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Previous lecture
I manifold learning with Laplacian eigenmaps
I resistive networks

I recommendation score as a resistance?
I Laplacian and resistive networks
I resistance distance and random walks

I semi-supervised learning
I inductive and transductive semi-supervised learning
I SSL with self-training
I SVMs and semi-supervised SVMs = TSVMs
I Gaussian random fields and harmonic solution
I harmonic solution on graphs
I graph-based semi-supervised learning
I transductive learning
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Previous lab session

I 15. 10. 2019 by Omar
I Content

I graph construction
I test sensitivity to parameters: σ, k, ε
I spectral clustering
I spectral clustering vs. k-means
I image segmentation

I Short written report (graded, all reports around 40% of grade)
I Check the course website for the policies
I Questions to piazza
I Deadline: 29. 10. 2018, 23:59
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This lecture
I graph-based semi-supervised learning and manifold

regularization

I transductive learning

I inductive and transductive semi-supervised learning

I manifold regularization

I max-margin graph cuts

I theory of Laplacian-based manifold methods

I transductive learning stability based bounds

I online semi-supervised Learning

I online incremental k-centers
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SSL(G)
semi-supervised learning with
graphs and harmonic functions
…our running example for learning with graphs



SSL with Graphs: Harmonic Functions

Random walk interpretation:
1) start from the vertex you want to label and randomly walk
2) P(j|i) = wij∑

k wik
≡ P = D−1W

3) finish when a labeled vertex is hit
absorbing random walk

fi = probability of reaching a positive labeled vertex
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SSL with Graphs: Harmonic Functions

How to compute HS? Option A: iteration/propagation

Step 1: Set f (xi) = yi for i = 1, . . . , nl
Step 2: Propagate iteratively (only for unlabeled)

f (xi)←
∑

i∼j f (xj)wij∑
i∼j wij

∀i ∈ {nl + 1, . . . , nu + nl}

Properties:
I this will converge to the harmonic solution
I we can set the initial values for unlabeled nodes arbitrarily
I an interesting option for large-scale data
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f (x1), . . . , f (xnl+nu)) = (f1, . . . , fnl+nu)

Ω(f) =
nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2 = fTLf

L is a (nl + nu)× (nl + nu) matrix:

L =

[
Lll Llu
Lu1 Luu

]
How to compute this constrained minimization problem?

Yes, Lagrangian multipliers are an option, but . . .
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SSL with Graphs: Harmonic Functions
Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

(Lf)u = 0u

In matrix notation[
Lll Llu
Lul Luu

] [
fl
fu

]
=

[
. . .
0u

]
fl is constrained to be yl and for fu ……

Lul fl + Luufu = 0u

…from which we get

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl).

Note that this does not depend on Lll .
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SSL with Graphs: Harmonic Functions
Can we see that this calculates the probability of a random walk?

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl)

Note that P = D−1W. Then equivalently

fu = (I− Puu)
−1Pul fl .

Split the equation into +ve & -ve part:

fi = (I− Puu)
−1
iu Pul fl

=
∑

j:yj=1
(I− Puu)

−1
iu Puj︸ ︷︷ ︸

p(+1)
i

−
∑

j:yj=−1
(I− Puu)

−1
iu Puj︸ ︷︷ ︸

p(−1)
i

= p(+1)
i − p(−1)

i
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SSL with Graphs: Regularized Harmonic Functions

fi = p(+1)
i − p(−1)

i =⇒ fi = |fi |︸︷︷︸
confidence

× sgn(fi)︸ ︷︷ ︸
label

What if a nasty outlier sneaks in?

The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?

Allow the random walk to die!

We add a sink to the graph.

sink = artificial label node with value 0

We connect it to every other vertex.

What will this do to our predictions?
depends on the weigh on the edges
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SSL with Graphs: Regularized Harmonic Functions

How do we compute this regularized random walk?

fu = (Luu + γg I)−1 (Wul fl)

How does γg influence HS?

What happens to sneaky outliers?
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SSL with Graphs: Harmonic Functions
Why don’t we represent the sink in L explicitly?

