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Previous Lecture

v

geometry of the data and the connectivity
spectral clustering
» connectivity vs. compactness

» MinCut, RatioCut, NCut
> spectral relaxations

manifold learning with Laplacian eigenmaps
semi-supervised learning
inductive and transductive semi-supervised learning

SSL with self-training
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Previous Lab Session

v

24. 10. 2017 by Daniele Calandriello
Content

v

» graph construction

test sensitivity to parameters: o, k, ¢
spectral clustering

spectral clustering vs. k-means
image segmentation

vV vy VvVvYyYy

v

Short written report (graded, all reports around 40% of grade)

v

Check the course website for the policies

v

Questions to piazza
Deadline: 7. 11. 2016, 23:59

v
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This Lecture

v

SVMs and semi-supervised SVMs = TSVMs

Gaussian random fields and harmonic solution

v

v

graph-based semi-supervised learning

v

transductive learning

v

manifold regularization

-
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SSL: Transductive SVM: S3VM
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SSL: Transductive SVM: Classical SVM

Linear case: f =w'x+b —  we look for (w, b)

max-margin classification

1
max ra—
wh  w]

sit. yi(w'x;+b)>1 Vi=1...,n

note the difference between functional and geometric margin

max-margin classification

min ||w||2

)

sit. yiw'x;+b)>1 Vi=1...,n
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SSL: Transductive SVM: Classical SVM

max-margin classification:

min HWH2

)

sit. yilwx;+b)>1 Vi=1,...,n

max-margin classification:

. I\ 2 i
min  Aflw® + Zé‘

sit. yiwx;+b)>1-& Vi=1,...,n
fiZO VI':].,...,n/
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SSL: Transductive SVM: Classical SVM
: 2
rm? Allw| —i—Zfi

sit. yiwx;+b)>1-& Vi=1,...,n
&E>0 Vi=1,...,n

Unconstrained formulation using hinge loss:
ny
[ 1—yi(w'x;+ b),0)+ A
rnlgl g,- max (1 — y; (w'x; + b),0) +

In general?
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SSL: Transductive SVM: Classical SVM: Hinge loss

5
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% 43210123 45
yf(x)
(a) the hinge loss

V(xi, yi, f (x;)) = max (1 — y; (w'x; + b) ,0)

-
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SSL: Transductive SVM: Unlabeled Examples
n;
rx’ilr; Z max (1 — y; (w'x; + b),0) + A
How to incorporate unlabeled examples?
No y's for unlabeled x.
Prediction of f for (any) x? y = sgn (f (x)) =sgn(w'x+ b)
Pretending that sgn (f (x)) is the true label ...
V(x,y,f(x)) =max(1—y(w'x+b),0)

=max (1 —sgn(w'x+ b)(w'x+ b),0)
= max (1 — |w'x + b|,0)
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SSL: Transductive SVM: Hinge and Hat Loss

5 5
4 4
3 3
2, 2
1 1
o S 0
5 -4-3-2-1 01 2 3 45 =5-4-3-=2-1012 3 4 5
vfx) f®
(a) the hinge loss (b) the hat loss

What is the difference in the objectives?
Hinge loss penalizes?

Hat loss penalizes?

-
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SSL: Transductive SVM: S3VM

This is what we wanted!

-
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SSL: Transductive SVM: Formulation

Main SVM idea stays the same: penalize the margin
nj+ny

m|anax 1— yi (W' + b),0)+Ax[lw|*+X2 Y max(1—|w'x;+b|,0
i:n/+1

What is the loss and what is the regularizer?

m|n Z max (1 — y; (w'x; + b),0)+X\y +2
i=1

Think of unlabeled data as the regularizers for your classifiers!
Practical hint: Additionally enforce the class balance.

What it the main issue of TSVM?

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanbl6.pdf

-
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http://jmlr.org/proceedings/papers/v48/hazanb16.pdf

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut . pdf

*following some insights from vision research in 1980s
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http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

SSL with Graphs: MinCut

S VeNy
xI S
RSl

3
3

MinCut SSL: an idea similar to MinCut clustering
Where is the link?

