussed preyiodishough seemingly straightforward, achieving a
sparse distributed representation is technically chgiten primarily because this case is difficult to analyze
mathematically within a probabilistic learning frameworkhe problem is one of combinatorial explosion
— one needs to take into account all the different possibhlakinations of active and inactive units to
analyze a sparse distributed representation based onntnitetory competition. Thus, sparse distributed
representations fall in a complex intermediate zone batvwae easily analyzed frameworks [37]: (a) The
winner-take-all WTA framework [10, 11, 38], where only one unit is allowed to & at a time. Having
a single active unit eliminates the combinatorial probleing this also violates principle 2 by not allow-
ing for distributed representations. (b) The independemitsuramework, where the units are considered
to be (conditionally) independent of each other (e.g., adsted backpropagation network). This allows
the combined probability of an activation pattern to be espnted as a simple product of the individual
unit probabilities (and for distributed representation®)t it also violates principle 3 because there is no
competition.

There have been a number of attempts to remedy the limitatdbrihese two analytical frameworks,
by introducing distributed representations within a baljcWTA framework, or by introducing sparseness
constraints within the independent units framework. Haosvethe basic limitations of these frameworks
are difficult to overcome. Basically, any use of WTA prevettits cooperativity and combinatoriality of
true distributed representations, and the need to pressiependence among the units in the independent
units framework prevents the introduction of any true aton-based competition. After discussing these
approaches and their limitations, the more difficult to gmalapproach of directly implementing sparse
distributed representations using inhibitory competitiaill be discussed.

The following are extensions of the WTA framework. In the tabe-of-experts framework [39], a WTA
competition takes place within a specialized “gating” natyy that regulates the participation of a set of
“expert” networks, which can themselves have distributggteésentations. A limitation of this approach is
the coarse-grained level of the competition — whole groupsnits compete, but individual units do not.
Also, multiple experts cannot easily cooperate due to thé\\liffitation. The model of Dayan & Zemel
[40] uses a WTA assumption where units in the hidden layempmimto determine the value of a given unit
in the output. However, this just transfers the WTA assuamptiom representing the input to representing
the output, and a WTA assumption anywhere is likely to be lproltic. The Dayan & Zemel model
was intended as an improvement over tizésy-ormodel of Saund [41], which did not result in sufficient
competition. Finally, the Kohonen network [8] uses a WTAgtest a single winner, but then a neighborhood
of units around that winner are also activated. AlthoughHulder achieving topographic representations,
this kind of fixed, imposed activation state does not endtgdull combinatorial representational power that
is an essential feature of true distributed representsition

Within the independent units framework, the main approachideen to introduce a sparseness constraint
that does not actually involve direct activation-based petition. This usually involves adding an extra fac-
tor to the learning rule that favors sparse representaens, [42, 14, 43, 44]), or adding a sparseness bias
into the activation function itself (e.g., [37]). Thus, tsare only competing over the long time-course
of learning (or against their own negative bias), and naally with one another to represent the current
input pattern (i.e., selection). Furthermore, the dynattmiesholding behavior one achieves with activation-
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based competition (which for example makes the system tabuhanges in absolute levels of excitation)
is not present in these approaches. This limitation is @adily evident in bidirectionally connected net-
works, where the need to control positive feedback requhliesdynamic thresholding of true competition
(O'Reilly, 1996, PhD Thesis, Carnegie Mellon Universitylhus, integrating all of the principles places
further demands on the competition mechanism.

It seems clear that the cortex implements inhibitory coiitipat(and sparse distributed representations)
via inhibitory interneurons. One way of understanding tifieats of this inhibitory competition is in terms of
a k-winners-take-all KWTA mechanism, that generalizes the WTA approach wanners [45]. A KWTA
mechanism can enforce true competition amongst the uniitde &allowing for a (sparse) distributed repre-
sentation across the subsettofinits. KWTA mechanisms have been analyzed for factors ssictadility
and convergence onfounits, and can be implemented with biologically-plausibleral inhibition mecha-
nisms [45, 46]. However, they have not been analyticallgted within a probabilistic learning framework,
due to the combinatorial explosion problems. Neverthelassimple form of KWTA that works well in
bidirectionally connected networks has been shown to b&ulug® modeling a wide range of cognitive
phenomena (see Box 1).

Learning Principles

Before discussing the interactions between error-driaehk tearning and Hebbian model learning, the
distinction between the computational objectives of lemyr(i.e., task and model learning) and the im-
plementational mechanisms (i.e., error-driven and Hebhlgarning) needs to be clarified. Two points of
potential confusion exist: (a) error-driven learning canused to achieve a model-learning objective, and
(b) some error-driven learning mechanisms resemble Hahiniechanisms. The first point of confusion
arises because one can train a network to reproduce thernafan in the environment using error-driven
mechanisms, resulting in a task-independent model of thieoement (i.e., via an auto-encoder [47, 48, 42]
or a generative model [49, 14]). One can also learn an intenoael based on error signals derived from
the mismatch between different sensory representatiotiseofame underlying event [50, 51, 52hese
examples raise the issue of why one should use Hebbian msofsto implement model learning, instead
of using error-driven learning for both task and model I&@gn The subsequent discussion of the advantages
of combining error-driven and Hebbian learning addreskississue.