Formally, to get the harmonic solution on the graph with sink … Lll + γG Inl Llu −γG
Lul Luu + γG Inu −γG

−γG1nl×1 −γG1nu×1 nγG

 fl
fu
0

 =

 . . .
0u
. . .


Lul fl + (Luu + γG Inu) fu = 0u

…which is the same if we disregard the last column and row …[
Lll + γG Inl Llu

Lul Luu + γG Inu

] [
fl
fu

]
=

[
. . .
0u

]

…and therefore we simply add γG to the diagonal of L!
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SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with Q = L + γg I:

min
f∈Rnl+nu

∞
nl∑

i=1
(f (xi)− yi)

2 + λfTQf

What if we do not really believe that f (xi) = yi , ∀i?

f? = min
f∈RN

(f− y)TC(f− y) + fTQf

C is diagonal with Cii =

{
cl for labeled examples
cu otherwise.

y ≡ pseudo-targets with yi =

{
true label for labeled examples
0 otherwise.
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SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f− y)TC(f− y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Michal Valko – Graphs in Machine Learning DeepMind - 15/44



SSL with Graphs: Regularized Harmonic Functions
Larger implications of random walks

random walk relates to commute distance which should satisfy

(?) Vertices in the same cluster of the graph have a small
commute distance, whereas two vertices in different clusters of the
graph have a large commute distance.

Do we have this property for HS? What if N →∞?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of the
commute distance http://www.informatik.uni-hamburg.de/ML/contents/

people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf

Solutions? 1) γg 2) amplified commute distance 3) Lp 4) L? . . .

The goal of these solutions: make them remember!
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled data.

They are transductive.

What if a new point xnl+nu+1 arrives? also called out-of-sample extension

Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X 7→ R
Allow f (xi) 6= yi . Why? To deal with noise.

Solution: Manifold Regularization
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SSL with Graphs: Manifold Regularization
General (S)SL objective:

min
f

nl∑
i

V (xi , yi , f (xi)) + λΩ(f )

Want to control f , also for the out-of-sample data, i.e.,
everywhere.

Ω(f ) = λ2fTLf + λ1

∫
x∈X

f (x)2 dx

For general kernels:

min
f ∈HK

nl∑
i

V (xi , yi , f (xi)) + λ1‖f ‖2K + λ2fTLf
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SSL with Graphs: Manifold Regularization

f ? = argmin
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines
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SSL with Graphs: Laplacian SVMs

f ? = argmin
f ∈HK

nl∑
i

max (0, 1− yf (x)) + γA‖f ‖2K + γIfTLf

Allows us to learn a function in RKHS, i.e., RBF kernels.
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SSL with Graphs: Laplacian SVMs
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Checkpoint 1

Semi-supervised learning with graphs:

min
f∈{±1}nl+nu

(∞)

nl∑
i=1

(f (xi)− yi)
2 + λ

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

Regularized harmonic Solution:

fu = (Luu + γg I)−1 (Wul fl)

Michal Valko – Graphs in Machine Learning DeepMind - 22/44



Checkpoint 2

Unconstrained regularization in general:

f? = min
f∈RN

(f− y)TC(f− y) + fTQf

Out of sample extension: Laplacian SVMs

f ? = argmin
f ∈HK

nl∑
i

max (0, 1− yf (x)) + λ1‖f ‖2K + λ2fTLf
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SSL with Graphs: Laplacian SVMs

f ? = argmin
f ∈HK

nl∑
i

max (0, 1− yf (x)) + λ1‖f ‖2K + λ2fTLf

HK is nice and expressive.

Can there be a problem with certain HK?
We look for f only in HK.
If it is simple (e.g., linear) minimization of fTLf can perform badly.

