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Previous lecture
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manifold learning with Laplacian eigenmaps
resistive networks

» recommendation score as a resistance?
» Laplacian and resistive networks
P resistance distance and random walks

semi-supervised learning

inductive and transductive semi-supervised learning
SSL with self-training

SVMs and semi-supervised SVMs = TSVMs
Gaussian random fields and harmonic solution
harmonic solution on graphs

graph-based semi-supervised learning

transductive learning
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Previous lab session

> 15. 10. 2019 by Omar
Content

» graph construction

P test sensitivity to parameters: o, k, €
» spectral clustering

» spectral clustering vs. k-means

P image segmentation

v

Short written report (graded, all reports around 40% of grade)

>
» Check the course website for the policies
» Questions to piazza

>

Deadline: 29. 10. 2018, 23:59
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This lecture

>

graph-based semi-supervised learning and manifold
regularization

transductive learning

inductive and transductive semi-supervised learning
manifold regularization

max-margin graph cuts

theory of Laplacian-based manifold methods
transductive learning stability based bounds

online semi-supervised Learning

online incremental k-centers
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SSL(G)

semi-supervised learning with
graphs and harmonic functions

..our running example for learning with graphs




SSL with Graphs: Harmonic Functions
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(a) The electric network interpretation (b) The random walk interpretation

Random walk interpretation:
1) start from the vertex you want to label and randomly walk

A\ Wi — _ -1

2) P(j\/)—izk{”ik = P=D*'W

3) finish when a labeled vertex is hit
absorbing random walk

f; = probability of reaching a positive labeled vertex
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SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation

Step 1: Set f(x;) =y fori=1,...,n
Step 2: Propagate iteratively (only for unlabeled)

Ziwj f(xj)wi

f(x;) < Vie{n+1,...,n,+ ns}

Properties:
P this will converge to the harmonic solution
P we can set the initial values for unlabeled nodes arbitrarily

» an interesting option for large-scale data
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f(x1),..., f(Xn+n,)) = (f1, -+, fon,)

Q(f) = = fLf

Lis a (n + ny) x (n + ny) matrix:

| L Ly
L= |: I-ul Luu :|

How to compute this constrained minimization problem?
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SSL with Graphs: Harmonic Functions
Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

(L), =0,
In matrix notation

[L,, L,u][f,}:[...}
Ly Lu f, 0,
f; is constrained to be y; and for f, ...
Luf + Luufu =0,
..from which we get
fu = Lyt (—Lufr) = Loy (Wf).

Note that this does not depend on L.
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SSL with Graphs: Harmonic Functions
Can we see that this calculates the probability of a random walk?

fu = Loy (—Luf)) = Lug (W)
Note that P = D™'W. Then equivalently

fu= (1= Pu) 'Puf.
Split the equation into +ve & -ve part:

fi — (I - I:)uu)_lpulfl

iu

= > (1=Puw)i'Pyi— D (1-Puw),'Py

Jiyi=1 Jiyj=—1

_ plg+1) 7 pffl)
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SSL with Graphs: Regularized Harmonic Functions

1 -1
fi=p ™ —pl = fi= [fl, x sen(f)
confidence label

What if a nasty outlier sneaks in?

The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?
Allow the random walk to die!

We add a sink to the graph.

sink = artificial label node with value 0

We connect it to every other vertex.

What will this do to our predictions?

depends on the weigh on the edges
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SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

f, = (Luu + '\/gl)il (Wulfl)

How does ~, influence HS?

y. =1.000 y =0200 y =0.040
g g g9

.....

.....

H N o o

-10 -5 0 5 10

What happens to sneaky outliers?
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SSL with Graphs: Harmonic Functions

Why don't we represent the sink in L explicitly?

Formally, to get the harmonic solution on the graph with sink ...

Ly +vcly L, -6 f) .
I-ul I-uu + ’}IGlnu -G fu = 0u
—v6lnx1  —velax1 NG 0

I-ulfl + (Luu + VGInu)fu = 0u

..which is the same if we disregard the last column and row ..
L+ 6l L ][f/}:{]
I-ul I-uu + ’YGlnu fu Ou

..and therefore we simply add ¢ to the diagonal of L!
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SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with Q = L + 7,1

ny
min 0o f(xi) — yi)* + A
i, 032 ()~ )
What if we do not really believe that f(x;) = y;, Vi?

£ = min (f— y)"C(f—
min (F—y)'C(F-y)+
for labeled |
C is diagonal with Cj; = {C’ or labeled examples
¢, otherwise.

y = pseudo-targets with y;

{true label for labeled examples
0

otherwise.
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SSL with Graphs: Soft Harmonic Functions

— 1 — T J—
F* = min (f—y)'C(f—y) +

Closed form soft harmonic solution:

fF=(ClQ+ 1Dty

v =1.000 y =0200
g g

y =0.040
g

%
o
h N o o

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.
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SSL with Graphs: Regularized Harmonic Functions

Larger implications of random walks

random walk relates to commute distance which should satisfy

(%) Vertices in the same cluster of the graph have a small
commute distance, whereas two vertices in different clusters of the
graph have a large commute distance.

