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Previous Lecture

I geometry of the data and the connectivity

I spectral clustering
I connectivity vs. compactness
I MinCut, RatioCut, NCut
I spectral relaxations

I manifold learning with Laplacian eigenmaps

I semi-supervised learning

I inductive and transductive semi-supervised learning

I SSL with self-training
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Previous Lab Session

I 24. 10. 2017 by Daniele Calandriello
I Content

I graph construction
I test sensitivity to parameters: σ, k, ε
I spectral clustering
I spectral clustering vs. k-means
I image segmentation

I Short written report (graded, all reports around 40% of grade)
I Check the course website for the policies
I Questions to piazza
I Deadline: 7. 11. 2016, 23:59
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This Lecture

I SVMs and semi-supervised SVMs = TSVMs

I Gaussian random fields and harmonic solution

I graph-based semi-supervised learning

I transductive learning

I manifold regularization
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SSL: Transductive SVM: S3VM
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SSL: Transductive SVM: Classical SVM
Linear case: f = wTx + b → we look for (w, b)

max-margin classification

max
w,b

1
‖w‖

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

note the difference between functional and geometric margin

max-margin classification

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

min
w,b

‖w‖2

s.t. yi(wTxi + b) ≥ 1 ∀i = 1, . . . , nl

max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1− ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl
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SSL: Transductive SVM: Classical SVM
max-margin classification: non-separable case

min
w,b

λ‖w‖2 +
∑

i
ξi

s.t. yi(wTxi + b) ≥ 1− ξi ∀i = 1, . . . , nl

ξi ≥ 0 ∀i = 1, . . . , nl

Unconstrained formulation using hinge loss:

min
w,b

nl∑
i

max (1− yi (wTxi + b) , 0) + λ‖w‖2

In general?

min
w,b

nl∑
i

V (xi , yi , f (xi)) + λΩ(f )
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SSL: Transductive SVM: Classical SVM: Hinge loss

V (xi , yi , f (xi)) = max (1− yi (wTxi + b) , 0)
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SSL: Transductive SVM: Unlabeled Examples

min
w,b

nl∑
i

max (1− yi (wTxi + b) , 0) + λ‖w‖2

How to incorporate unlabeled examples?

No y ’s for unlabeled x.

Prediction of f for (any) x? ŷ = sgn (f (x)) = sgn (wTx + b)

Pretending that sgn (f (x)) is the true label . . .

V (x, ŷ , f (x)) = max (1− ŷ (wTx + b) , 0)
= max (1− sgn (wTx + b) (wTx + b) , 0)
= max (1− |wTx + b| , 0)
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SSL: Transductive SVM: Hinge and Hat Loss

What is the difference in the objectives?

Hinge loss penalizes?

the margin of being on the wrong side

Hat loss penalizes?

predicting in the margin
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SSL: Transductive SVM: S3VM

This is what we wanted!
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SSL: Transductive SVM: Formulation
Main SVM idea stays the same: penalize the margin

min
w,b

nl∑
i=1

max (1− yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=nl+1

max (1− |wTxi + b| , 0)

What is the loss and what is the regularizer?

min
w,b

nl∑
i=1

max (1− yi (wTxi + b) , 0)+λ1‖w‖2+λ2

nl+nu∑
i=nl+1

max (1− |wTxi + b| , 0)

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.

What it the main issue of TSVM?

hat loss is not convex

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf
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SSL with Graphs: Prehistory
Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

*following some insights from vision research in 1980s
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
Where is the link?

connected classes, not necessarily compact

What is the formal statement? We look for f (x) ∈ {±1}

cut =

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2 = Ω(f )

Why (f (xi)− f (xj))
2 and not |f (xi)− f (xj)|?

It does not matter.
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SSL with Graphs: MinCut
We look for f (x) ∈ {±1}

Ω(f) =
nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

min
w,b

nl∑
i

V (xi , yi , f (xi)) + λΩ(f)

It would be nice if we match the prediction on labeled data:

V (x, y , f (x)) =∞
nl∑

i=1
(f (xi)− yi)

2
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SSL with Graphs: MinCut
Final objective function:

min
f∈{±1}nl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

This is an integer program :(

Can we solve it?

It still just MinCut.

Are we happy?

There are six solutions. All equivalent.

We need a better way to reflect the confidence.
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SSL with Graphs: Harmonic Functions
Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.
Idea 2: Find a smooth one. (harmonic solution)
Harmonic SSL
1): As before we constrain f to match the supervised data:

f (xi) = yi ∀i ∈ {1, . . . , nl}

2): We enforce the solution f to be harmonic.

f (xi) =

∑
i∼j f (xj)wij∑

i∼j wij
∀i ∈ {nl + 1, . . . , nu + nl}
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SSL with Graphs: Harmonic Functions
The harmonic solution is obtained from the mincut one . . .

min
f∈{±1}nl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

. . . if we just relax the integer constraints to be real . . .

min
f∈Rnl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λ

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

. . . or equivalently (note that f (xi) = fi) . . .

min
f∈Rnl+nu

nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2

s.t. yi = f (xi) ∀i = 1, . . . , nl
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SSL with Graphs: Harmonic Functions

Properties of the relaxation from ±1 to R

I there is a closed form solution for f
I this solution is unique
I globally optimal
I it is either constant or has a maximum/minimum on a

boundary
I f (xi) may not be discrete

I but we can threshold it
I electric-network interpretation
I random-walk interpretation
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SSL with Graphs: Harmonic Functions

Random walk interpretation:
1) start from the vertex you want to label and randomly walk
2) P(j |i) = wij∑

k wik
≡ P = D−1W

3) finish when a labeled vertex is hit
absorbing random walk

fi = probability of reaching a positive labeled vertex
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SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation

