

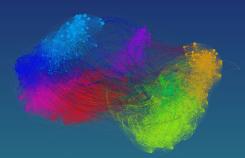
Graphs in Machine Learning

Michal Valko

Inria Lille - Nord Europe, France

TA: Daniele Calandriello

Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton



October 31, 2016 MVA 2016/2017

Previous Lecture

- geometry of the data and the connectivity
- spectral clustering
 - connectivity vs. compactness
 - MinCut, RatioCut, NCut
 - spectral relaxations
- manifold learning with Laplacian eigenmaps
- semi-supervised learning
- inductive and transductive semi-supervised learning
- SSL with self-training

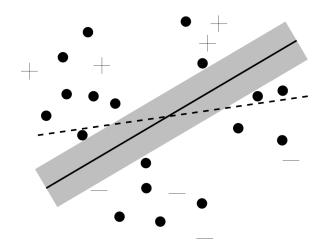
Previous Lab Session

- ▶ 24. 10. 2017 by Daniele Calandriello
- Content
 - graph construction
 - test sensitivity to parameters: σ , k, ε
 - spectral clustering
 - spectral clustering vs. k-means
 - image segmentation
- ► Short written report (graded, all reports around 40% of grade)
- ► Check the course website for the policies
- Questions to piazza
- ▶ Deadline: 7. 11. 2016, 23:59

This Lecture

- SVMs and semi-supervised SVMs = TSVMs
- Gaussian random fields and harmonic solution
- graph-based semi-supervised learning
- transductive learning
- manifold regularization

SSL: Transductive SVM: S3VM



SSL: Transductive SVM: Classical SVM

Linear case: $f = \mathbf{w}^\mathsf{T} \mathbf{x} + b \rightarrow \text{we look for } (\mathbf{w}, b)$

max-margin classification

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|}$$
s.t. $y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 \quad \forall i = 1, \dots, n_I$

note the difference between functional and geometric margin

max-margin classification

$$\begin{aligned} & \min_{\mathbf{w}, b} & \|\mathbf{w}\|^2 \\ & s.t. & y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 & \forall i = 1, \dots, n_I \end{aligned}$$

SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

$$\min_{\mathbf{w},b} \ \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i+b)\geq 1 \quad \forall i=1,\ldots,n_l$$

max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \quad \frac{\lambda}{\|\mathbf{w}\|^2} + \sum_{i} \frac{\xi_i}{\xi_i}$$

s.t.
$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1, \dots, n_l$$

 $\xi_i > 0 \quad \forall i = 1, \dots, n_l$

SSL: Transductive SVM: Classical SVM

max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \quad \lambda \|\mathbf{w}\|^2 + \sum_{i} \xi_{i}$$
s.t.
$$y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i} \quad \forall i = 1, \dots, n_{l}$$

$$\xi_{i} \geq 0 \quad \forall i = 1, \dots, n_{l}$$

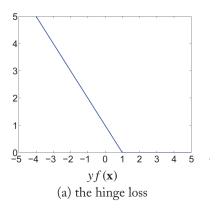
Unconstrained formulation using hinge loss:

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} \max \left(1 - y_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|^{2}$$

In general?

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda \Omega(f)$$

SSL: Transductive SVM: Classical SVM: Hinge loss



$$V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) = \max(1 - y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b), 0)$$

SSL: Transductive SVM: Unlabeled Examples

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} \max \left(1 - y_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|^{2}$$

How to incorporate unlabeled examples?

No y's for unlabeled x.

Prediction of f for (any) x?
$$\hat{y} = \operatorname{sgn}(f(\mathbf{x})) = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

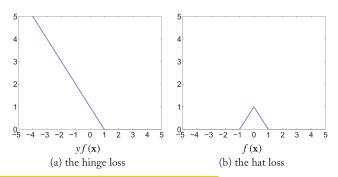
Pretending that sgn(f(x)) is the true label ...

$$V(\mathbf{x}, \widehat{y}, f(\mathbf{x})) = \max (1 - \widehat{y} (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b), 0)$$

$$= \max (1 - \operatorname{sgn} (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b) (\mathbf{w}^{\mathsf{T}} \mathbf{x} + b), 0)$$

$$= \max (1 - |\mathbf{w}^{\mathsf{T}} \mathbf{x} + b|, 0)$$

SSL: Transductive SVM: Hinge and Hat Loss

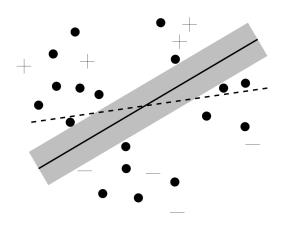


What is the difference in the objectives?