Do we have this property for HS? What if N — co0?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the
commute distance http://www.informatik.uni-hamburg.de/ML/contents/
people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement . pdf

Solutions? 1) v, 2) amplified commute distance 3) LP 4) L* ...

The goal of these solutions: make them remember!
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.
They are transductive.

What if a new point X4, +1 arrives? .o calicd out-of-sample extension
Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f: X — R
Allow f(x;) # yi. Why? To deal with noise.

Solution: Manifold Regularization
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SSL with Graphs: Manifold Regularization

General (S)SL objective:

n

i V iy Vi f I A
min 3 Vi () +
Want to control f, also for the out-of-sample data, i.e.,
everywhere.

= Mof 'LF+ \; / f(x)? dx
xeX

For general kernels:

ny

i V I /7f i )\ )\
frg?;“}cz (xi, yi, £ (%)) + A1 + A2

i
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SSL with Graphs: Manifold Regularization

n

f*:argminZV(x;,y;,f)+)\1 + A2

feEH i

Representer theorem for manifold regularization

The minimizer f* has a finite expansion of the form

nj+ny

F(x) = > aik(x,x;)

i=1
V(x,y,f) = (y = f (x))*
LapRLS Laplacian Regularized Least Squares
V(x,y,f)= max (0,1 — yf (x))
LapSVM Laplacian Support Vector Machines



SSL with Graphs: Laplacian SVMs

f* = argmin Z

fEHK

n

i

max (0,1 — yf (x)) + va

+ v

Allows us to learn a function in RKHS, i.e., RBF kernels.

-

o

SVM

Laplacian SVM

Laplacian SVM
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SSL with Graphs: Laplacian SVMs

SVM Transductive SVM Laplacian SVM
25 25 25
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Checkpoint 1

Semi-supervised learning with graphs:

min  (00) Y (F(x:) = vi)* + A
i=1

fe{x1}m+nu

Regularized harmonic Solution:

f, = (Luu + ’\/gl)il (Wulfl)
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Checkpoint 2

Unconstrained regularization in general:

= min (f—y)"C(f -
min (F—y)' C(f—y) +

Out of sample extension: Laplacian SVMs

n

f* = argmin Z max (0,1 — yf (x)) + A1 + A2
feEHK

i
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SSL with Graphs: Laplacian SVMs

n

f* = argmin Z max (0,1 — yf (x)) + A1 + A2

fete

Hic is nice and expressive.
Can there be a problem with certain Hy?
We look for f only in Hg.

If it is simple (e.g., linear) minimization of f'Lf can perform badly.

Consider again this 2D data and linear K.

X 4 =1.000 . =0200 y,=0.040
9 9 9

h Lo o

........................
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SSL with Graphs: Laplacian SVMs

Linear IC = functions with slope a7 and intercept ap.
ny
min > V(F.xi i) +
1
For this simple case we can write down fTLf explicitly.
1 2
= 5D wi(F(x) = F(x)
I7.I
_ 1 2
= 5 > wij(aa(xin — xj1) + ca(xi2 — x2))

i7j

5 2
a (6
i i

A=218.351 A=218.351
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SSL with Graphs: Laplacian SVMs

2D data and linear K objective

ny

i V(f,x;, i
in, D VUi +

Setting \* = (Al + %):

ny
min > V(F.xi i) +
I

What does this objective function correspond to?

The only influence of unlabeled data is through A\*.

The same value of the objective as for supervised learning for some
A without the unlabeled data! This is not good.
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SSL with Graphs: Laplacian SVMs

MR for 2D data and linear KC only changes the slope

Linear MR
S No o

1, = 26.000 1,=5.000 1,=1.000 14=0.200 1,=0.040

What would we like to see?

v =25.000 v =5.000 v =1.000 v =0.200 v =0.040
9 9 9 9 9

Linear GC
[3; BN o W

One solution: We use the unlabeled data before optimizing over Hy!
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SSL with Graphs: Max-Margin Graph Cuts

Let's take the confident data and use them as true!

fr=min > V(Fxisen(f) + Ik
i:[er|>e

s.t. £ =arg min £7(L + ~,1)¢
gleR’V ( e )
st.li=yiforali=1,... n
Wait, but this is what we did not like in self-training!

Will we get into the same trouble?

Representer theorem is still cool:

FFx)= > afK(xi,x)

AR
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SSL with Graphs: Generalization Bounds
Why |S thIS not a WItChCI’aft7 We take GC as an example. MR or HFS are similar

What kind of guarantees we want?

We may want to bound the risk

Rp(f) = Ep(x) [£(f (x),y (x))]

for some loss, e.g., 0/1 loss

L(y',y)=1{sgn(y")#y}

What makes sense to bound Rp(f) with?

empirical risk + error terms
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SSL with Graphs: Generalization Bounds

True risk vs. empirical risk
Re(f) = 3 (i~ n)?
Nt

Re(f) = :/Z(fi —yi)?

iel

We look for the bound in the form

~

Rp(f) < Rp(f)+ errors

errors = transductive + inductive

Michal Valko — Graphs in Machine Learning
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SSL with Graphs: Generalization Bounds

Bounding inductive error (using classical SLT tools)

With probability 1 — 77, using Equations 3.15 and 3.24 [Vap95]
ZE ), yi) + Ai(h, n,m).