Consider again this 2D data and linear K.
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SSL with Graphs: Laplacian SVMs
Linear K ≡ functions with slope α1 and intercept α2.

min
α1,α2

nl∑
i

V (f , xi , yi) + λ1
[
α2

1 + α2
2
]
+ λ2fTLf

For this simple case we can write down fTLf explicitly.

fTLf =
1
2
∑
i,j

wij(f (xi)− f (xj))
2

=
1
2
∑
i,j

wij(α1(xi1 − xj1) + α2(xi2 − xj2))
2

=
α2

1
2

∑
i,j

wij(xi1 − xj1)
2

︸ ︷︷ ︸
∆=218.351

+
α2

2
2

∑
i,j

wij(xi2 − xj2)
2

︸ ︷︷ ︸
∆=218.351
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SSL with Graphs: Laplacian SVMs
2D data and linear K objective

min
α1,α2

nl∑
i

V (f , xi , yi) +

(
λ1 +

λ2∆

2

)
[α2

1 + α2
2]

Setting λ? =
(
λ1 +

γ2∆
2

)
:

min
α1,α2

nl∑
i

V (f , xi , yi) + λ?[α2
1 + α2

2]

What does this objective function correspond to?

Linear SVM

The only influence of unlabeled data is through λ?.

The same value of the objective as for supervised learning for some
λ without the unlabeled data! This is not good.
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SSL with Graphs: Laplacian SVMs

MR for 2D data and linear K only changes the slope

What would we like to see?

One solution: We use the unlabeled data before optimizing over HK!
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SSL with Graphs: Max-Margin Graph Cuts
Let’s take the confident data and use them as true!

f ? = min
f ∈HK

∑
i:|`?i |≥ε

V (f , xi , sgn(`
?
i )) + γ‖f ‖2K

s.t. `? = arg min
`∈RN

`T(L + γg I)`

s.t. `i = yi for all i = 1, . . . , nl

Wait, but this is what we did not like in self-training!

Will we get into the same trouble?

Representer theorem is still cool:

f ?(x) =
∑

i:
∣∣f ?i ∣∣≥ε

α?
i K(xi , x)
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SSL with Graphs: Generalization Bounds
Why is this not a witchcraft? We take GC as an example. MR or HFS are similar.

What kind of guarantees we want?

We may want to bound the risk

RP(f ) = EP(x) [L (f (x) , y (x))]

for some loss, e.g., 0/1 loss

L(y ′, y)=1{sgn(y ′) 6=y}

What makes sense to bound RP(f ) with?

empirical risk + error terms
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SSL with Graphs: Generalization Bounds

True risk vs. empirical risk

RP(f ) =
1
N

∑
i
(fi − yi)

2

R̂P(f ) =
1
nl

∑
i∈l

(fi − yi)
2

We look for the bound in the form

RP(f ) ≤ R̂P(f ) + errors

errors = transductive + inductive
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SSL with Graphs: Generalization Bounds
Bounding inductive error (using classical SLT tools)

With probability 1− η, using Equations 3.15 and 3.24 [Vap95]

RP(f ) ≤
1
n
∑

i
L(f (xi), yi) + ∆I(h, n, η).

n ≡ number of samples , h ≡ VC dimension of the class

∆I(h, n, η) =
√

h(ln(2n/h) + 1)− ln(η/4)
n

How to bound L(f (xi), yi)? For any yi ∈ {−1, 1} and `?i

L(f (xi), yi) ≤ L(f (xi), sgn(`
?
i )) + (`?i − yi)

2.
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SSL with Graphs: Generalization Bounds

Bounding transductive error (using stability analysis)

http://www.cs.nyu.edu/~mohri/pub/str.pdf

How to bound (`?i − yi)
2?

Bounding (`?i − yi)
2 for hard case is difficult → we bound soft HFS:

`? = min
`∈RN

(`− y)TC(`− y) + `TQ`

Closed form solution

`? =
(
C−1Q + I

)−1 y
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SSL with Graphs: Generalization Bounds
Bounding transductive error

`? = min
`∈RN

(`− y)TC(`− y) + `TQ`

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point.
C1 = C−1

1 Q + I and C2 = C−1
2 Q + I

What is the maximal difference in the solutions?