As for the second point of confusion, a version of the Geneddgarithm analyzed in [25] is equivalent
to the “contrastive Hebbian learning” (CHL) algorithm of Mallan [29], which uses the difference between
two Hebbian terms. Also, other algorithms have been praptsa achieve quasi-error-driven learning with
Hebbian-like mechanisms (e.g., [53]). However, despi#sdtapparent similarities in the surface form of the
learning rule, error-driven learning achieves a very défé computational objective from simple Hebbian
learning; only error-driven learning can achieve a fullyngeal, powerful form of task learning (i.e., that is
capable of learning arbitrary input-output mappings).

Thus, it seems clear that we should begin with the assumgiadrerror-driven learning is essential for
achieving task learning. From this error-driven perspegtit would then be of interest to know if further
constraining the learning with Hebbian model learning wloyield any benefits. A general framework for
understanding why this might be the case was articulateddmgd®, Bienenstock, & Doursat [54]. They ar-
gued that standard neural networks (e.g., generic backpedipn networks) are typically underconstrained
by the learning task, and thus suffer from too mwetiiancein solutions. This can have negative conse-
guences for generalization to novel inputs, among othagtiThe solution is to aduiasego networks that
further constrain the learning by favoring particular farmf solutions (representations). To be beneficial,

1This idea can also be viewed as an instance of the GeneRectatipe-outcome framework, where each modality creates an
“expectation” about how the other modality will represdr event. The difference between this expectation and hemtidality
actually represents the event constitutes the error signal



O'Reilly 9

these biases obviously need to be appropriate — there aremeaigally optimal set of biases — but there
may be a set of biases that are particularly appropriatecfmmessenting the real world. Indeed, encouraging
sparse distributed representations can be seen as jusd biehthat has been justified in terms of real world
properties as discussed previously. It is likely, given glemeral importance of correlational information
in the world (e.g., for suggesting causal relationshigsy tncluding a Hebbian bias towards representing
co-occurrence statistics would be another such generséifuibias.

Although error-driven learning can be sensitive to cotielzal information, Hebbian learning is directly
constrained to learn a correlation-based model becausbi&tetveight changes directly reflect unit corre-
lations. Thus, Hebbian model learning can provide a distinc useful additional bias to further constrain
error-driven task learning. This additional Hebbian bias be thought of as a somewhat “smarter” version
of the widely-used weight decay bias (e.qg., [55]). Asiderfrime Leabra algorithm described in Box 1, there
is at least one other example in the literature where emged (backpropagation) and Hebbian learning
have been combined, with the expected beneficial resulis lfp@ddition to the synergy between these two
forms of learning, combining both task-based and modetddsarning enables one to account for phe-
nomena associated specifically with these different typdsaoning. For example, it seems reasonable to
assume that some kinds of learning occur as a result of measaxe to stimuli (i.e., as would be expected
by model learning, but not task learning). However, otherdki of learning (e.g., complex input-output
mappings) clearly require task learning.

Outstanding Questions

e Are there cognitive phenomena or biological facts that appe directly contradict the core princi-
ples?

e Is it possible that different parts of the cortex emphas@aesprinciples over others? How might this
influence functional specialization in the cortex?

e How many other important principles are missing from thesdi

e Can complex sequential cognitive processing be shown togenfieom such basic principles as those
discussed here, or does this require a whole new set of phasél

e How might error-driven and Hebbian learning co-exist aridriact with reinforcement learning, which
is likely to be taking place in sub-cortical structures, aadsibly the cortex?
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Box 1. The Leabralmplementation

The six principles have been implemented in an algorithnieddleabra which is briefly presented
here. Leabra stands for “learning in an error-driven andeiasive, biologically-realistic algorithm” (where
associative is another term for Hebbian learning). Lealas leen used in an upcoming textbook [57]
to implement a wide range of cognitive neuroscience modé&le scope of phenomena it is capable of
modeling is commensurate with the breadth of the principlesliscussed in the paper, and demonstrates
their sufficiency and mutual compatibility.

Point Neuron Activation Function

Leabra uses @oint neuronactivation function that models the electrophysiologipadperties of real
neurons, while simplifying their geometry to a single poifithis is nearly as simple computationally as
the standard sigmoidal activation function, but the mordgjically-based implementation makes it con-
siderably easier to model inhibitory competition, as diésa below. Further, it enables cognitive models
to be more easily related to more physiologically detailiedusations, thereby facilitating bridge-building
between biology and cognition.