What is the formal statement? We look for f(x) € {£1}

ni+ny

cut = Z Wij (f(Xi) - f(Xj))2 = Q(f)

Why (f (x;) — f (x;))? and not |£(x;) — f(x;)|?

. lrezia~
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SSL with Graphs: MinCut
We look for f(x) € {£1}

ni+ny
Qf) = Y wy (F(x) — f(x)))°

ij=1

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

It would be nice if we match the prediction on labeled data:

V(x.y.f(x) =00 (F(xi) = )
i=1

. Cbreia—
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SSL with Graphs: MinCut

Final objective function:

ny
[ ‘ F(xi) = yi)” + A
fe{g'}f:,+nu°c;( (x)) = )

This is an integer program :(
Can we solve it? Are we happy?

O O O

_|_ —

We need a better way to reflect the confidence.

-
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SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*3 seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.

Idea 2: Find a smooth one. (harmonic solution)

Harmonic SSL

1): As before we constrain f to match the supervised data:
fxi)=yi  Vie{l,...,n}
2): We enforce the solution f to be harmonic.

D (X)) Wi
fx)==H "2 vie{nm+1,....,n,+n}
Ziwj Wij

. Cbreia—
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SSL with Graphs: Harmonic Functions
The harmonic solution is obtained from the mincut one . ..

ny
[ ‘ F(xi) — yi)* + A
fe{ﬂl}q,+nuoc;( (x1) = i)

...if we just relax the integer constraints to be real ...

feR"+u

ny
min ooz (F(xi) — yi)* + A
i=1
...or equivalently (note that f(x;) = f;) ...

min
feR"1+"“
sit. yi="1F(x;) Vi=1,...,n
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SSL with Graphs: Harmonic Functions

Properties of the relaxation from =1 to R

v

there is a closed form solution for f
this solution is unique
globally optimal

it is either constant or has a maximum/minimum on a
boundary

f(x;) may not be discrete
» but we can threshold it

electric-network interpretation

random-walk interpretation

Michal Valko — Graphs in Machine Learning
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SSL with Graphs: Harmonic Functions

+1 volt

(a) The electric network interpretation (b) The random walk interpretation

Random walk interpretation:
1) start from the vertex you want to label and randomly walk

N7 _ -1

2) P(jl)=s%r = P=D'W

3) finish when a labeled vertex is hit
absorbing random walk

f; = probability of reaching a positive labeled vertex

. brezia~
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SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation

Step 1: Set f(x;)=yjfori=1,...,n
Step 2: Propagate iteratively (only for unlabeled)

Ziwj f(x;)w;

f(X,‘) —
Eiwj Wij

Vie{n+1,....,n,+n}

Properties:
» this will converge to the harmonic solution
> we can set the initial values for unlabeled nodes arbitrarily

> an interesting option for large-scale data

. brezia~
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f(x1),...,f(Xn+n,)) = (f1,-- -, foj+n,)
Q(f) = = f'Lf

Lis a (n/+ ny) x (n; + ny) matrix:

| Ly Ly
L= |: I-ul Luu :|

How to compute this constrained minimization problem?

. brezia~
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SSL with Graphs: Harmonic Functions

Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

(Lf), =0,
In matrix notation
[L,, L,u][f,]:[...]
Ly Luw f, 0,
f; is constrained to be y; and for f, ......
Luf + Luufu =04
... from which we get

fu = Luy (—Luif)) = Ly (Wyf).
Note that this does not depend on L.

Sequel - 24/39
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SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?
fu = Lo (—Lufl) = L (Waf)
Note that P = D™'W. Then equivalently
f,=(1—Pu) 'Puf.
Split the equation into +ve & -ve part:
fi = (1= Pu)i Pufi

iu

= > (1=Pu)'Py— Y (1-Puw),'Py

Jiyi=1 Jiyj=—1

p pi Y

_ p’g+1) _ plg_l)
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SSL with Graphs: Regularized Harmonic Functions

fi=p " —p Y = fi= || x sgn(f)

confidence label

What if a nasty outlier sneaks in?
The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?
Allow the random walk to die!
We add a sink to the graph.
sink = artificial label node with value 0
We connect it to every other vertex.