Hinge loss penalizes?

Hat loss penalizes?

SSL: Transductive SVM: S3VM



This is what we wanted!

SSL: Transductive SVM: Formulation

Main SVM idea stays the same: penalize the margin

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max (1 - y_i (\mathbf{w}^\mathsf{T} \mathbf{x}_i + b), 0) + \lambda_1 \|\mathbf{w}\|^2 + \lambda_2 \sum_{i=n_l+1}^{n_l+n_u} \max (1 - |\mathbf{w}^\mathsf{T} \mathbf{x}_i + b|, 0)$$

What is the loss and what is the regularizer?

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max (1 - y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b), 0) + \lambda_1 \|\mathbf{w}\|^2 + \lambda_2 \sum_{i=n_l+1}^{n_l+n_u} \max (1 - |\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b|, 0)$$

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.

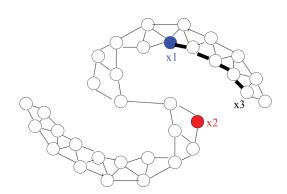
What it the main issue of TSVM?

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf

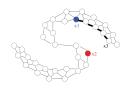
SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

*following some insights from vision research in 1980s



SSL with Graphs: MinCut



MinCut SSL: an idea similar to MinCut clustering Where is the link?

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\operatorname{cut} = \sum_{i,i=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \Omega(f)$$

Why $(f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$ and not $|f(\mathbf{x}_i) - f(\mathbf{x}_j)|$?

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l + n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda \Omega(\mathbf{f})$$

It would be nice if we match the prediction on labeled data:

$$V(\mathbf{x}, y, f(\mathbf{x})) = \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2$$

SSL with Graphs: MinCut

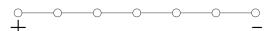
Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i, i=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it?

Are we happy?



We need a better way to reflect the confidence.

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions

http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.

Idea 2: Find a smooth one. (harmonic solution)

Harmonic SSL

1): As before we constrain f to match the supervised data:

$$f(\mathbf{x}_i) = y_i \quad \forall i \in \{1, \dots, n_l\}$$

2): We enforce the solution f to be harmonic.

$$f(\mathbf{x}_i) = \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim i} w_{ij}} \qquad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...if we just relax the integer constraints to be real ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

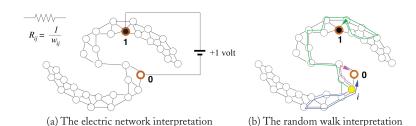
... or equivalently (note that $f(\mathbf{x}_i) = f_i$) ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l + n_u}} \sum_{i, i=1}^{n_l + n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

s.t.
$$y_i = f(\mathbf{x}_i) \quad \forall i = 1, \dots, n_l$$

Properties of the relaxation from ± 1 to $\mathbb R$

- there is a closed form solution for f
- this solution is unique
- globally optimal
- it is either constant or has a maximum/minimum on a boundary
- $ightharpoonup f(\mathbf{x}_i)$ may not be discrete
 - but we can threshold it
- electric-network interpretation
- random-walk interpretation



Random walk interpretation:

- 1) start from the vertex you want to label and randomly walk
- 2) $P(j|i) = \frac{w_{ij}}{\sum_{L} w_{ik}}$ \equiv $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$
- 3) finish when a labeled vertex is hit

absorbing random walk

 f_i = probability of reaching a positive labeled vertex

How to compute HS? Option A: iteration/propagation

Step 1: Set $f(x_i) = y_i$ for $i = 1, ..., n_l$

Step 2: Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

How to compute HS? Option B: Closed form solution

Define
$$\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l + n_u})) = (f_1, \dots, f_{n_l + n_u})$$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l + n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 = \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f}$$

L is a $(n_l + n_u) \times (n_l + n_u)$ matrix:

$$\mathbf{L} = \left[\begin{array}{cc} \mathbf{L}_{II} & \mathbf{L}_{Iu} \\ \mathbf{L}_{u1} & \mathbf{L}_{uu} \end{array} \right]$$

How to compute this **constrained** minimization problem?

Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

$$(\mathbf{Lf})_u = \mathbf{0}_u$$

In matrix notation

$$\left[\begin{array}{cc} \mathbf{L}_{II} & \mathbf{L}_{Iu} \\ \mathbf{L}_{uI} & \mathbf{L}_{uu} \end{array}\right] \left[\begin{array}{c} \mathbf{f}_{I} \\ \mathbf{f}_{u} \end{array}\right] = \left[\begin{array}{c} \dots \\ \mathbf{0}_{u} \end{array}\right]$$

 \mathbf{f}_l is constrained to be \mathbf{y}_l and for \mathbf{f}_u

$$\mathbf{L}_{ul}\mathbf{f}_{l}+\mathbf{L}_{uu}\mathbf{f}_{u}=\mathbf{0}_{u}$$

... from which we get

$$\mathbf{f}_{u} = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_{l}) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_{l}).$$

Note that this does not depend on \mathbf{L}_{II} .

