Homogeneous Proportional Control (HPC)
Model of the control system:
$ \dot x={\color{blue}A}x+{\color{blue}B}(u+\gamma(t,x)), \quad x\in \mathbb{R}^n, \quad u\in \mathbb{R}^m, \quad {\color{blue}A}\in \mathbb{R}^{n\times m}, \quad {\color{blue}B}\in \mathbb{R}^{n\times m} $ where the pair $\{A,B\}$ is controllable and $\gamma:\mathbb{R}\times\mathbb{R}^{n}\mapsto \mathbb{R}^m$ is an unknown function.Homogeneous control:
$u_{hpc}={\color{magenta}{K_0}}x+\|x\|_\mathbf{d}^{1+{\color{blue}\mu}} {\color{magenta}K}\mathbf{d}(-\ln \|x\|_\mathbf{d})x, \quad {\color{magenta}{K_0}}\in \mathbb{R}^{m \times n}, \quad {\color{magenta}K}\in \mathbb{R}^{m\times n} $where ${\color{blue} \mu}\geq -1$, $\mathbf{d}(s)=e^{s{\color{magenta}{G_{\mathbf{d}}}}}$ is a dilation in $\mathbb{R}^n$, ${\color{magenta}{G_\mathbf{d}}}\in \mathbb{R}^{n\times n}$ and the homogeneous norm $\|x\|_\mathbf{d}$ is induced by the weighted Euclidean norm $\|x\|=\sqrt{x^{\top} {\color{magenta}P} x}$ in $\mathbb{R}^n$, ${\color{magenta}P}\in \mathbb{R}^{n\times n}$.
Properties:
- finite-time stabilization for negative homogeneity degree $\mu<0$
- nearly fixed-time stabilization for positive homogeneity degree $\mu>0$
- $\mathbf{d}$-homogeneity of the unperturbed system (if $\gamma=\mathbf{0}$) $\Rightarrow$ ISS with respect to measurement noises in $x$ and additive perturbations in the model;
- rejection of the matched perturbation $\gamma$ if
    HPC Design    
The function $ {\color{red} { \texttt {hpc_design}} }$ computes parameters $ {\color{magenta}{ K_0,K,G_d} } $ and ${\color{magenta} P}$ of HPC for given $ {\color{blue}A} , {\color{blue}B} , {\color{blue}{\mu}}\geq -1, {\color{blue}{\rho}}>0 $ and ${\color{blue}{\gamma_{\max}}}\geq 0$
- $ \textbf{Input parameters}: {\color{blue}A}, {\color{blue}B}, {\color{blue}\mu} $ and ${\color{blue}\rho}$ (by default $\rho=1$) and ${\color{blue}\gamma_{\max}}$ (by default $\gamma_{\max}=0$)
- $ \textbf{Output parameters}: {\color{magenta}{K_0,K,G_d}}$ and $ {\color{magenta} P}$
$$ $$
    HPC Implementation    
- The function $ {\color{red} { \texttt {e_hpc }} }$ $\textit{explicit}$ discretization of $u_{hpc}$
- $\textbf{Input parameters}:$ $x$, ${\color{magenta}{K_0, K}}, {\color{blue}\mu}, {\color{magenta}{G_\mathbf{d}, P}} $
- $\textbf{Output parameters}: u_{hpc}$
- The function $ {\color{red} { \texttt {si_hpc }} }$ $\textit{semi-implicit} $ discretization of $u_{hpc}$
The function $ {\color{red} { \texttt {c_hpc }} } \textit{consistent} $ discretization of $u_{hpc}$ if $\gamma_{max}=0$
- $\textbf{Input parameters}: $ $ h\,$ (sampling period), $ x$, ${\color{blue}{A,B}}, {\color{magenta}{K_0,K}}, {\color{blue}\mu}, {\color{magenta}{G_\mathbf{d},P}} $
- $\textbf{Output parameters}:$ $u_{hpc}$
- $\textbf{Input parameters}: $ $h \, $(sampling period), $x$, ${\color{blue}{A,B}}, {\color{magenta}{K_0,K}}, {\color{blue}\mu}, {\color{magenta}{G_\mathbf{d},P}}, {\color{blue}\rho}$
- $\textbf{Output parameters}: u_{hpc}$
${\color{red} { \texttt{demo_hpc.m}} } $
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Example of Homogenenous Proportional Controll (HPC) design %% %% System: dx/dt=A*x+B*u, %% %% where %% x - system state vector (n x 1) %% u - control input (m x 1) %% A - system matrix (n x n) %% B - control matrix (m x m) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Model of system (harmonic oscillator) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% A= [0 1; -1 0]; % sysytem matrix B= [0; 1]; % control input matrix n=2; m=1; % dimensions %controlability test W=[B];R=B; tn=1; while (rank(W)