Step 1: Set f (xi) = yi for i = 1, . . . , nl
Step 2: Propagate iteratively (only for unlabeled)

f (xi)←
∑

i∼j f (xj)wij∑
i∼j wij

∀i ∈ {nl + 1, . . . , nu + nl}

Properties:
I this will converge to the harmonic solution
I we can set the initial values for unlabeled nodes arbitrarily
I an interesting option for large-scale data
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f (x1), . . . , f (xnl+nu)) = (f1, . . . , fnl+nu)

Ω(f) =
nl+nu∑
i ,j=1

wij (f (xi)− f (xj))
2 = fTLf

L is a (nl + nu)× (nl + nu) matrix:

L =

[
Lll Llu
Lu1 Luu

]
How to compute this constrained minimization problem?

Yes, Lagrangian multipliers are an option, but . . .
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SSL with Graphs: Harmonic Functions
Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

(Lf)u = 0u

In matrix notation[
Lll Llu
Lul Luu

] [
fl
fu

]
=

[
. . .
0u

]
fl is constrained to be yl and for fu . . . . . .

Lul fl + Luufu = 0u

. . . from which we get

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl).

Note that this does not depend on Lll .
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SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl)

Note that P = D−1W. Then equivalently

fu = (I− Puu)
−1Pul fl .

Split the equation into +ve & -ve part:

fi = (I− Puu)
−1
iu Pul fl

=
∑

j:yj=1
(I− Puu)

−1
iu Puj︸ ︷︷ ︸

p(+1)
i

−
∑

j:yj=−1
(I− Puu)

−1
iu Puj︸ ︷︷ ︸

p(−1)
i

= p(+1)
i − p(−1)

i
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SSL with Graphs: Regularized Harmonic Functions

fi = p(+1)
i − p(−1)

i =⇒ fi = |fi |︸︷︷︸
confidence

× sgn(fi)︸ ︷︷ ︸
label

What if a nasty outlier sneaks in?

The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?
Allow the random walk to die!

We add a sink to the graph.

sink = artificial label node with value 0

We connect it to every other vertex.

What will this do to our predictions?
depends on the weigh on the edges
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SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

fu = (Luu + γg I)−1 (Wul fl)

How does γg influence HS?

What happens to sneaky outliers?
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SSL with Graphs: Harmonic Functions

Why don’t we represent the sink in L explicitly?

Formally, to get the harmonic solution on the graph with sink . . . Lll + γG Inl Llu −γG
Lul Luu + γG Inu −γG

−γG1nl×1 −γG1nu×1 nγG

 fl
fu
0

 =

 . . .
0u
. . .


Lul fl + (Luu + γG Inu) fu = 0u

. . . which is the same if we disregard the last column and row . . .[
Lll + γG Inl Llu

Lul Luu + γG Inu

] [
fl
fu

]
=

[
. . .
0u

]

. . . and therefore we simply add γG to the diagonal of L!
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SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with Q = L + γg I:

min
f∈Rnl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λfTQf

What if we do not really believe that f (xi) = yi , ∀i?

f? = min
f∈RN

(f − y)TC(f − y) + fTQf

C is diagonal with Cii =

{
cl for labeled examples
cu otherwise.

y ≡ pseudo-targets with yi =

{
true label for labeled examples
0 otherwise.
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SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.
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SSL with Graphs: Regularized Harmonic Functions
Larger implications of random walks

random walk relates to commute distance which should satisfy

(?) Vertices in the same cluster of the graph have a small
commute distance, whereas two vertices in different clusters of
the graph have a large commute distance.

Do we have this property for HS? What if N →∞?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the
commute distance http://www.informatik.uni-hamburg.de/ML/contents/

people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf

Solutions? 1) γg 2) amplified commute distance 3) Lp 4) L? . . .

The goal of these solutions: make them remember!
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.

They are transductive.

What if a new point xnl+nu+1 arrives? also called out-of-sample extension

Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X 7→ R
Allow f (xi) 6= yi . Why? To deal with noise.

Solution: Manifold Regularization
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SSL with Graphs: Manifold Regularization
General (S)SL objective:

min
f

nl∑
i

V (xi , yi , f (xi)) + λΩ(f )

Want to control f , also for the out-of-sample data, i.e.,
everywhere.

Ω(f ) = λ2fTLf + λ1

∫
x∈X

f (x)2 dx

For general kernels:

min
f ∈HK

nl∑
i

V (xi , yi , f (xi)) + λ1‖f ‖2K + λ2fTLf
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SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer Theorem for Manifold Regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines
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SSL with Graphs: Laplacian SVMs

f ? = arg min
f ∈HK

nl∑
i

max (0, 1− yf (x)) + γA‖f ‖2K + γI fTLf

Allows us to learn a function in RKHS, i.e., RBF kernels.

Michal Valko – Graphs in Machine Learning SequeL - 35/39



SSL with Graphs: Laplacian SVMs
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Checkpoint 1

Semi-supervised learning with graphs:

min
f∈{±1}nl+nu

(∞)

nl∑
i=1

wij (f (xi)− yi)
2 + λ

nl+nu∑
i ,j=1

(f (xi)− f (xj))
2

Regularized harmonic Solution:

fu = (Luu + γg I)−1 (Wul fl)
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Checkpoint 2

Unconstrained regularization in general:

f? = min
f∈RN

(f − y)TC(f − y) + fTQf

Out of sample extension: Laplacian SVMs

f ? = arg min
f ∈HK

nl∑
i

max (0, 1− yf (x)) + λ1‖f ‖2K + λ2fTLf
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