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_{u} = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_{l}) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_{l})$$

Note that $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$. Then equivalently

$$\mathbf{f}_u = (\mathbf{I} - \mathbf{P}_{uu})^{-1} \mathbf{P}_{ul} \mathbf{f}_l.$$

Split the equation into +ve & -ve part:

$$f_{i} = (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{ul} \mathbf{f}_{l}$$

$$= \sum_{j:y_{j}=1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{uj} - \sum_{j:y_{j}=-1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1} \mathbf{P}_{uj}$$

$$= p_{i}^{(+1)} - p_{i}^{(-1)}$$

SSL with Graphs: Regularized Harmonic Functions

$$f_i = p_i^{(+1)} - p_i^{(-1)}$$
 $\Longrightarrow f_i = \underbrace{|f_i|}_{\text{confidence}} \times \underbrace{\operatorname{sgn}(f_i)}_{\text{label}}$

What if a nasty outlier sneaks in?

The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?

Allow the random walk to die!

We add a sink to the graph.

sink = artificial label node with value 0

We connect it to every other vertex.

What will this do to our predictions?

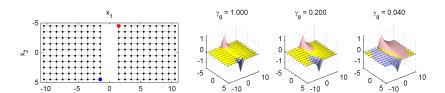
depends on the weigh on the edges

SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

$$\mathbf{f}_{u} = (\mathbf{L}_{uu} + \gamma_{\mathbf{g}} \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_{l})$$

How does γ_{g} influence HS?



What happens to sneaky outliers?

Why don't we represent the sink in **L** explicitly?

Formally, to get the harmonic solution on the graph with sink . . .

$$\begin{bmatrix} \mathbf{L}_{II} + \gamma_{G} \mathbf{I}_{n_{I}} & \mathbf{L}_{Iu} & -\gamma_{G} \\ \mathbf{L}_{uI} & \mathbf{L}_{uu} + \gamma_{G} \mathbf{I}_{n_{u}} & -\gamma_{G} \\ -\gamma_{G} \mathbf{1}_{n_{I} \times 1} & -\gamma_{G} \mathbf{1}_{n_{u} \times 1} & n\gamma_{G} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{I} \\ \mathbf{f}_{u} \\ 0 \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_{u} \\ \dots \end{bmatrix}$$

$$\mathbf{L}_{ul}\mathbf{f}_{l}+\left(\mathbf{L}_{uu}+\gamma_{G}\mathbf{I}_{n_{u}}\right)\mathbf{f}_{u}=\mathbf{0}_{u}$$

... which is the same if we disregard the last column and row ...

$$\begin{bmatrix} \mathbf{L}_{II} + \gamma_G \mathbf{I}_{n_I} & \mathbf{L}_{Iu} \\ \mathbf{L}_{uI} & \mathbf{L}_{uu} + \gamma_G \mathbf{I}_{n_u} \end{bmatrix} \begin{bmatrix} \mathbf{f}_I \\ \mathbf{f}_u \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_u \end{bmatrix}$$

... and therefore we simply add γ_G to the diagonal of **L**!

Regularized HS objective with $\mathbf{Q} = \mathbf{L} + \gamma_g \mathbf{I}$:

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \mathbf{f}^\mathsf{T} \mathbf{Q} \mathbf{f}$$

What if we do not really believe that $f(\mathbf{x}_i) = y_i$, $\forall i$?

$$\mathbf{f}^{\star} = \min_{\mathbf{f} \in \mathbb{R}^{N}} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{f}$$

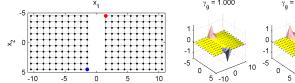
C is diagonal with $C_{ii} = \begin{cases} c_I & \text{for labeled examples} \\ c_u & \text{otherwise.} \end{cases}$

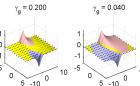
 $\mathbf{y} \equiv \text{pseudo-targets with } y_i = \begin{cases} \text{true label} & \text{for labeled examples} \\ 0 & \text{otherwise.} \end{cases}$

$$\mathbf{f}^{\star} = \min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{f}$$

Closed form soft harmonic solution:

$$\mathbf{f}^{\star} = (\mathbf{C}^{-1}\mathbf{Q} + \mathbf{I})^{-1}\mathbf{y}$$





What are the differences between hard and soft?