= number of samples , h = VC dimension of the class

A/(h, 77}) — \/h(ln(2 /h)+1) —In(n/4)

How to bound L(f(x;),yi)? For any y; € {—1,1} and ¢

L(F(xi),yi) < L(F(x;),sgn(€X)) + (07 — v;)2.
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SSL with Graphs: Generalization Bounds

Bounding transductive error (using stability analysis)

http://www.cs.nyu.edu/~mohri/pub/str.pdf

How to bound (£ — y;)??

Bounding (¢5 — y;)? for hard case is difficult — we bound soft HFS:
£* = min (£—y)'C(£— QL
[in, (£—y)'Cle—y)+£'Q

Closed form solution

=+ ty
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SSL with Graphs: Generalization Bounds

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point.

Ci=C;'Q+1land C; =C;'Q+1
What is the maximal difference in the solutions?
0 — 0 =Colya — Citya
=C M y2—y1) - (€71 =G M) w
=C M y2—y1) - (CTH[(Ct —-C3h) QI ) n

Note that v € RV>1, X, (A)|lvll2 < [[Av]l2 < Am(A)[Iv]2
- m(Q)IC - G2
||£§ _eal(Hz < Hy2 y1H2 + M( )” 1 2 H2 Hy1”2
Am(C2) Am(C2)Am(C1)
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SSL with Graphs: Generalization Bounds

Bounding transductive error

€= min (L—y)'C(L—y)+£'QL

LERN

185 — 2] < ||y2 yille  Am(Q)IC " — €5 2 [lyalla
? Am(C2) Am(C2)Am(C1)

Using Am(C) > i’;’((g; +1

165 g5 < 22—l (@I = G-l
- Am(Q) )\m(Q) Am(Q)
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SSL with Graphs: Generalization Bounds

Bounding transductive error

ly2 = yill2 | Am(QICH = €52 - llyall
An(Q) Am(Q) m(Q)

ey T1 (AM(cz) + 1) (AM(CI) +1>

Now, let us plug in the values for our problem.

165 — £l <5 <5

Take ¢, =1 and ¢; > ¢,. We have |y;| <1 and [£F| < 1.

Bgzl)\(\ﬁ+mlzcu Am(Q)

m(Q) +1 v (Am(Q) +1)2
Qisreg. L: \p(Q) = )\m(L) + g and Ap(Q) = Am(L) + g

+r Cu)\l\/l )+7g

’yg+1 Cu 7g+1

g <2

This algorithm is 3-stable!
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SSL with Graphs: Generalization Bounds
Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf

By the generalization bound of Belkin [BMNO04]

21n(2/9)

Re(£*) < Re(t)+ B+ (B +4)

transductive error Ar(8,n;,8)

5 < 2[ _’_\/7 CCUAM )+7g

2 +1

holds with probability 1 — §, where

* 1 *
Rp(€*) = NZ(E" — i)

Re(er) = =(6 — )2

n
/ icl
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SSL with Graphs: Generalization Bounds

Bounding transductive error

21n(2/9)

Rp(£) < Rp(€*)+ B+ TR

~

transductive error A+(8,n;,8)

Jr\/i Cu>\M )+’Yg

’7g+1 Cuy ’7g+1

(ni3+4)

p <2

Does the bound say anything useful?

1) The error is controlled.

1
2) Practical when error A1(/3, nj,6) decreases at rate O(n, ?).

3
Achieved when 3=0(1/n;). Thatis, vz=Q(n}).

We have an idea how to set 7!
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SSL with Graphs: Generalization Bounds

Combining inductive 4 transductive error

With probability 1 — (n + 4).

ZL’ ),sgn(¢7)) +

Ro() + Ar(3,m.8) + Db, o)
We need to account for . With probability 1 — (n + ¢).
2en
* €
Z L(f(x;),sgn(¢7)) + N +
T le

Rp(€*) + AT(B, ny,8) + Ay(h, N, n)

We should have ¢ < nl_l/zl
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SSL with Graphs: LapSVMs and MM Graph Cuts

Linear MR

b hNo o

Linear GC

MR for 2D data and linear X only changes the slope

1, = 25.000 7, =5.000 1,=1.000

7,=0.200 7,=0.040
MMGC for 2D data and linear K works as we want

y =25.000 . =5.000
9 g9

y =1.000 y.=0200 . =0.040
g 9 g9
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic K is also not so good

Cubic GC
h Lo a

Cubic MR
h Lo o
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SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF K

RBF GC
Hh Koo

RBF MR
h No o
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SSL with Graphs

(b) Harmonic function predictions

Graph-based SSL is obviously sensitive to graph construction!
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Next lecture: Tuesday, November 6th at 13:30!

ppppppp
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