`?2 − `?1 = C−1
2 y2 − C−1

1 y1

= C−1
2 (y2 − y1)−

(
C−1

1 − C−1
2

)
y1

= C−1
2 (y2 − y1)−

(
C−1

1
[(

C−1
1 − C−1

2
)

Q
]
C−1

2
)

y1

Note that v ∈ RN×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM (A)‖v‖2

‖`?2 − `?1‖2 ≤
‖y2 − y1‖2
λm(C2)

+
λM(Q)‖C−1

1 − C−1
2 ‖2 · ‖y1‖2

λm(C2)λm(C1)
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SSL with Graphs: Generalization Bounds

Bounding transductive error

`? = min
`∈RN

(`− y)TC(`− y) + `TQ`

‖`?2 − `?1‖2 ≤
‖y2 − y1‖2
λm(C2)

+
λM(Q)‖C−1

1 − C−1
2 ‖2 · ‖y1‖2

λm(C2)λm(C1)

Using λm(C) ≥ λm(Q)
λM(C) + 1

‖`?2 − `?1‖2 ≤
‖y2 − y1‖2
λm(Q)
λM(C1)

+ 1
+

λM(Q)‖C−1
1 − C−1

2 ‖2 · ‖y1‖2(
λm(Q)
λM(C2)

+ 1
)(

λm(Q)
λM(C1)

+ 1
)
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SSL with Graphs: Generalization Bounds
Bounding transductive error

‖`?2 − `?1‖∞ ≤ β ≤ ‖y2 − y1‖2
λm(Q)
λM(C1)

+ 1
+

λM(Q)‖C−1
1 − C−1

2 ‖2 · ‖y1‖2(
λm(Q)
λM(C2)

+ 1
)(

λm(Q)
λM(C1)

+ 1
)

Now, let us plug in the values for our problem.

Take cl = 1 and cl > cu. We have |yi | ≤ 1 and |`?i | ≤ 1.

β ≤ 2
[ √

2
λm(Q) + 1 +

√
2nl

1− cu
cu

λM(Q)

(λm(Q) + 1)2

]
Q is reg. L: λm(Q) = λm(L) + γg and λM(Q) = λM(L) + γg

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1− cu
cu

λM(L) + γg
γ2

g + 1

]

This algorithm is β-stable!
Michal Valko – Graphs in Machine Learning DeepMind - 35/44



SSL with Graphs: Generalization Bounds
Bounding transductive error

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf

By the generalization bound of Belkin [BMN04]

RP(`
?) ≤ R̂P(`

?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1− cu
cu

λM(L) + γg
γ2

g + 1

]
holds with probability 1− δ, where

RP(`
?) =

1
N

∑
i
(`?i − yi)

2

R̂P(`
?) =

1
nl

∑
i∈l

(`?i − yi)
2.
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SSL with Graphs: Generalization Bounds
Bounding transductive error

RP(`
?) ≤ R̂P(`

?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2
[ √

2
γg + 1 +

√
2nl

1− cu
cu

λM(L) + γg
γ2

g + 1

]
Does the bound say anything useful?

1) The error is controlled.

2) Practical when error ∆T (β, nl , δ) decreases at rate O(n− 1
2

l ).
Achieved when β=O(1/nl). That is, γg =Ω(n

3
2
l ).

We have an idea how to set γg !
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SSL with Graphs: Generalization Bounds
Combining inductive + transductive error

With probability 1− (η + δ).

RP(f ) ≤
1
n
∑

i
L(f (xi), sgn(`

?
i )) +

R̂P(`
?) + ∆T (β, nl , δ) + ∆I(h,N, η)

We need to account for ε. With probability 1− (η + δ).

RP(f ) ≤
1
n
∑

i:
∣∣`?i ∣∣≥ε

L(f (xi), sgn(`
?
i )) +

2εnε
N +

R̂P(`
?) + ∆T (β, nl , δ) + ∆I(h,N, η)

We should have ε ≤ n−1/2
l !
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and linear K only changes the slope

MMGC for 2D data and linear K works as we want
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SSL with Graphs: LapSVMs and MM Graph Cuts

MR for 2D data and cubic K is also not so good
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SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and MR for 2D data and RBF K
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SSL with Graphs

Graph-based SSL is obviously sensitive to graph construction!
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Next lecture: Tuesday, November 6th at 13:30!

Amphi Marie Curie

Amphi e-media

Amphi 109

Amphi 121

Amphi Tocqueville
Bretécher

S. des Conférences

S. Visio DSI

S. Renaudeau

Uderzo

Condorcet

S. des Comm.

C518

FCD

Fonteneau
131 bis

131
132

133
135
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Michal Valko
contact via Piazza