Not much different in practice.

Provable generalization guarantees for the soft one.

SSL with Graphs: Regularized Harmonic Functions

Larger implications of random walks

random walk relates to commute distance which should satisfy

 (\star) Vertices in the **same** cluster of the graph have a **small** commute distance, whereas two vertices in **different** clusters of the graph have a **large** commute distance.

Do we have this property for HS?

What if $N \to \infty$?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the commute distance http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf

Solutions? 1) γ_g 2) amplified commute distance 3) \mathbf{L}^p 4) \mathbf{L}^{\star} ...

The goal of these solutions: make them remember!

SSL with Graphs: Out of sample extension

Both **MinCut** and **HFS** only inferred the labels on unlabeled data.

They are transductive.

What if a new point $\mathbf{x}_{n_1+n_2+1}$ arrives? also called out-of-sample extension

Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms **inductive!**

Allow to be defined everywhere: $f: \mathcal{X} \mapsto \mathbb{R}$

Allow $f(\mathbf{x}_i) \neq y_i$. Why? To deal with noise.

Solution: Manifold Regularization

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$\min_{f} \sum_{i}^{n_{l}} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda \Omega(f)$$

Want to control f, also for the out-of-sample data, i.e., everywhere.

$$\Omega(f) = \lambda_2 \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f} + \lambda_1 \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^2 \, \mathrm{d}\mathbf{x}$$

For general kernels:

$$\min_{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{l}} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda_{1} \|f\|_{\mathcal{K}}^{2} + \lambda_{2} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

SSL with Graphs: Manifold Regularization

$$f^* = \operatorname*{arg\,min}_{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_l} V\left(\mathbf{x}_i, y_i, f\right) + \lambda_1 \|f\|_{\mathcal{K}}^2 + \lambda_2 \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f}$$

Representer Theorem for Manifold Regularization

The minimizer f^* has a **finite** expansion of the form

$$f^{\star}(\mathbf{x}) = \sum_{i=1}^{n_i + n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(\mathbf{x}, y, f) = (y - f(\mathbf{x}))^{2}$$

LapRLS Laplacian Regularized Least Squares

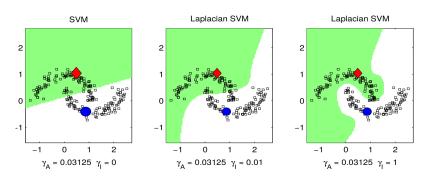
$$V(\mathbf{x}, y, f) = \max(0, 1 - yf(\mathbf{x}))$$

LapSVM Laplacian Support Vector Machines

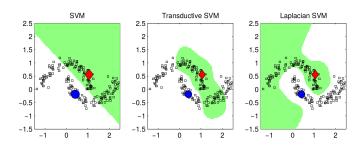
SSL with Graphs: Laplacian SVMs

$$f^{\star} = \operatorname*{arg\,min}_{f \in \mathcal{H_K}} \sum_{i}^{n_l} \max\left(0, 1 - y f\left(\mathbf{x}\right)\right) + \gamma_A \|f\|_{\mathcal{K}}^2 + \gamma_I \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

Allows us to learn a function in RKHS, i.e., RBF kernels.



SSL with Graphs: Laplacian SVMs



Checkpoint 1

Semi-supervised learning with graphs:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l + n_u}} (\infty) \sum_{i=1}^{n_l} w_{ij} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Regularized harmonic Solution:

$$\mathbf{f}_{u} = \left(\mathbf{L}_{uu} + \gamma_{\mathbf{g}}\mathbf{I}\right)^{-1} \left(\mathbf{W}_{ul}\mathbf{f}_{l}\right)$$

Checkpoint 2

Unconstrained regularization in general:

$$\mathbf{f}^{\star} = \min_{\mathbf{f} \in \mathbb{R}^{N}} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^{\mathsf{T}} \mathbf{Q} \mathbf{f}$$

Out of sample extension: Laplacian SVMs

$$f^{\star} = \operatorname*{arg\,min}_{f \in \mathcal{H}_{\mathcal{K}}} \sum_{i}^{n_{l}} \max\left(0, 1 - yf\left(\mathbf{x}\right)\right) + \lambda_{1} \|f\|_{\mathcal{K}}^{2} + \lambda_{2} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$

Michal Valko michal.valko@inria.fr ENS Paris-Saclay, MVA 2016/2017 SequeL team, Inria Lille — Nord Europe

https://team.inria.fr/sequel/