The membrane potentidf,, is updated as a function of ionic conductangewith reversal (driving)
potentialsE as follows:

AVin (1)
dt
with 3 channelsd) corresponding toe excitatory input;l leak current; and inhibitory input. The equilib-

rium potential can be written in a simplified form by settidge texcitatory driving potentialK,) to 1 and
the leak and inhibitory driving potential#( and E;) of O:

=7 9c(t)ge(Ee — V(1)) 1)

 9eGe + 901 + 9iG

This shows that the neuron is computing a balance betweédtatoe and the opposing forces of leak and
inhibition. This form of the equation can be understood imigof a Bayesian decision making framework
[57]. Activation communicated to other cellg)(is a thresholdedd), sigmoidal function of the membrane

potential with gain parameter.
1
y;(t) = ®3)

1
(1+ 5w
This can be convolved with Gaussian noise, producing a lss®mtinuous function with a softer lower
threshold.

k-Winners-Take-All Inhibition

Leabra uses a KWTA function to achieve sparse distributpcesentations. This function is achieved
by setting a uniform level of inhibition for all units in thayer that prevents more tharunits from getting
over threshold. This inhibitory current is given by:

gi = gl?+1 + Q(Ql? - 91?+1) (4)

g Go(Ee—O .
whereg is typically .25, and the threshold-level inhibition terme ¢© = % for the units

with thek th andk + 1 th highest excitatory inputs. Activation dynamics similathose produced by this
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function have been shown to result from simulated inhilitaterneurons that project both feedforward and
feedback inhibition [57].

Error-Driven Learning

Error-driven learning is implemented in Leabra using a sygtrio version of the biologically plausible
GeneRec algorithm [25], that is functionally equivalenthie deterministic Boltzmann machine and con-
trastive Hebbian learning (CHL) [27, 29]. The network settin two phases, an expectation (minus) phase
and an outcome (plus) phase, and then computes a simpleedifie of a pre and postsynaptic activation
product across these two phases:

Aw;j = Tj'y;r — Ty )

for sending unit; and receiving uni; in the two phases.

Hebbian Learning

The simplest form of Hebbian learning adjusts the weightgraportion to the product of the sending
(z;) and receiving ;) unit activations: Aw;; = z;y;. The weight vector is dominated by the principal
eigenvector of the pairwise correlation matrix of the inpudt it also grows without bound. Leabra uses a
variant of the Oja normalization [33]:

Awij = 3y — yjwij = y; (@i — wij) (6)

which can also be seen as computing the expected value okttaing unit activity conditional on the
receiver’s activity (if treated like a binary variable atiwith probability y;): w;; ~ (xi|yj>p. This is
essentially the same rule used in standard competitivailgaor mixtures-of-Gaussians [10, 38].

Error-driven and Hebbian learning are linearly combine@ath synapse in the network, using a nor-
malized mixing constant. To keep the error-driven componéthin the same 0-1 range of the Hebbian
term, soft weight bounding with exponential approach te¢hextremes is used on this component. Finally,
a sigmoidal contrast enhancement function on the weight$eaised to facilitate learning in environments
with underlying binary features (i.e., imposing a bias taigabinary weights). See [57] for details.

Principal Results

In [57], Leabra is used to replicate a large number of publisimodels that were originally implemented
using a variety of different algorithms from backpropagatio Hebbian self-organizing learning. Leabra
also illustrates many of the issues discussed in this pagerding the interactions among the different prin-
ciples. For example, just adding interactivity to an othiseageneric error-driven network (e.g., a GeneRec
network) significantly impairs generalization performanéiowever, also adding Hebbian learning and in-
hibitory competition (in Leabra) restores good generdlimaperformance within an interactive network
(O'Reilly, 1996, PhD Thesis, Carnegie Mellon Universitfhe conclusion is similar to that of the GRAIN
exploration of interactivity and noise — interactivity éi§ may cause problems, but these can be remedied
with additional principles.

In addition to replicating existing models, Leabra alsomtes better models of several phenomena. One
salient example of this is in the case of the U-shaped paseteverregularization phenomenon, which has
proven difficult to capture using purely error-driven baakpagation networks without also manipulating
the training environment in a potentially implausible fiah[58, 59, 60]. By adding Hebbian learning and
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inhibitory competition, Leabra introduces biases thatdpee a much more pronounced U-shaped effect
(including a longer period of early competence) [57]. Ttds be contrasted with the essentially monotonic
decrease in overregularizations that, in retrospect, #&&thx what would be expected from a purely error-
driven algorithm (see [57] and Hoeffner, 1997, PhD Thes&n€gie Mellon University for a more detailed
critique of existing models).
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