What will this do to our predictions?

depends on the weigh on the edges

-
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SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

f,= (Luu + 'Vgl)_l (Wulfl)

How does v, influence HS?

y.=1.000 ¥ =0200 y =0.040
g g g

H N o o
H Lo o

What happens to sneaky outliers?

Sequel - 27/39
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SSL with Graphs: Harmonic Functions

Why don't we represent the sink in L explicitly?

Formally, to get the harmonic solution on the graph with sink ...

Ly +vcly, L e f; .
I-ul I-uu + 7G|nu -G fu = Ou
—v6lnx1  —7vela,x1 NG 0

L.f + (Luu + '}’Glnu) f,=0,

... which is the same if we disregard the last column and row ...
L+ 76l Ly }[f/}:[}
I-ul I-uu + 7G|nu fu 0u

... and therefore we simply add ~¢ to the diagonal of L!

-
brzia—
. Michal Valko — Graphs in Machine Learning Sequel - 28/39



SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with Q = L + ~,l:

n
min 0o f(x;) — -2+)\
in,, 203 (1) )

What if we do not really believe that 7(x;) = y;, Vi?

f*=min (f—y)'C(f—y)+
ferV

for labeled [
C is diagonal with C; = {C/ or labeled examples

c, otherwise.

true label for labeled examples

y = pseudo-targets with y; = _
0 otherwise.

. Cbreia—
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SSL with Graphs: Soft Harmonic Functions
* s L WN\T B
F = min (f —y)'C(f —y) +
Closed form soft harmonic solution:
F=(C'Q+Nly

v =1.000 v =0.040
g 9

.........

[S N RN

oooooooooo

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Sequel - 30/39
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SSL with Graphs: Regularized Harmonic Functions

Larger implications of random walks

random walk relates to commute distance which should satisfy

(%) Vertices in the same cluster of the graph have a small
commute distance, whereas two vertices in different clusters of
the graph have a large commute distance.

Do we have this property for HS?  What if N — oco?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the
commute distance http://wuw.informatik.uni-hamburg.de/ML/contents/
people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf

Solutions? 1) v, 2) amplified commute distance 3) LP 4) L* ...

The goal of these solutions: make them remember!

-
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http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.
They are transductive.

What if a new point X, 4,1 arrives? .o calied out-ofsample extension
Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X — R
Allow f(x;j) # yi. Why? To deal with noise.

Solution: Manifold Regularization

. Cbreia—
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SSL with Graphs: Manifold Regularization
General (S)SL objective:

ny
min Z V(xi,yi. £ (%)) + A

Want to control f, also for the out-of-sample data, i.e.,
everywhere.

= Mof TLF + )\; / f(x)? dx
xeX
For general kernels:
n

min V(xi,vi, F (%)) + M1 + X
feEHK ;

-
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SSL with Graphs: Manifold Regularization

ny

f*:argminZV(x,-,y,-./f)—i-)\l + Ao

fEHK i

Representer Theorem for Manifold Regularization
The minimizer f* has a finite expansion of the form

nj+ny

F(x) = > aik(x,x;)

i=1
V(Xv.)/7 f) = (y - f(x))2
LapRLS Laplacian Regularized Least Squares
V(x,y,f) = max (0,1 — yf (x))

LapSVM Laplacian Support Vector Machines
. lrzia—
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SSL with Graphs: Laplacian SVMs

ny
f*:argmianax (0,1 —yf(x))+va +v
feEHK f
Allows us to learn a function in RKHS, i.e., RBF kernels.

SVM Laplacian SVM Laplacian SVM
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SSL with Graphs: Laplacian SVMs

2.5

1.5

0.5

-0.5

-1.5

Transductive SVM

Laplacian SVM
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Checkpoint 1

Semi-supervised learning with graphs:

min ZW,J — Y+ A

fe{:l:l}”l+"“

Regularized harmonic Solution:

fu = (Luu + 'Vgl)_l (Wulfl)

-
brzia—
. Michal Valko — Graphs in Machine Learning Sequel - 37/39



Checkpoint 2

Unconstrained regularization in general:

f* = min (f —y)'C(f —y) +
feRN

Out of sample extension: Laplacian SVMs

ny
= argmianax (0,1 —yf (x)) + A1 + A2

fEH i

-
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